基于MATLAB的移动衰落信道仿真

基于MATLAB的移动衰落信道仿真
基于MATLAB的移动衰落信道仿真

摘要:本文基于MATLAB对移动衰落信道进行仿真。重点利用JAKES法对瑞利信道进行了确定性模型仿真,对其功率谱密度和自相关函数进行了讨论。通过比较仿真模型与参考模型,说明了仿真模型的正确性。同时,仿真结果表明,仿真结果的特性主要取决于最大多普勒频移与谐波个数这两个参数。

关键词:瑞利信道;功率谱密度;自相关函数;JAKES法;最大多普勒频移

Mobile Fading Channel Simulation Based on MATLAB

Abstract:In this thesis, mobile fading channel is simulated based on MATLAB. It mainly focuses on the deterministic model simulation of Rayleigh channel using JAKES method, and its power spectral density and autocorrelation function are discussed. By comparing the simulation model with the reference model, it demonstrates the correctness of simulation models. At the same time, the simulation results indicate that the results are mainly depending on following two parameters: the maximum Doppler frequency shifts and the number of harmonic waves.

Keywords: Rayleigh channel;power spectral density;autocorrelation function;Jakes method;maximum Doppler shift

目录

前言 (1)

第一章绪论 (2)

1.1 研究背景及意义 (2)

1.2 研究内容 (2)

第二章无线信道的概念与特性 (3)

2.1 移动无线信道的概念 (3)

2.2 移动无线信道基本理论 (3)

2.3 移动无线信道的类型 (4)

2.3.1 传播路径损耗模型 (4)

2.3.2 大尺度传播模型 (4)

2.3.3 小尺度传播模型 (4)

2.4 移动无线信道的衰落 (5)

2.5 瑞利衰落信道模型的实现 (5)

第三章确定性信道过程的理论导论 (8)

3.1 确定性信道建模的原理 (8)

3.1.1成形波器法 (8)

3.2.2正弦波叠加法 (9)

3.2 确定性过程的基本性质 (11)

第四章确定性过程模型参数的计算方法 (12)

4.1 离散多普勒频率和多普勒系数的计算方法 (12)

4.2 多普勒相位的计算方法 (15)

4.3 确定性瑞利过程的衰落时间间隔 (16)

第五章JAKES功率谱密度与自相关函数的性能分析 (18)

第六章结束语 (23)

参考文献 (24)

致谢 (25)

附录 (26)

前言

现代移动通信的发展涉及通信信号与信道、分集接收机与最佳接收机、信源编码与信道编码、数字调制与解调等多方面技术,而无线信道及信道建模构成了移动通信传输技术的理论基础。广义上讲,移动无线信道属于随参信道,该信道的特性比恒参信道的要复杂的多,对信号的影响也要严重的多。同时,移动无线信道也属于衰落信道,由于电波传播的多样性无法用精确的数学模型来描述其信道模型,只能通过用数学上的随机过程和和统计特性模型的方法建立无线电信号的传播环境来分析和仿真其实际的物理信道,因此,移动衰落信道的建模、分析与仿真将为移动通信传输系统的设计与应用奠定基础。

在移动通信中,由于障碍物阻挡了视距路径,发出的电磁波通常不能直接到达接收天线。事实上,接收到的电磁波是由建筑物、树木及其它障碍物导致的反射、衍射和散射而产生的来自不同方向的波叠加而成的。这种现象称为多径传播。由于多径传播和多普勒效应的影响。接收机的运动还导致了到达天线的来波的频移(多普勒频移)。

通常瑞利过程适合用来对快衰落建模,本文重点研究用JAKES法对移动衰落信道进行建模。

第一章绪论

1.1 研究背景及意义

移动通信无疑是当下发展最快、应用最广和技术最前沿的通信领域之一。特别是随着现代通信从第一代(1G)、第二代(2G)发展到第三代(3G)和后三代(B3G),以及学术界和产业界已提出的研究开发第四代(4G)的技术与标准和第五代(5G)移动通信系统的构想,极大地推动了移动通信技术的革命性发展步伐。同时,移动通信市场也以前所未有的速度朝前推进,所提供的业务随着更高带宽的传输和更大系统的容量的实现 [1]。

现代移动通信的发展涉及通信信号与信道、分集接收机与最佳接收机、信源编码与信道编码、数字调制与解调等多方面技术,而无线信道及信道建模构成了移动通信传输技术的理论基础。移动无线信道属于衰落信道,由于电波传播的多样性无法用精确的数学模型来描述其信道模型,只能通过用数学上随机过程和统计模型的方法建立无线电信号的传播环境来分析和仿真实际物理信道,因此,移动衰落信道的建模、分析与仿真将为移动通信传输系统的设计与应用奠定基础。

1.2 研究内容

本文重点研究确定性信道建模的原理,包括两种有色高斯随机过程建模的基本方法:滤波法和莱斯法,确定性过程的基本性质,确定性过程模型参数(多普勒系数、离散多普勒频率,多普勒相位)的计算方法。利用MATLAB对确定性瑞利信道进行仿真,并分析最大多普勒频移、谐波函数个数等条件对仿真结果的影响。本次设计主要运用JAKES法计算确定性过程模型参数,从而建立信道仿真模型,同时给出信道仿真结果的自相关函数及功率谱密度,并与理论值进行比较分析。

第二章 无线信道的概念与特性

2.1 移动无线信道的概念 移动信道属于无线信道,是移动的动态信道,主要取决于用户所在地环境条件的客观存在,其信道参数是时变的。移动通信中的各类新技术都是针对移动信道的动态时变特性,为了解决有效性、可靠性和安全性设计的;了解移动信道的特点是解决移动通信关键技术的前提。移动信道具有下列特点:

(1)传播的开放性:无线信道是基于电磁波在空间的传播来实现开放式信息传输的;

(2)接收环境的复杂性:可将接收点地理环境分为3类典型区域,即城市繁华区、近

郊区农村/远郊区;

(3)通信用户的随机移动性:准静态的室内用户通信、慢速步行用户通信、高速车

载用户通信。

2.2 移动无线信道基本理论

在移动通信中,由于障碍物阻挡了视距路径,发出的电磁波经常不能直接到达接收

天线,事实上,接收到的电磁波是由建筑物、树木及其他障碍物导致的反射、衍射和散射而产生的来自不同方向的波叠加而成的。这种现象为多径传播。除了多径传播,多普勒效应同样会对移动信道的传输特性产生负面影响。由于移动单元的运动,多普勒效应降引起每个来波的频移。由第n 条入射波的入射方向和移动单元的运动方向定义的入射角n α按照如下关系式决定第n 条入射波的多普勒频率:

n n f f αc o s m a x = (2-1) 式中, max f 与移动单元的速度V 、光速0C 和载波频率0f 的关系可以用数学表达式表示如下

00

max f c v f = (2-2) 由于多普勒频移从而引起的多普勒色散,造成信道的时变特性,也就是信道出现了时间选择性衰落。时间选择性衰落会造成信号失真,这是由于发送信号还在传输的过程中,传输信道的特征已经发生了变化。信号尾端时的信道特性与信号前端时的信道特性已经发生了变化。如果信号持续的时间比较短,在这个比较短的持续时间里内,信道的特性

还没有比较显著的变化,这时时间选择性衰落并不明显;当信号的持续时间进一步增加,信道的特性在信号的持续时间内发生了比较显著的变化时,就会使信号产生失真。信号的失真随着信号的持续时间的增长而增加。

2.3 移动无线信道的类型

在无线通信系统中,无线信道通常是利用信道的统计特性来分析和仿真的,一般来说,整个无线信道对信号产生的影响,可以分为以下三大类:

2.3.1 传播路径损耗模型

一般来说,可以把接收信号的功率或者传播路径的损耗看作一个随机变量,而传播路径损耗模型是用来描述接收信号的平均功率或是传播路径的平均损耗,平均功率会随着传播距离的增加而减少,而传播路径的损耗会随着传播距离的增加而增加,因此,这个随机变量是传播距离的函数,随着距离的改变,会有不同的平均值或中间值。这种模型中较常使用的模型有:自由空间传播模型、对数距离路径损耗模型、及Hata模型。

2.3.2 大尺度传播模型

这个模型是用来描述信号经过长距离传播的变化(几百个波长或更多波长),主要探讨各类地形与地物对传播信号所产生的遮蔽效应。遮蔽效应可以用一个随机变数来描述,大部分的文献都一致的假设:遮蔽效应会使接收到的信号功率呈现对数常态分布。对数常态遮蔽效应指的就是:在相同的传收距离下,不同接收机所接收到的信号强度(单位为dB)将呈现高斯或是常态分布,这也就是说传播路径所造成的功率损耗(以dB为单位)是呈现高斯或是常态分布的,而且这个随机变数标准差 的单位也是dB。大尺度传播中的衰落包括:信号经过一段距离时信号的平均衰落。以及大型物体(如山脉或摩天大楼)导致的信号衍射而产生的衰落,并且大尺度衰落的信号的平均功率是缓慢变化的。

2.3.3 小尺度传播模型

小尺度模型是用来描述在很短的距离(或时间)内,接收信号功率所呈现快速的变动。小尺度传播模型是用来探讨小尺度衰落的现象,小尺度衰落也简称为衰落,主要是用来描述无线电信号经过一段很短的时间(或是很短的距离)所产生的快速变化;这些变化包括振幅、相位、频率、多重路径所造成的延迟等等。这种衰落是基带信号处理所必须要面对的主要问题。

简单的来说,大尺度传播模型是用来描述在一段较长的时间之内,信号所呈现的平均功率变化;而小尺度传播模型则是描述信号在短时间之内,受到信道影响瞬间所产生

的变化,两者不可混肴。小尺度传播中的衰落是多径传播和多普勒频移两者作用的结果。多重路径效应会造成各个路径信号到达接收机时有不同的相位、振幅、与时间延迟,因此会产生信号的时散效应与频率选择性衰落;多普勒效应则会产生信号的频散效应与时间选择性衰落[2]。

2.4 移动无线信道的衰落

无线信道是自然界中较为恶劣的通信介质。由于障碍物的阻挡,电波通常不能从发射端直接到达接收天线。由于电波的反射、绕射及散射现象,接收端所接收到的信号是各个方向到达的电磁波的叠加。同时,用户在空间的运动将使接收信号产生多普勒扩展。衰落直接体现了无线信道的复杂性和随机性,是决定移动通信系统性能的基本问题。因此深入研究信道衰落机制,建立无线信道传播模型是研究与开发高质量移动通信系统的首要任务。

在无线电波传播过程中,信道会不可避免地受到各种"噪声"的干扰,比如:加性高斯白噪声、瑞利衰落、莱斯衰落等,这种影响表现为一种快速衰落过程,它对无线信号的传输质量起着决定性的作用,因此无线通信系统的很多研究工作都是围绕着如何降低这种干扰进行的[3]。

根据移动通信衰落信道的工作机理,建立了基于加性高斯白噪声信道、瑞利衰落信道、莱斯衰落信道的仿真模型,并利用MATLAB进行了衰落信道的性能的仿真分析。

2.5瑞利衰落信道模型的实现

瑞利衰落信道是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。

瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。通过电离层和对流层反射的无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。

瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运对导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量

波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。

多普勒效应的主要内容是物体辐射的波长因为光源和观测者的相对运动而产生变化。多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证、几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v。多普勒功率谱密度的波形图如图2-1所示。

图2-1多普勒功率谱密度

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中不必要的影响,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性[4]。

为了对移动无线信道建模,我们经常假设电磁波的传播发生在二维平面即水平面来简化问题。而且,通常都是理想化的假设使到达移动用户(接收机)天线的入射波角度

在-0π2上服从均匀分布。对于全向天线,可以很容易计算出散射成分的多普勒功率谱密度)(f S uu 。对于)(f S uu ,可以得到下面的表达式:

)(f S uu =)()(2211f S f S u u u u + (2-3)

式中,

2m a x x m a x

()0uiui f f S f f f ≤=>? (2-4)

对i =2,1成立且max f 表示最大多普勒频率。式(2-4)通常被称为JAKES 功率谱密度。

第三章 确定性信道过程的理论导论

3.1确定性信道建模的原理

多谱勒频谱的实现方法有两类。第一类方法是将高斯白噪声通过成型滤波器。第二

图3-1

3.1.1成形波器法

在线性时不变滤波器()i H f 的输入端输入白高斯噪声,且()~(0,1)v t N ,则输出过

程()i u t 的功率谱密度满足2

()()uiui i S f H f 。所以,为了产生特定的多普勒功率谱的随机过程,可以采用相应的成形滤波器。

图3-2成形滤波器法实现有色高斯随机过程

3.2.2正弦波叠加法

如果用有限个谐波来代替无限个谐波,则随机过程表示为

∑=+=Ni

n n i n i n i i t f c t u

1,,,)2cos()(?θπ (3-1) 式中,n i C ,和n i f ,表示多普勒系数和多普勒频移,相移n i ,θ是[0,2π)内均匀分布的随机变量,由于这里的n i ,θ是随机变量,所以此模型称为“随机型仿真模型”。可以看出,

当∞→i N 时,)(?t u

i →)(t u i .这时,必须强调仿真模型仍然具有随机特性,因为对于所有的n =2,1…, i N ,相位n i ,θ都是服从均匀分布的随机变量。图3-3,3-4,分别表示随机仿真模型和确定型仿真模型。

,1

cos(2i f t π,2cos(2i f t π,cos(2i f t π∞

图3-3正弦波叠加法:随机仿真模型

,1,1cos(2i i f t πθ+,2,2cos(2)i i f πθ+,,cos(2i Ni i f t πθ+

图3-4 正弦波叠加法:确定型仿真模型

只有在区间(0,2π]上服从均匀分布的随机发生器中得到的相位n i ,θ(n =2,1…i N )

之后,相位n i ,θ就不再表示随机变量而是一个常量,因为现在它们是随机变量的实现,因此可知

∑=+=Ni

n n

i n i n i i t f c t u 1,,,)2cos()(~θπ (3-2) 是一个确定性过程或者确定性函数[5]。

这样)(?t u

i 的统计特性就非常接近基本零均值有色高斯随机过程)(t u i 。由此,)(?t u i 将被称为实确定性高斯过程,并且)(?)(~)(~21

t u j t u t u +=被称为复确定性高斯过程。所谓的确定性瑞利过程就是:

)(~)(~)(~)(~2

1t u j t u t u t +==ζ (3-3) 确定性莱斯过程:

)()(~)(~)(~t m t u t u t p

+==ζ (3-4) 式中,)(t m 仍然表示接收信号的视距传播分量,所得到的确定性过程的仿真模型结构图如图3-5所示[6]。

1,1

cos(2f t πθ+1,2cos(2f t πθ+1,1cos(2N f t π+2,1cos(2f t πθ+2,2cos(2f t πθ+2,2cos(2N f t π+

图3-5 莱斯过程的确定性仿真模型

由于我们的目标是使用特有的确定性过程来对由多普勒效应引起的时变衰落特征

建模,因此,我们把描述确定性过程的参数n i C ,,n i f ,和n i ,θ分别称为多普勒系数,离散多普勒频率,多普勒相位。

3.2确定性过程的基本性质

作为对确定性过程)(~t u i

的说明,即作为一种映射形式,可以使得我能够对这类过程的大部分基本特征参量(比如自相关函数、功率谱密度、多普勒扩展等)一样,推导出一些简单的封闭形式的解析解。

均值:设)(~t u i 是一个确定性过程。其中n

i f ,≠0(n =2,1,…, i N ),得到)(~t u i 的均值函数为ui m ~=0,通常都假设对所有的n =2,1,…, i N 和i =2,1都满足n

i f ,≠0。 平均功率:设)(~t u i 是一个确定性过程。那么,可以得到)(~t u i

的平均功率为 ∑==Ni n n i ui

c 12,22~σ, (3-5)

显然平均功率取决于多普勒系数n i C ,,而与离散多普勒频率n i f ,和多普勒相位n i ,θ无关。

自相关函数:对于确定性过程)(~t u i

的自相关函数,得到的封闭形式表达式为: ∑==Ni n n i n i uiui f c r 1,2,)2cos(2)(~τπτ (3-6)

应当注意,)(~τuiui r 取决于多普勒系数n i C ,和离散多普勒频率n i f ,,而与多普勒相位n i ,θ无

关。同样也要注意,平均功率2~ui σ在0=τ时和自相关函数)(~τuiui r 相等。即)0(~~2uiui ui

r =σ。 功率谱密度:设)(~t u i 是一个确定性过程。那么可以得到)(~t u i

的功率谱密度表示如下: ∑=++-=Ni n n i n i n i uiui f f f f c f S 1,,2

,)]()([4)(~δδ (3-7) 因此,)(~t u i 的功率谱密度函数是对称的线性谱,即)(~)(~f S f S uiui uiui -=。

谱线分布在离散点f =±n i f ,并通过因子42,n

i c 来加权[7]。

第四章 确定性过程模型参数的计算方法

到目前为止,已经有多种计算仿真模型主要参数(多普勒系数n i C ,和离散多普勒频

率n i f ,)的方法。正如原始的莱斯法、等距法和均方误差法等都具有相邻离散多普勒频率之间的距离相等的特点。这三种方法仅仅在多普勒系数怎样与所要求的多普勒功率谱密度相适应的特殊方式上有所不同。由于离散多普勒频率具有在两个相邻频率对之间距离相等的特性,这三个过程有一个共同的缺点,就是所设计的确定性高斯过程和所得到的仿真模型具有相对小的周期。这个不足是可以避免的,本次设计主要使用JAKES 法,然而这种方法通常不能够满足给定的要求,也就是对描述瑞利过程的复高斯随机过程的实部和虚部要求不相关。

对于无限数量的谐波函数,所有的设计方法都会产生具有相同统计特性的确定性过

程,这恰好与参考模型的统计特性相符。然而只要使用有限数量的谐波函数,我们就会得到统计特性完全不同的确定性过程,在特殊情况下,它完全偏离参考模型的统计特性。

多普勒相位n i ,θ可以独立运算,如果没有一般性的限制,我们首先假设集合{n i ,θ}

的元素都来自于区间[0,2π)上服从均匀分布的i N 统计独立的实现[8]。

4.1 离散多普勒频率和多普勒系数的计算方法

JAKES 法是专门为JAKES 功率谱密度而提出的一种方法。这里,我们将描述这个所

谓经典的方法,这种方法具有普及性。

下面的关系式对多普勒系数n i C ,、离散多普勒频率n i f ,和多普勒相位n i ,θ成立:

,sin()1,2,...,1,11cos()1,2,...,1,21,1,2i i i n i i i n n N i N n C n N i N n N i ππ??=-=-==-=-?==???

(4-1)

max ,max cos()1,2...,1,1,221,1,2i i i n i n f n N i N f f n N i π?=-=?-=??==?

(4-2) ,01,2,...,,1,2i n i n N i θ===

式中,21N N =。这里对多普勒系数n i C ,进行了修正,以便)(~t u i 的2~ui

σ平均功率满足关系式20

2~σσ=ui ,其中i =2,1。由于n i f ,≠0,对时间均值关系式0~==ui ui m m (i =2,1)成立。 所得到的功率谱密度)(~11f S u u 和)(~22f S u u 以及相应的自相关函数)(~11τu u r 和)(~22τu u r 如

图4-1所示,其中21N N ==9。即使对于小值τ,从图中可以看出确定过程)(~1t u 和)(~2

t u 的自相关函数完全偏离理想自相关函数

)2()(max 020τπστf J r uiui =。 (4-3)

另一方面,如图所示,在区间[0,max τ]上,复确定性过程)(~t u 的自相关函数)(~τuu r 与

)2(2)(~max 020τπστf J r uu = (4-4)

非常吻合[9]。

图 4-1 21N N ==9时的功率谱密度和自相关函数

即使对于∞→i N ,自相关函数)(~τuiui r 并不趋近于)(τuiui r 。然后使用极限i N ∞→,

我们得到函数

)]2()2([)(~

max 4max 020lim τπτπστf J f J r uiui Ni -=∞→ 和

)]2()2([)(~max 4max 02022lim τπτπστf J f J r u u Ni +=∞

→ (4-5)

从而,即使取极限∞→Ni 以后,不等于)()(~ττuiui uiui r r ≠(i =2,1)也成立。相反,

当∞→Ni 时,复确定性过程)(?)(~)(~21

t u j t u t u +=的自相关函数)(~τuu r 完全趋近于参考模型的自相关函数)(τuu r 。最后得到一般表达式

))(~)(~()(~)(~)(~12212211τττττu u u u u u u u uu r r j r r r -++= (4-6)

之后,再利用我们随后将看到的正确关系式)(~)(~1221ττu u u u r r =,

这个事实就变得非常明显。因此,可以直接得到

)2(2)()(~lim max 020τπσττf J r r uu uu Ni ==∞→ (4-7)

成立。此外,我们将分析在∞→1N 和∞→2N 的极限条件下,分析谱密度)(~11f S u u 和

)(~22f S u u 函数的趋向[10]。因此,我们通过傅里叶变换转换频域表达式,得到:

120max 11max lim ()0u u N f f S f f f σ→∞?≤?=??>? (4-8)

220max 22max lim ()0u u N f f S f f f σ→∞?≤?=??>? (4-9)

如果我们把这些结果带入傅里叶变换中,那么我们得到期望的JAKES 功率谱密度,即

2max max lim ()()0i uu uu N f f S f S f f f →∞≤==>?

(4-10) 因此,当∞→Ni 时,得到)()(~f S f S uu uu →,但是得不到)()(~f S f S uiui uiui → (i =2,1)。

为了举例说明上面给出的结果,我们研究下图,图4-2示出了∞→Ni 时功率谱密

度)(~11f S u u ,)(~22f S u u 和)(~f S uu 及其相应的自相关函数。

图4-2 ∞→1N 和∞→2N 时的功率谱密度和自相关函数

由以上结论我们可以知道,JAKES 法的本质缺点并不是从互相关函数不等于零中得

知的,而是对于给定的谐波函数的个数i N ,确定性过程)(~1t u 和)(~2

t u 不是最佳高斯分布。因为性能损失不是很高,而且这种损失可以很容易地通过增加谐波函数的数量i N 来得 到补偿,所以我们可以认为,在选择i N 大于或等于9的情况下,JAKES 法非常适合典型的多普勒功率谱密度的瑞利过程建模[11]。

4.2 多普勒相位的计算方法

在JAKES 法中定义的多普勒相位n i ,θ等于零,除此之外,我们都假设多普勒相位n

i ,θ是在区间]2,0(π内服从均匀分布的随机变量的实现。下面我们假设用精确多普勒扩展法来计算多普勒系数 {n i C ,}的集合和多普勒频率 {n i f ,}的集合。那么,分别对于1N =7

和2N =8的两个确定事件}{

11,1N n n =θ和}{21

,2N n n =θ,所得的确定性瑞利过程)(~t ζ,这里需要注意的是,不同的事件}{Ni n n i 1,=θ通

常得到不同的)(~t ζ的实现[12]。但是,所有这些不同的实现都具有相同的统计特性,因为基本的随机过程)(~1t u 和)(~2

t u 是关于自相关函数遍历

的。另外,使用精确多普勒扩展法时,根据定义112+=N N 可以确保关系式m n f f ,2,1±≠,对所有的n =2,1,…,1N 和m=2,1,…,2N 都成立,所以通常依赖n i ,θ的互相关函数)

(~21τu u r 在这里等于零。如果基本确定性高斯过程)(~1t u 和)(~2

t u 不相关,那么多普勒相位n i ,θ对)(~

t ζ的统计特性就没有影响,从而我们就可以假设多普勒相位n i ,θ等于零。但是,在这种情况下,我们得到Ni u i 2)0(~0σ=(i =2,1),因此确定性瑞利过程)(~t ζ在t=0的时刻得到它的最大值21210+N σ,即212)0(~10+=N σζ。根据n i ,θ=Ni n π2(n =2,1,…,

i N 和i =2,1)

,如果对多普勒相位进行确定计算,同样也可以得到类似效果。为了避免原点附近的瞬时特性,一种简单的方法就是用0T t +代替时间变量t ,其中0T 是正的实值参量且这个数必须选择的足够大。因此需要注意的是,+→t t 0T 的替换与n i ,θ→n i ,θ+0,2T f n i π的替换等价,这个等价关系导致这样一个结论,即对于不同的n 值,变换了的多普勒相位之间不再有任何逻辑关系[13]。

4.3 确定性瑞利过程的衰落时间间隔

前面,我们分析了瑞利过程的部分统计特性,知道0>τ时,振幅和相位的概率密

度函数、电平通过率和平均衰落持续时间都独立于自相关函数)(τuiui r (i =2,1)的特性。

下面,我们将研究在0>τ时有哪些特性完全取决于)(τuiui r (i =2,1)。与此相关的未解决

的问题就是要确定区间[0,max τ]的大小,以保证在这个区间上)(τuiui r 能足够接近于

)(τuiui r 。

因此,我们需要为max τ找出一个值,使仿真系统的其他统计特性与参考系统对应的

统计特性几乎没区别。在JAKES 功率谱密度的情况下,max τ与i N 的关系可由式

max τ=)2(max f Ni (4-10)

来表示。接下来,我们将看到对于仿真系统所必需的谐波函数数量i N 至少对于这类功率谱密度可以容易确定。

因此,我们将再一次分析确定性瑞利过程的衰落时间间隔的概率密度函数)_;(~_0r p τ。因为当r 的值为中电平且特别是高电平时,对于)_;(~_0r p τ和)_;(_0r p τ都不存在足够精确的近似解,所以这个问题就只有通过仿真的方法来解决。

首先,我们需要实现对max f =91HZ 和2

0σ=1时的JAKES 功率谱密度的仿真,并且要

用精确多普勒扩展法来确定仿真模型的参数。由于这种方法有很多优点[在0=τ到

)2(max max f Ni ==ττ的范围内,自相关函数)2()(max 020τπστf J r uiui =是近似值非常好,无

模型误差,)(~1t u 和)(~2

t u 之间没有相关性以及具有非常好的周期性等,因此,用这种方法得到的确定性仿真模型将满足所有的基本要求。此时,我们可以把所设计的(1N ,2N )

=(100,101)的仿真模型当作参考模型。所得的离散确定性过程)(~kT ζ的仿真已经通过选

取采样的时间间隔为s T s 4105.0-?=来实现。)(~s kT ζ的仿真样本已经被用来测量低电平

(r=0.1)、中电平(r=1)和高电平(r=2.5)的概率密度函数)_;(~_0r p τ。此处我们使用了710衰落时间间隔_τ来确定每个概率密度函数)_;(~_0r p τ。可以看出,在低电平(r=0.1)时所得的)_;(~_0r p τ的结果与理论近似值)_;(_1r p τ之间非常相近。正如我们所期望的,在深度衰落时衰落时间间隔很长的概率很低,因此在1t 和+=12t t _τ之间发生其他电平交叉的概率可以忽略不计。在这种情况下,近似值)_;(_0r p τ≈)_;(_1r p τ就显得非常有用。选择1N =7和2N =8时所选择的谐波函数的数量已足够大,以致至少在低电平和中电平时很难区分所得的概率密度函数)_;(~_0r p τ与参考模型(1N =100,2N =101)的概率密度函数。如果电平r 很高(r=2.5)且仿真模型的设计使用1N =7, 2N =8的谐波函数,那么仿真模型与参考模型相比就会第一次出现明显的不同。不过,对于这个电平,如果想要仿真模型与参考模型的差别能够被忽略,那么至少使谐波函数的个数为1N =21和2N =22.但是,进一步增加i N 将毫无意义[14]。

此时,应当注意1N =7和2N =8的个数谐波函数通常能满足对移动无线信道的建模,

这里的信道模型通常被用来确定由发射机、信道模型和接收机组成的数字传输系统的比特误码率。当然,在已经正确实现了谐波函数参数的设计的前提下,那么1N =7和2N =8刚刚可以满足对移动无线信道的建模。这可以归结于这样一个事实:比特误码率本质上

是由)(~t ζ在低电平r 时的统计特性(即振幅的概率密度函数、电平通过率、平均衰落持

续时间与衰落时间间隔的概率密度函数)决定的。在这种情况下,)(~t ζ在高电平时的特

性就不是特别重要了。

第五章 JAKES 功率谱密度与自相关函数的性能分析

在移动通信中,由于障碍物阻挡了视距路径,发出的电磁波通常不能直接到达接收

天线。事实上,接收到的电磁波是由建筑物、树木及其它障碍物导致的反射、衍射和散射而产生的来自不同方向的波叠加而成的。这种现象称为多径传播。由于多径传播和多普勒效应的影响。接收机的运动还导致了到达天线的来波的频移(多普勒频移)。由于这些来波的入射方向不一样,产生的多普勒频移也不同,因此对于所有的散射(和反射)

波分量的和,我们最终得到一个连续的多普勒频谱,它被称为多普勒功率谱密度 [15] 。

我们知道,根据多普勒效应,在二维水平面上,基波的多普勒频移(多普勒频率)

αc o s m a x f f =, (5-1)

00max c vf f = (5-2)

为最大多普勒频率。所以,我们可以看出最大多普勒频率跟速度有关,最大多普勒

频率的大小会影响信道的仿真效果。

本次设计是基于MATLAB 软件,下面是不同的最大多普勒频率值下不同的仿真图:

图5-121N N ==9max f =91时功率谱密度和自相关函数

基于Matlab的无线信道仿真

基于 Matlab 的无线信道仿真 近几年,随着无线通信业务和新兴宽带移动互联网接入业务的快速增长, 对 无线通信系统的优化显得尤为重要。与有线信道静态和可预测的典型特点相反, 在实际中, 由于无线信道动态变化且不可预测, 无线通信系统的性能在很大程度 上取决于无线信道环境, 所以对无线信道的准确理解和仿真对设计一个高性能和 高频谱效率的无线传输技术显得尤其重要。 无线信道的一个典型特征是“衰落” ,衰落现象大致可分为两种类型:大尺 度衰落和小尺度衰落。 其中,大尺度衰落主要在移动设备通过一段较长的距离时 体现,它是由信号的损耗(长距离传播)和大的障碍物(如建筑物、中间地形和 植物)形成的阴影所引起的,一般分为路径损耗和阴影衰落,另一方面,小尺度 衰落是指当移动台在较短距离内移动时, 由多条路径的相消或相长干涉所引起信 号电平的快速波动, 主要表现为多径衰落。 它们之间的关系如图 1 所示。报告中 分别对这几种衰落的常见模型进行了总结和仿真。 一、大尺度衰落 大尺度衰落是在一个较大的范围上考察功率的渐变 过程, 距离变化缓慢。 大尺度信道模型主要研究电波 传播在时间、 均特性。 功率的局部中值随 空间、频率范围内平 图1 各种衰落之间的

1.1 路径损耗 路径损耗由发射功率的辐射扩散及信道的传播特性造成,反映在宏观长距离

上。理论上认为,对于相同收发距离,路径损耗相同。其定义为有效发射功率和平均接收功率之间的比值。几种常用的描述大尺度衰落的模型有自由空间模型、对数距离路径损耗模型、Hata-Okumura 模型。 1.1.1自由空间模型 所谓自由空间是指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射,传播路径上没有障碍物阻挡,到达接收天线的地面反射信号场强也可以忽略不计。 自由空间模型中路径损耗计算公式: 1 G t G r 其中,P t 为发射功率,P r 为接收功率, d 为发射端与接收端距离,f 为载波频率, c为光速取3 108,G t 为发射端天线增益,G r为接收端天线增益。转换成分贝表示:L(s dB)10lg Pt32.45 20lgd 20lg f 10lg G t G r P r 发射端与接收端均是全向天线,G t G r 1 ,得图2: 1.1.2对数距离路径损耗模型 与前面提到的自由空间路径损耗一样,在其他所有实际环境中,平均接收信号功率随距 d 呈对数方式减小。通过引入随着环境而改变的路径损耗指数n 可以修正自由空间模型,从而构造出一个更为普遍的路径损耗衰落模型。 L s P P t r4 π c df 图 2 路径损耗随距离、频率变化曲线

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

瑞利信道仿真 matlab

实验一 瑞利信道的仿真 一 引言:瑞利信道介绍 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。[1] 瑞利分布就是两个独立的高斯分布的平方和的开方一个信号都是分为正交的两部分,而每一部分都是多个路径信号的叠加,当路径数大于一定数量的时候,他们的和就满足高斯分布。而幅度就是两个正交变量和的开平方,就满足瑞利分布了。[2] 二 实验目的: 用MATLAB 软件仿真瑞利信道,产生瑞利信道的随机数,画出产生瑞利数据的CDF 和PDF ,并求瑞利数据的均植和方差。 三 实验内容: 1、实验原理: 一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布,两个正交高斯噪声信号之和的包络服从瑞利分布。信道符合瑞利分布,做出概率密度函数曲线。这里又到了瑞利分布的概率密度函数 2 22()exp() 0r 2r r p r σσ=-≤≤∞运用公式验证瑞利信道是符合瑞利分布的。 2、程序框图

3、源程序代码 % parameters setting clc; n=0:0.1:10; sigma=1; N=100000; x=randn(1,N); y=randn(1,N); M=x+j*y; r=sqrt(sigma*(x.^2+y.^2)); % q=1-exp((-(x.^2+y.^2))/(2*sigma*sigma)); % step=0.1; %range=0:step:3; h=hist(r,n); fr_approx=h/(0.1*sum(h)); pijun=sum(r)/N; junfanghe=(r-pijun).^2; junfang=sum(junfanghe)/N; u=0; % w=hist(q,n); % fr_approx1=-w/(0.1*sum(w)); % Calculate the CDF &Drawing cdf=raylcdf(n,sigma); subplot(3,1,1); plot(n,cdf); % hold on; % plot(n,fr_approx1,'ko'); % Calculate the PDF & Drawing title('Normal cumulative distribution'); pdf=raylpdf(n,sigma); subplot(3,1,2); plot(n,pdf); title('Normal probability density'); hold on; plot(n,fr_approx,'ko'); axis([0 8 0 1]) wucha=fr_approx-pdf; subplot(3,1,3); plot(n,wucha); title('wucha'); % Generate the randoms & Calculate the mean, covariance R=raylrnd(sigma,1,1000); % subplot(3,1,3);

无线信道建模与仿真毕业设计论文

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解红河学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

摘要 移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。 关键字:无线信道、Hata模型、COST231-WI模型

Abstract Mobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model

matlab瑞利衰落信道仿真

引言 由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m分布。在本文中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 仿真原理 1、瑞利分布简介 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。 幅度、相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示:

图1 瑞利分布的概率分布密度 2、多径衰落信道基本模型 根据ITU-RM.1125标准,离散多径衰落信道模型为 () 1 ()()() N t k k k y t r t x t τ==-∑ (1) 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2所示: 图2 多径衰落信道模型框图

3、产生服从瑞利分布的路径衰落r(t) 利用窄带高斯过程的特性,其振幅服从瑞利分布,即 ()r t = (2) 上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。 首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示 : 图3 瑞利衰落的产生示意图 其中, ()S f = (3)

(完整word版)基于Matlab的无线信道仿真

基于Matlab的无线信道仿真 近几年,随着无线通信业务和新兴宽带移动互联网接入业务的快速增长,对无线通信系统的优化显得尤为重要。与有线信道静态和可预测的典型特点相反,在实际中,由于无线信道动态变化且不可预测,无线通信系统的性能在很大程度上取决于无线信道环境,所以对无线信道的准确理解和仿真对设计一个高性能和高频谱效率的无线传输技术显得尤其重要。 无线信道的一个典型特征是“衰落”,衰落现象大致可分为两种类型:大尺度衰落和小尺度衰落。其中,大尺度衰落主要在移动设备通过一段较长的距离时体现,它是由信号的损耗(长距离传播)和大的障碍物(如建筑物、中间地形和植物)形成的阴影所引起的,一般分为路径损耗和阴影衰落,另一方面,小尺度衰落是指当移动台在较短距离内移动时,由多条路径的相消或相长干涉所引起信号电平的快速波动,主要表现为多径衰落。它们之间的关系如图1所示。报告中分别对这几种衰落的常见模型进行了总结和仿真。 图1 各种衰落之间的关系 一、大尺度衰落 大尺度衰落是在一个较大的范围上考察功率的渐变过程,功率的局部中值随距离变化缓慢。大尺度信道模型主要研究电波传播在时间、空间、频率范围内平均特性。 1.1 路径损耗 路径损耗由发射功率的辐射扩散及信道的传播特性造成,反映在宏观长距离

上。理论上认为,对于相同收发距离,路径损耗相同。其定义为有效发射功率和平均接收功率之间的比值。几种常用的描述大尺度衰落的模型有自由空间模型、对数距离路径损耗模型、Hata-Okumura 模型。 1.1.1自由空间模型 所谓自由空间是指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射,传播路径上没有障碍物阻挡,到达接收天线的地面反射信号场强也可以忽略不计。 自由空间模型中路径损耗计算公式: r t r t s G G c df πP P L 142 ??? ??== 其中,t P 为发射功率,r P 为接收功率,d 为发射端与接收端距离,f 为载波频率,c 为光速取8103?,t G 为发射端天线增益,r G 为接收端天线增益。转换成分贝表示: r t r t s G G f d P P L lg 10lg 20lg 2045.32lg 10dB -++==)( 发射端与接收端均是全向天线,1==r t G G ,得图2: 图2 路径损耗随距离、频率变化曲线 1.1.2 对数距离路径损耗模型 与前面提到的自由空间路径损耗一样,在其他所有实际环境中,平均接收信号功率随距d 呈对数方式减小。通过引入随着环境而改变的路径损耗指数n 可以修正自由空间模型,从而构造出一个更为普遍的路径损耗衰落模型。

移动信道的模型(多径衰落信道)

6.1.4 移动信道的模型(多径衰落信道) 、时变线性滤波器模型及其响应 1. 带通系统分析 1)离散多径 2)连续多径 信道:(,t ), (t ),即(,t )表示在0时刻的冲激在T 时刻的响应。 响应: x(t) ( ,t)s(t )d 14-1-6) 信道:信道系数 n (t ),即(n ,t ),时延 n (t ) 响应: x(t) n (t)s(t n ( n ,t)s(t n n (t)) n (t)) 14-1-2)

2.等效低通分析 1)离散多径 由带通信道模型: 其中n(t) ( n,t)为实函数,所以有 即得到等效低通模型为 所以得到: 其中n(t) @ ( n;t)。 2)连续多径 信道:c( ;t) ( ;t)e j2 fc (t) 响应:r l (t) c( ;t)s l (t )d ( ;t)e j2 fc (t)s l(t )d 信道系数:n(t)e j2 fcn(t)或(n;t)e j2 fcn(t)14-1-5) 响应:r l (t)n(t)e j2 f n n(t)s l (t n(t))14-1-4) 若令c( ;t) n(t)e j2 f c n(t) n ( n (t)) ,则 可见c( ;t)是0时刻的冲激通过信道后在时刻上的响应。 14-1-8)

二、多径衰落信道的统计特性 1.等效低通信道 论冲激响应:即0时刻的冲激通过信道后在时刻上的响应。 其中n(t) 2 f c n(t) 离散多径:c( ;t) n(t)e jn⑴(n(t)) n 连续多径: c( ;t) ( ;t)e j⑴其中(t) 2 f c (t) 2.分析:c( ;t)由许多时变随机向量组成 幅度系数n(t)-随移动台运动而随机变化; 相位偏移n(t)—在[0,2 )内随机变化。且各条路径是独立的,各个向量分量是独立随机变量,且零均值的。 3.初步结论 (1) 根据中心极限定理,合成的时变随机向量c( ;t)是零均值,低通复高斯过程 其幅度c( ;t)服从Rayleigh分布,相位n (t)服从(0, 2 )均匀分布。 (2) 信道传输函数:C(f;t) c( ;t)e j2 f d (线性变换) 故C(f;t)也是零均值、低通复高斯过程。称为时变传递函数。 (3) 若其中有一条路径的分量相当强(如直射分量LOS,超过其他分量之总和), 则合成向量幅度服从Rice分布。

无线信道建模与仿真

摘要 移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。 关键字:无线信道、Hata模型、COST231-WI模型

Abstract Mobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model

移动无线信道多径衰落的仿真

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2011年秋季学期 移动通信课程设计 题目:移动无线信道多径衰落的仿真专业班级: 姓名: 学号: 指导教师: 成绩:

在移动通信迅猛发展的今天,人与人的交流越来越多的依赖于无线通信。而无线信道的好坏直接制约着无线通信质量的提高,因此对无线信道的研究有利于提高通信传输速率。本次课程设计用simulink对移动无线信道多径衰落特性进行了仿真,并且和理想传输环境下的情况进行比较得出了结论。 关键词:移动通信;无线信道;频率选择性衰落;多径传播

移动通信是指双方或至少其中一方在运动状态中进行信息传递的通信方式,是实现通信理想目标的重要手段。移动通信满足了人们在任何时间任何空间上通信的需求,同时,由于集成电路、计算机和软件工程的迅速发展为移动通信的发展提供了技术支持,移动通信的发展速度远远超过了人们的预料。移动通信追求在任何时间任何地方以任何方式与任何人进行通信,也就是移动通信的理想境界——个人通信。要实现这个理想,高效率、高质量是前提。所以,除了研究发射机接收机可以达到目的外,对于无线信道的研究更为重要。无线信道的好坏直接影响无线通信的质量和效率,对无线信道建立数学模型是一种科学的研究方法,通过建模可以了解影响信号传输质量的因素以及解决的方法。无线信道中,小尺度衰落占有重要地位,所以,研究小尺度衰落的特性和建模方法对于无线信道的研究具有重大意义。

第1章移动通信概述 (1) 1.1移动通信的发展史 (1) 1.2移动通信的特点 (2) 第2章无线信道的概念和特性 (4) 2.1 无线信道的定义 (4) 2.2 无线信道的类型 (4) 2.2.1 传播路径损耗模型(Propagation Path Loss Model) (4) 2.2.2 大尺度传播模型(Large Scale Propagation Model) (5) 2.2.3 小尺度传播模型(Small Scale Propagation Model) (5) 2.3 无线移动信道的概念 (5) 2.4 移动信道的特点 (6) 2.4.1 移动通信信道的3个主要特点 (6) 2.4.2 移动通信信道的电磁波传输 (6) 2.4.3 接收信道的3类损耗 (6) 2.4.4 三种快衰落(选择性衰落)产生的原因 (7) 第3章调制解调 (8) 第4章系统仿真及结果分析 (9) 4.1 QPSK 调制解调系统的仿真 (9) 4.2 利用Matlab研究QPSK信号 (11) 总结 (15) 参考文献 (16) 附录一: (17) 附录二: (19)

数字通信系统matlab仿真

课程设计报告 题目:基于MATLAB的通信系统仿真 ———信道编码对通信系统性能的影响 专业:通信工程 姓名:XXX 学号:0730xxxx

基于MATLAB 的通信系统仿真 ———信道编码对通信系统性能的影响 摘要:简述信道编码理论,详细说明分组码的编译原理、实现方法及检错纠错能力,用MATLAB 仿真有无信道编码条件下对通信系统性能的影响及信道编码在不同信道下对通信系统性能的影响,如AWGN 信道和深衰落信道。 关键词:信道编码、分组码、MATLAB 仿真、性能 一、引言 提高信息传输的有效性和可靠性始终是通信技术所追求的目标,而信道编码能够显著的提升信息传输的可靠性。1948年,信息论的奠基人C.E.Shannon 在他的开创性论文“通信的数学理论”中,提出了著名的有噪信道编码定理.他指出:对任何信道,只要信息传输速率R 不大于信道容量C, 就一定存在这样的编码方法:在采用最大似然译码时,其误码率可以任意小.该定理在理论上给出了对给定信道通过编码所能达到的编码增益的上限,并指出了为达到理论极限应采用的译码方法.在信道编码定理中,香农提出了实现最佳编码的三个基本条件 :(1 )采用随机编译码方式 ; (2 )编码长度L→∞ , 即分组的码组长度无限 ; (3)译码采用最佳的最大似然译码算法。【1】 二、信道编码理论 1、信道编码的目的 在数字通信系统中由于信道内存在加性噪声及信道传输特性不理想等容易造成码间串扰同时多用户干扰、多径传播和功率限制等也导致错误译码。为了确保系统的误比特率指标通常采用信道编码。信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。 2、信道编码的实质 信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。举例而言,欲传输k 位信息,经过编码得到长为n(n>k)的码字,则增加了 n - k = r 位多余码元,我们定义 R = k / n 为编码效率。【2】 3、 信道编码公式 令信息速率为f b ,经过编码以后的速率为f t ,定义:R =f b /f t 为编码率。则对于任何一个信道,总存在一个截止速率R 0,只要R

移动通信瑞利衰落信道建模及仿真

移动通信瑞利衰落信道建模及仿真 信息与通信工程学院 09211123班 09212609 蒋砺思 摘要:首先分析了移动信道的表述方法和衰落特性,针对瑞利衰落,给出了Clarke模型,并阐述了数学模型与物理模型之间的关系,详细分析了Jakes仿真方法,并用MATLAB进行了仿真,并在该信道上实现了OFDM仿真系统,仿真曲线表明结果正确,针对瑞利衰落的局限性,提出了采用Nakagami-m分布作为衰落信道物理模型,并给出了新颖的仿真方法。 关键词:信道模型;Rayleigh衰落;Clarke模型;Jakes仿真;Nakagami-m分布及仿真 一.引言 随着科学技术的不断进步和经济水平的逐渐提高,移动通信已成了我们日常生活中不可缺少的必备品。然而,移动通信中的通话常常受到各种干扰导致话音质量的不稳定。本文应用统计学及概率论相关知识对移动通信的信道进行建模仿真和详尽的分析。 先来谈谈移动通信的发展历史和发展趋势。所谓通信就是指信息的传输、发射和接收。人类通信史上革命性的变化是从电波作为信息载体(电信)开始的,近代电信的标志是电报的诞生。为了满足人们随时随地甚至移动中通信的需求,移动通信便应运而生。所谓移动通信是指通信的一方或双方处于移动中,其传播媒介是无线电波,现代移动通信以Maxwel1理论为基础,他奠定了电磁现象的基本规律;起源于Hertz的电磁辐射,他认识到电磁波和电磁能量是可以控制发射的,而Marconi无线电通信证实了电磁波携带信息的能力。第二次世界大战结束后,开始了建立公用移动通信系统阶段。这第一代移动通信系统最大缺点是采用模拟技术,频谱利用律低,容量小。90年代初,各国又相继推出了GSM等第二代数字移动通信系统,其最大缺点是频谱利用率和容量仍然很低,不能经济的提供高速数据和多媒体业务,不能有效地支持Internet业务。90年代中期以后,许多国家相继开始研究第三代移动通信系统,目前,我国及其他国家已开始了第四代移动通信的研究。相比之前的系统,3G或4G有以下一些特点:1.系统的国际通用性:全球覆盖和漫游。2.业务多样性,提供话音、数据和多媒体业务,支持高速移动。3.频谱效率高,容量大。4.提供可变速率业务,具有QoS保障。在3G或4G的发展中,一个核心问题就是系统的高速数据传输与信道衰落之间的矛盾。从后面的分析中,我们会看到多径衰落是影响移动通信质量的重要因素,而高速数据传输和移动终端高速移动会加剧多径衰落,因此,抗衰落是3G或4G的重要技术,对移动信道的研究是抗衰落的基础,建模及仿真是研究衰落信道的基本方法之一。 再来看看移动通信系统组成及移动信道特点。移动通信组成如图(1)所示,包括信源、信道、信宿,无线信道是移动通信系统的重要

matlab信道仿真经典源程序

% % % Rayleigh Fading Channel Signal Generator % Using the Dent Model (a modification to the Jakes Model) % % Last Modified 10/18/05 % % Author: Avetis Ioannisyan (avetis@https://www.360docs.net/doc/4a14852877.html,) % % % Usage: % [omega_mTau, Tk] = % ai_RayCh(NumAngles, Length, SymbolRate, NumWaveforms, CarrierFreq, Velocity) % % Where the output omega_mTau is a time scaling factor for plotting % normalized correlations. The LAGS value output by [C,LAGS] = XCORR(...) % should be multiplied by the omega_mTau scaling factor to properly display % axis. Tk is a two dimensional vector [M, N] = SIZE(Tk) with % M=numWaverorms and N=Length specified in the RayCh(...) function call % % And the input variables are: % % NumAngles - scalar power of 2, NumAngles > 2^7 is used to specify the % number of equally strong rays arriving at the receiver. It used to % compute the number of oscillators in the Dent model with N0 = numAngles/4 % % Length - scalar preferably power of 2 for faster computation, Length > 2^17 % is used to specify the length of the generated sequence. Lengths near 1E6 % are close to realistic signals % % SymbolRate - scalar power of 2 and is in kilo-symbols-per-sec is used to % specify what should be the transmission data rate. Slower rates will % provide slowly fading channels. Normal voice and soem data rates are % 64-256 ksps % % NumWaveforms - scalar used to specify how many 'k' waveforms to generate % in the model. NumWaveforms > 2 to properly display plots % % CarrierFreq - scalar expressed in MHz is the carrier frequency of the % tranmitter. Normally 800 or 1900 MHz for mobile comms % % Velocity - scalar expressed in km/hr is the speed of the receiver. % 100 km/hr = 65 mi/hr. Normal values are 20-130 km/hr %

一种移动通信无线信道衰落模型的调查

一种移动通信无线信道衰落模型的调查 文摘:未来3G和4G手机通信系统将被要求支持广泛的数据率和优质的服务矩阵。为提高数据链路的设计系统设计者需要传输协议知识的统计特性的物理层。研究表明,没有适当的信道特性,盲目的应用现有的协议和传输策略,结果可能是毁灭性的,除非采取了适当的措施。信道特性也帮助分配资源,选择传输策略和协议。一种可行的办法是有一个准确彻底地可再生的最佳通道模型,模拟移动无线信道在不同的衰落错误的环境。通道模型的目的是提供恰当的上层协议的输出,就好象它是运行在实际的物理层。该模型应该很好得符合实测数据和很容易处理分析。衰减移动信道的各种特征出现在过去年五十年文献中。对于现有的信道模型,文章调查的衰落信道模型为适当的无线信道和特性提供了方法分类。给出了由这些通道模型和他们的假设、适用性、应用、缺点,进一步提高问题所做的贡献。在当前环境马尔可夫模型最适合于表征无线信道的衰落。这些无线信道模型提出了一种衰落状态模型作为随机过程。一个适当的建造信道模型是很有价值的方法去提高将来的移动无线信道的可靠性和容量的。 关键字-马尔可夫通道模型、误差概率,状态,衰落、传播、协议。 1.引言 提出研究不同的通道模型在过去几十年已经取得了相当大的努力。准确的信道模型对于无线衰落信道特性来说是个宝贵的工具。传统的简单的加性高斯白噪声通道模型接收信号时只是不断被衰减和延迟影响。在移动数字传输无线信道中往往需要一个更精细的模式。在这种情况下,有必要考虑其他反复变化传播而被称为衰落的情况,它影响了接收信号的包络。基于衰落统计的衰落信道为大家众所周知的是快、慢、扁、平稳和非平稳的信道特点。由于考虑因素的大量提高,模型复杂特性进一步增加,如:物理位置接收机,速度车辆、载频、调制技术。此前,信道模型的提出是一种基于概率密度函数来接收信号。然而,使用相关分析模型很难计算系统的性能参数。例如,没有闭合的形式来对模型有关的简单特性进行表达,如PDF衰落的持续时间和PDF次数在规定时间内消失的时间间隔。对于衰落信道性能的错误分析。PDF格式是典型的使用,它涉及复杂的整合,这在设计分析上层协议是非常困难的。在第三代和第四代移动通信系统,它信道噪音可能具有一定的时间变化记忆,会导致信道质量随时间和以前信道条件的不同而发生变化。这些现象可能会导致传输的意外,因为大多数

信道特性

恒参信道: 有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。 ? 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。 从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。 网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线. 随参信道: 短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。 属于随参的传输媒质主要以电离层反射、对流层散射等为代表。 ? 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。 ? 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。 随参信道图: 共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。 多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。 —— 由第i 条路径的随机相位; ————由第i 条路径到达的接收信号振幅 _______ 由第i 条路径达到的信号的时延; 都是随机变化的 (1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号; (2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。 通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。 ) ()(0t t i i τω?-=)(t i μ)(t i τ) (),(),(t t t i i i ?τμω ω?ω τd d )()(=

无线衰落信道、多径与OFDM、均衡技术要点

无线衰落信道、多径与OFDM、均衡技术 (2012-08-30 14:14:43) 转载▼ 标签: 杂谈 参见张贤达通信信号处理。OFDM移动通信技术原理与应用,移动通信原理吴伟陵 目录 无线信道的传播特征 无线信道的大尺度衰落 阴影衰落 无线信道的多径衰落 多径时延与与叠加后的衰落 频率选择性衰落和非频率选择性衰落 符号间干扰ISI的避免 多径信号的时延扩展引起频率选择性衰落,相干带宽=最大时延扩展的倒数 无线信道的时变性以及多普勒频移 多普勒效应 时变性、时间选择性衰落与多普勒频移 相干时间与多径 OFDM对于多径的解决方案 多径信号在时域、频域的分析思考 1,多径信号是空间上的多个不同信号。各参数应分别从时域、频率进行考察。 2,符号间干扰ISI是时域的概念,时延、多径均影响了ISI 3,信道间干扰ICI是频域的概念,时延、多径均影响了ICI 4,时延、多普勒频移分别对应于:频率选择性衰落、时间选择性衰落,它们具有对偶性质 多径对信号频谱的影响,OFDM如何抗多径 GSM中的自适应均衡技术 无线信道的传播特征 与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1)电波中自由空间内的传播损耗|d|-n ,也被称作大尺度衰落,其中n一般为3~4;

瑞利信道Matlab仿真程序

%%File_C7: %本程序将一随机信号通过瑞利信道产生输出 %% clear; clc; Ts=; fmax=2;%最大多普勒频移 Nt=400;%采样序列的长度 ( sig=j*ones(1,Nt);%信号 t=[0:Nt]; %设定信道仿真参数 N0=25; D=1; [u]=jakes_single_rayleigh(N0,D,fmax,Nt,Ts);%生成瑞利信道RecSignal=u.*sig; ? plot(20*log10(RecSignal)); % %本函数用Jakes方法产生单径的符合瑞利分布的复随机过程%%%%%%%%%%%%%%%%%%%%%%%%%%% function [u]=jakes_single_rayleigh(N0,D,fmax,M,Ts,Tc) % 输入参数: % N0 频率不重叠的正弦波个数 { % D 方差,可由输入功率得到 % fmax 最大多普勒频移 % M 码片数 %输出参数 %u 输出复信号 %u1 输出信号的实部 %u2 输出信号的虚部 %% 、 %%%%%%%%%%%%%%%%%%%%%%%%%%% N=4*N0+2;%Jakes仿真叠加正弦波的总个数 %计算Jakes仿真中的离散多普勒频率fi,n f=zeros(1,N0+1); for n=1:N0 f(n)=fmax*cos(2*pi*n/N);

~ f(N0+1)=fmax; %计算多普勒增益ci,n %同向分量增益c1,n c1=zeros(1,N0+1); for n=1:N0 c1(n)=D*(2/sqrt(N))*2*cos(pi*n/N0); end c1(N0+1)=D*(2/sqrt(N))*sqrt(2)*cos(pi/4); 《 %正交分量增益c2,n c2=zeros(1,N0+1); for n=1:N0 c2(n)=D*(2/sqrt(N))*2*sin(pi*n/N0); end c2(N0+1)=D*(2/sqrt(N))*sqrt(2)*sin(pi/4); %插入随机相移ph_i,解决Jakes方法的广义平稳问题n=(1:N0+1); \ U=rand(size(n)); [x,k]=sort(U); ph_i=2*pi*n(k)/(N0+1); %计算复包络 u1=zeros(1,M);%Rc(t) u2=zeros(1,M);%Rs(t) u=zeros(1,M);%R(t) k=0; & %计算Rc(t) k=0; for t=0:Ts:(M-1)*Ts; w2=cos(2*pi*f*t+ph_i); ut2=c2*w2.'; k=k+1; u2(k)=ut2; end %计算u(t) k=0; for t=0:Ts:(M-1)*Ts k=k+1; u(k)=u1(k)-j*u2(k); end %程序结束

基于MATLAB的无线多径信道建模与仿真分析

基于MATLAB的无线多径信道建模与仿真分析 摘要:对于无线通信, 衰落是影响系统性能的重要因素, 而不同形式的衰落对于信号产生的影响也不相同。本文在阐述移动多径信道特性的基础上, 建立了不同信道模型下多径时延效应的计算机仿真模型,不仅针对不同信道衰落条件下多径衰落引起的多径效应进行仿真, 而且进一步阐述了多径效应的影响。本文运用MATLAB语言对有5条固定路径的多径信道中的QPSK系统进行BER 性能仿真。 关键词:多径衰落信道,瑞利/莱斯分布,码间干扰,QPSK,MATLAB仿真,BER 移动通信技术越来越得到广泛的应用,在所有移动通信基本理论和工程技术的研究中,移动无线信道的特性是研究各种编码、调制、系统性能和容量分析的基础。因此,如何合理并且有效地对移动无线信道进行建模和仿真是一个非常重要的问题。 本文在Matlab环境下的,通过编写程序让二进制数据经过QPSK调制,然后再让信号分别通过高斯信道、瑞利信道、莱斯信道和码间干扰信道,并在接收端进行QPSK解调后计算这三种信道条件下的误码性能,并得到了相应的分析结果。 1移动无线信道 无线信道是最为复杂的一种信道。无线传播环境是影响无线通信系统的基本因素。信号在传播的过程中,受各种环境的影响会产生反射、衍射和散射,这样就使得到达接收机的信号是许多路径信号的叠加,因而这些多径信号的叠加在没有视距传播情况下的包络服从瑞利分布。当多径信号中包含一条视距传播路径时,多径信号就服从莱斯分布[1]。在存在多径传输的信道中,由于各路径传输时间延迟不一致,以及传输特性不理想,加上信道噪声的影响,使得接受信号在时间上被展宽,从而延伸到临近码元上去,使得符号重叠,这样的信道会造成码间干扰。 2瑞利分布和莱斯分布 在实际情况中对数字通信系统来说,调制符号的周期比由多径传播引起的时延扩展要大,因此在一个符号周期内的所有频率分量都会经历相同的衰减和相移。信道对于所有频率分量来说是平坦的,因而定义这类信道为平坦衰落信道。理论分析和实测试验结果表明:平坦衰落的幅度在大多数情况下,符合瑞利分布(rayleigh distribution)或莱斯分布( rice distribution) 。由于移动通信信道的复杂性,其仿真一般是以平坦衰落信道建模为基础的,然后在此基础上,再对频率选择性信道等进行建模和仿真,下面就对瑞利分布和莱斯分布的特性进行推导和仿真。 当存在视距传播信号时,接收信号的视距成分由一个通用的时变成分描述[2]为:

相关文档
最新文档