半导体发光材料

半导体发光材料
半导体发光材料

半导体发光材料具有优异的光电催化及光电转化活性等特性, 已应用于光学材料,

太阳能材料,压电晶体和激光材料等领域。近年来,由于纳米材料科学的兴起人们对半导体发光材料的制备方法,性能及其应用进行了大量的研究,取得了重要的成就。

ZnSe半导体发光材料的研究进展

美国贝尔实验室在所制备的CdSe纳米粉体中发现,随着CdSe颗粒尺寸的减小发光带的波长逐渐变小,通过控制CdSe纳米颗粒的大小,制得了可在红、绿、蓝光之间变化的可调谐发光管。

1991年,美国3M公司研制成功了世界上第一个ZnSe基电泵浦蓝绿色激光器,引

起了国际上学术界极大的轰动。

近年来,对ZnSe基蓝绿色半导体激光器的研究,取得了里程碑式的研究成果。用ZnSe材料制成的半导体蓝色激光器和发光二极管在水下通讯、通信、复印、高密度的信息储存、高分辨率的图像显示、信号指示以及医学、基础研究、环境检测、战地生

化检测等方面有着极为广阔的应用前景。蓝色激光器用于彩色高分辨率的图像传真,在海底等一些特殊环境下通信更为安全可靠以蓝色激光取代目前激光打印机上普遍采

用的红外激光或红色激光,由于其感应灵敏度的提高,可使打印速度提高一到二个量级。

在当前材料科学研究中ZnSe 半导体发光材料的制备技术倍受关注,追求获得成分纯正、结晶良好、光电性能稳定、低欧姆接触电阻、长寿命的ZnSe材料,成为21世

纪引人注目的焦点。经过40 多年的漫长探索,人们打破传统的“热平衡生长”材料制备方法,ZnSe材料的制备技术已取得了长足的进步。

尽管ZnSe基蓝绿色半导体激光器在四到五年内,连续工作时间由秒级提高到现

在的400h,工作电压也由最初的20v左右降低到目前的3.7v取得了长足的进步与发

展!但如何获得高净空浓度的p型掺杂,实现良好的低阻欧姆接触,延长器件使用寿命,使之达到实用化,仍然存在大量的课题,还需要不懈的努力与探索。

LED用半导体发光材料的产业现状

半导体技术在引发微电子革命之后,又在孕育一场新的产业革命——照明革命,

其标志就是用半导体光源逐步替代白炽灯和荧光灯。

我国 LED 产业诞生于 20 世纪 70 年代,起步较早。我国自主研制的第一只发光二

极管,比世界上第一只发光二极管仅仅晚几个月。2004 年 7 月 3 日,科技部宣布正

式启动“国家半导体照明工程”首批 50 个项目。根据“国家半导体照明工程”计划,2007 年起我国半导体照明将逐步取代白炽灯,2012 年后取代荧光灯。现在,我国从

事半导体发光二极管器件及照明系统的规模以上生产企业有 400多家,年产量约 200 亿只。图 1 为 LED 超薄吸顶灯。

鉴于 LED 的优势,目前主要应用于以下几大方面:

(1)显示屏、交通信号显示光源

LED 灯具有抗震耐冲击、光响应速度快、省电和寿命长等特点,广泛应用于各种

室内、户外显示屏。

2)汽车工业

汽车用 LED 包含汽车内部的仪表板、音响指示灯、开关的背光源、阅读灯和外部的刹车灯、尾灯、侧灯以及头灯等。

(3)LED 背光源

以高效侧发光的背光源最为引人注目。LED 作为液晶屏(LCD)背光源,具有寿

命长、发光效率高、无干扰和性价比高等特点,已广泛应用于电子手表、手机、电子

计算器和刷卡机上。

(4)照明光源

目前能生产照明光源的公司较少,居于领先水平的公司主要有日本的(NICHIA)、美国科瑞(CREE)、欧洲的欧斯朗(OSRAM)等。这些大厂凭借其原创性专利,垄断了目前全部白光 LED 前沿技术,其产品占有市场绝大多数份额。

综上所述,对于 LED 芯片用半导体材料,我们应该看到以下趋势:

(1)采用硅衬底生长出Ga N pn结发光二极管是整个LED产业梦寐以求的事如

果在生产上实现,同时该技术如能与成熟的硅材料加工与封装等技术相结合,Ga N的发展将进入又一个高速发展时期。

(2)出于对廉价发光材料的开发应用,ZnO 的研究将成为下一个热点,如能制造出高质量 ZnO pn 结电致激光发光器LD,则 Zn O 的 LD 应用时代就将开始。

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

几种新型半导体发光材料的研究进展(精)

几种新型半导体发光材料的研究进展 摘要:概述了三种新型半导体发光材料氮化镓、碳化硅、氧化锌各自的特性,评述了它 们在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料;ZnO, SiC,GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导 体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利 于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重 中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对ZnQ SiC, GaN三种新型半导体发光材料的研究进展。 2几种新型半导体发光材料的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位?但随着信息时代的来临,以砷化镓(GaAS 为代表的第二代化合物半导体材料显示了其巨大的优越性?而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对几种很有发展前景的新型发光材料做简要介绍? 2.1氮化傢(GaN) 2.1.1氮化镓的一般特征 GaN是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,川族氮化物半导体InN、GaN和A lN的能带都是直接跃迁型,在性质上相互接近,它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围?实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙? GaN!优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaNM有较高的电离度,在川-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS勺一半.GaN是极稳定的化合物,又是坚硬的高熔点材 :1

实验六 半导体发光器件的电致发光测量1

实验六半导体发光器件的电致发光测量 081190088 杨静 一.实验内容与目的 (1)了解半导体发光材料电致发光的基本概念。 (2)了解并掌握半导体显微探针测试台、光纤光谱仪的使用。 (3)掌握半导体发光材料电致发光特性的测量方法。 二.实验原理概述 1.辐射跃迁 半导体材料受到某种激发时,电子产生由低能级向高能级的跃迁,形成非平衡载流子。这种处于激发态的电子在半导体中运动一段时间后,又回到较低的能量状态,并发生电子—空穴对的复合。复合过程中,电子以不同的形式释放出多余的能量。如跃迁过程伴随着放出光子,这种跃迁成为辐射跃迁。作为半导体发光材料,必须是辐射跃迁占优势。 导带的电子跃迁到价带,与价带空穴相复合,伴随的光子发射,称为本征跃迁。显然这种带与带之间的电子跃迁所引起的发光过程,是本征吸收的逆过程。对于直接带隙半导体,导带与价带极值都在k 空间原点,本征跃迁为直接跃迁。由于直接跃迁的发光过程只涉及一个电子—空穴对和一个光子,其辐射效率较高。间接带隙半导体中,导带与价带极值对应于不同的波矢k,这时发生的带与带之间的跃迁是间接跃迁。在间接跃迁过程中,除了发射光子外,还有声子参与。因此,这种跃迁比直接跃迁的几率小的多,发光比较微弱。

如果将杂质掺入半导体,则会在带隙中产生施主及受主的能级,因此又可能产生不同的复合而发光。电子从导带跃迁到杂质能级,或杂质能级上的电子跃迁入价带,或电子在杂质能级间的跃迁都可以引起发光,这类跃迁称为非本征跃迁。间接带隙半导体本征跃迁几率较小,非本征跃迁起主要作用。施主与受主之间的跃迁效率较高,多数发光二极管属于这种跃迁机理。在施主—受主对的复合中,过剩电子、空穴先分别被电离的施主和受主看成点电荷,把晶体看作连续介质,施主与受主之间的库伦作用力使受基态能量增大,其增量与施主—受主杂质间距离r 成正比,所发射的光子能量为: ην=E g -(E D +E A )+r πεε402q 式中E D 和E A 分别为施主和受主的电离能,ε是晶体的低频介电常数。 对简单的替位施主和受主杂质,r 只能取一系列的不连续值,因此,施主—受主复合发光是一系列分离谱线,随着r 的增大,成为一发射带。 2.电致发光 根据不同的激发过程,可以有各种发光过程,如:光致发光、阴极发光、电致发光等。 半导体的电致发光(EL ),也称场致发光,是由电流(电场)激发载流子,将电能直接转变成光能的过程。EL 包括低场注入型发光和高场电致发光。前者是发光二极管(LED )和半导体激光器的基础。本实验只涉及这类EL 谱的测量。 发光二极管是通过电光转换实现发光的光电子器件,是主要的半

宽禁带半导体

半导体材料种类繁多,分类方法各不相同,一般将以硅(Si)、锗(Ge)等为代表的元素半导体材料称为第一代半导体材料;以砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等为代表的化合物半导体材料称为第二代半导体材料;以碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、氧化锌(ZnO)、金刚石为代表的宽禁带半导体材料称为第三代半导体材料[1]。以硅材料为代表的第一代半导体材料的发展是从20世纪50年代开始,它取代了笨重的电子管,导致了以集成电路为核心的微电子工业的发展和整个IT产业的飞跃,广泛应用于信息处理和自动控制等领域[2]。 20世纪90年代以来,随着移动无限通信的飞速发展和以光纤通信为基础的信息高速公路和互联网的兴起,第二代半导体材料开始兴起。由于其具有电子迁移率高、电子饱和漂移速度高等特点,适于制备高速和超高速半导体器件,目前基本占领手机制造器件市场[3]。 当前,电子器件的使用条件越来越恶劣,要适应高频、 大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需求,必须采用新的材料,以便最大限度地提高电子元器件的内在性能。近年来,新发展起来了第三代半导体材料--宽禁带半导体材料,该类材料具有热导率高、电子饱和速度高、击穿电压高、介电常数低等特点[4],这就从理论上保证了其较宽的适用范围。目前,由其制作的器件工作温度可达到600℃以上、抗辐照1×106rad;小栅宽GaNHEMT器件分别在4GHz下,功率密度达到40W/mm;在8GHz,功率密度达到30W/mm;在18GHz,功率密度达到9.1W/mm;在40GHz,功率密度达到10.5W/mm;在80.5GHz,功率密度达到2.1W/mm,等。因此,宽禁带半导体技术已成为当今电子产业发展的新型动力。从目前宽禁带半导体材料和器件的研究情况来看,研究重点多集中于碳化硅(SiC)和氮化镓(GaN)技术,其中SiC技术最为成熟,研究进展也较快;而GaN技术应用广泛,尤其在光电器件应用方面研究比较深入[5]。氮化铝、金刚石、氧化锌等宽禁带半导体技术研究报道较少,但从其材料优越性来看,颇具发展潜力,相信随着研究的不断深入,其应用前景将十分广阔。 1宽禁带半导体材料 1.1碳化硅单晶材料 在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中最高的,是宽禁带半导体的核心。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点[6]。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位[7]。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种[8]。目前最常见应用最广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。 第一代、第二代半导体材料和器件在发展过程中已经遇到或将要遇到以下重大挑战和需求[9,10]: (1)突破功率器件工作温度极限,实现不冷却可工作在300℃~600℃高温电子系统。 (2)必须突破硅功率器件的极限,提高功率和效率,从而提高武器装备功率电子系统的性能。 (3)必须突破GaAs功率器件的极限,在微波频段实现高功率密度,实现固态微波通讯系统、雷达、电子对抗装备更新换代。 (4)必须拓宽发光光谱,实现全彩显示、新的光存储、紫外探测以及固态照明。 随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。 SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、 欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国

新型半导体发光材料分析及发展

西安工程大学产品造型材料与工艺 半 导 体 发 光 材 料 氮 化 镓 学校:西安工程大学 班级:13级工设01班 姓名:陈龙 学号:41302020103 日期:2015 05 10

新型半导体发光材料氮化镓(GaN)分析及发展 摘要:概述了新型半导体发光材料氮化镓的特性, 评述了它在固态照明中的使用情况,及其研究现状,并对其未来的发展方向做出了预测。 关键词:LED发光二极管;发光材料 GaN 1引言 在信息技术的各个领域中,以半导体材料为基础制作的各种各样的器件,在人们的生活中几乎无所不及,不断地改变着人们的生活方式、思维方式,提高了人们的生活质量,促进了人类社会的文明进步。它们可用作信息传输,信息存储,信息探测,激光与光学显示,各种控制等等。半导体照明是一种基于半导体发光二极管新型光源的固态照明,是21世纪最具发展前景的高技术领域之一,已经成为人类照明史上继白炽灯、荧光灯之后的又一次飞跃。固态照明是一种新型的照明技术,它具有电光转换效率高、体积小、寿命长、安全低电压、节能、环保等优点。发展固态照明产业可以大规模节约能源,对有效地保护环境,有利于实现我国的可持续发展具有重大的战略意义。从长远来看,新材料的开发是重中之重。发光材料因其优越的物理性能、必需的重要应用及远大的发展前景而在材料行业中备受关注。 本文综述了近几年来对GaN新型半导体发光材料的研究进展。 2新型半导体发光材料氮化镓(GaN)的特征及发展现状 在半导体的发展历史上,1990年代之前,作为第一代的半导体材料以硅(包括锗)材料为主元素半导体占统治地位.但随着信息时代的来临,以砷化镓(GaAs)为代表的第二代化合物半导体材料显示了其巨大的优越性.而以氮化物(包括SiC、ZnO等宽禁带半导体)为第三代半导体材料,由于其优越的发光特征正成为最重要的半导体材料之一.以下对其中一种很有发展前景的新型发光材料做简要介绍. 2.1 氮化镓(GaN) 2.1.1 氮化镓的一般特征 GaN 是一种宽禁带半导体(Eg=3.4 ev),自由激子束缚能为25mev,具有宽的直接带隙,Ⅲ族氮化物半导体InN、GaN 和A lN 的能带都是直接跃迁型, 在性质上相互接近, 它们的三元合金的带隙可以从1.9eV连续变化到6.2eV,这相应于覆盖光谱中整个可见光及远紫外光范围.实际上还没有一种其他材料体系具有如此宽的和连续可调的直接带隙. GaN是优良的光电子材料,可以实现从红外到紫外全可见光范围的光发射和红、黄、蓝三原色具备的全光固体显示,强的原子键,高的热导率和强的抗辐射能力,其光跃迁几率比间接带隙的高一个数量级.GaN具有较高的电离度,在Ⅲ-V的化合物中是最高的(0.5或0.43).在大气压下,GaN一般是六方纤锌矿结构.它的一个原胞中有4个原子,原子体积大约为GaAS的一半.GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700?C.文献[1]列出了纤锌矿GaN和闪锌矿GaN的特性

宽禁带半导体功率器件

综 述 宽禁带半导体功率器件 刘海涛 陈启秀 (浙江大学信电系功率器件研究所,杭州310027) 摘要 阐述了宽禁带半导体的主要特性与Si C、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词 宽禁带半导体 功率器件 碳化硅 金刚石 W ide Bandgap Sem iconductor Power D ev ices L iu H aitao,Chen Q ix iu (Institu te of P o w er D ev ices,Z hej iang U niversity,H ang z hou310027) Abstract T he p ap er p resen ts the m ain characteristics of w ide bandgap sem iconduc2 to rs,and elabo rates the latest developm en t of Si C and diam ond pow er devices.A t the sam e ti m e,the fu tu re developm en t of Si C and diam ond pow er devices is fo rcasted. Keywords W ide bandgap sem iconducto r Pow er devices Si C D iam ond 1 引 言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(W B G)主要是指禁带宽度大于212电子伏特的半导体材料,包括 —O、 —S、 —Se、 —N、Si C、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaA s更适合于制作高温、高频及高功率器件。其中John son优值指数(JFOM=E c v s 2Π,E c 为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM=Κ[C v s 4ΠΕ]1 2,其中C为光速;Ε为介电常数)和B aliga优值指数(B FOM=ΕΛE G3,其中E G为禁带宽度,Λ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaA s的比较。 由表1可知宽禁带半导体具有许多优点: 1)W B G具有很高的热导率(尤其是Si C与金刚石),使得它们能够迅速转移所产生的热量,广泛用于高温及高功率领域;2)由于W B G的禁带宽度很大,因此相应器件的漏电流极小,一般比Si半导体器件低10~14个数量级,有利于制作CCD器件及高速存储器;3)W B G具有比普通半导体更低的介电常数及更高的电子饱和速率,使之比Si,GaA s更适合于制作毫米波放大器及微波放大器。除此之外,W B G还具有负的电子亲和势及很高的异质结偏置电势,使得它们特别适合于阴极发射的平板显示器。 鉴于近几年Si C与金刚石材料的生长技术及氧化、掺杂、欧姆接触等工艺的成熟,使得Si C与金刚石器件得到了突飞猛进的发展,下面我们将主要评述Si C及金刚石的最新发展。 2 Si C功率器件 近年来Si C功率器件的研究引起了世界科学界的高度重视,尤其是美国、欧洲等发达国

半导体发光材料

半导体发光材料具有优异的光电催化及光电转化活性等特性, 已应用于光学材料, 太阳能材料,压电晶体和激光材料等领域。近年来,由于纳米材料科学的兴起人们对半导体发光材料的制备方法,性能及其应用进行了大量的研究,取得了重要的成就。 ZnSe半导体发光材料的研究进展 美国贝尔实验室在所制备的CdSe纳米粉体中发现,随着CdSe颗粒尺寸的减小发光带的波长逐渐变小,通过控制CdSe纳米颗粒的大小,制得了可在红、绿、蓝光之间变化的可调谐发光管。 1991年,美国3M公司研制成功了世界上第一个ZnSe基电泵浦蓝绿色激光器,引 起了国际上学术界极大的轰动。 近年来,对ZnSe基蓝绿色半导体激光器的研究,取得了里程碑式的研究成果。用ZnSe材料制成的半导体蓝色激光器和发光二极管在水下通讯、通信、复印、高密度的信息储存、高分辨率的图像显示、信号指示以及医学、基础研究、环境检测、战地生 化检测等方面有着极为广阔的应用前景。蓝色激光器用于彩色高分辨率的图像传真,在海底等一些特殊环境下通信更为安全可靠以蓝色激光取代目前激光打印机上普遍采 用的红外激光或红色激光,由于其感应灵敏度的提高,可使打印速度提高一到二个量级。 在当前材料科学研究中ZnSe 半导体发光材料的制备技术倍受关注,追求获得成分纯正、结晶良好、光电性能稳定、低欧姆接触电阻、长寿命的ZnSe材料,成为21世 纪引人注目的焦点。经过40 多年的漫长探索,人们打破传统的“热平衡生长”材料制备方法,ZnSe材料的制备技术已取得了长足的进步。 尽管ZnSe基蓝绿色半导体激光器在四到五年内,连续工作时间由秒级提高到现 在的400h,工作电压也由最初的20v左右降低到目前的3.7v取得了长足的进步与发 展!但如何获得高净空浓度的p型掺杂,实现良好的低阻欧姆接触,延长器件使用寿命,使之达到实用化,仍然存在大量的课题,还需要不懈的努力与探索。 LED用半导体发光材料的产业现状 半导体技术在引发微电子革命之后,又在孕育一场新的产业革命——照明革命, 其标志就是用半导体光源逐步替代白炽灯和荧光灯。

南京大学宽禁带半导体第三作业

第三次作业 1. 金属与半导体的接触类型强烈依赖于其功函数之差,请阐述其对应关系,但 对p型掺杂的宽禁带半导体而言,金属功函数已无法满足实现其欧姆接触的要求,请以p型氮化镓为例说明人们是如何实现其欧姆接触的。 2. 半导体的表面态对最终金属与半导体接触的性质有较大影响,例如人们在实 际应用中往往发现金属与宽禁带半导体的接触势垒的高低往往与金属的功函数依赖关系较小,这主要是由于高密度的表面态的存在对电子或空穴的陷阱作用所导致的表面费米能级的钉扎现象所致,这将导致欧姆接触或肖特基接触性能变差,请以氮化镓为例说明研究人员如何通过控制氮化镓的表面性质去优化其肖特基接触特性和欧姆接触特性的? 3. 氮化镓与氧化锌作为极性半导体,其Ga/Zn面与N/O面具有完全不同的性 质,请阐述这两种不同的表面对材料生长、掺杂、光学性质以及电接触性质(包括肖特基与欧姆接触)的影响,说明产生这些差异的物理原因。 4. 半导体薄膜中的霍尔迁移率与载流子浓度随着测量温度的变化规律强烈依赖 于薄膜中的掺杂浓度,请分别就低浓度、中等浓度与重掺杂的情形加以阐述,并说明其物理原因。在表征蓝宝石上异质外延氮化镓与氧化锌薄膜的霍尔效应测量中,其测量到的载流子浓度往往表现出更为复杂的变化规律,这主要是由于低温下位于薄膜与蓝宝石之间的界面存在高缺陷密度的高导层的贡献,请阐述这一现象,并以公式说明人们是如何去解决这一问题的。 5. 半导体薄膜中的迁移率大小是表征半导体材料晶体质量与电学性能的关键参 数,这主要是由于半导体中的位错密度对迁移率具有严重的影响。而从光学性质来说,半导体中的位错线往往也是电子或空穴的陷阱,导致深能级发光

宽禁带半导体ZnO材料的调研开题报告

山东建筑大学毕业论文开题报告表班级: 姓名: 论文题目宽禁带半导体ZnO的调研一、选题背景和意义 Zn0是一种新型的II-VI族宽禁带半导体材料,具有优异的晶格、光电、压电和介电特性,和III-V族氮化物及II-VI族硒化物比具有很多潜在的优点。首先,它是一种直接带隙宽禁带半导体,室温下的禁带宽度为,与GaN()相近,而它的激子结合能()却比GaN()高出许多,因此产生室温短波长发光的条件更加优越;而且ZnO薄膜可以在低于500℃温度下获得,不仅可以减少材料在高温西制备时产生的杂质和缺陷,同时也大大简化了制备工艺;同时ZnO来源丰富,价格低廉,又具有很高的热稳定性和化学稳定性。ZnO在UV、蓝光LED和LDS器件等研究方面被认为是最有希望取代GaN的首选材料,ZnO已经成为国内外半导体材料领域一个新的研究热点。国内外有很多科研团队都在进行ZnO的研究.虽然Zn0暂时不能完全取代si 在电子产业中的基础地位,但是ZnO以其特殊的性质成为Si电路的补充。 国内外对于ZnO的研究一直是近几年半导体材料研究的热点。无论是薄膜ZnO、纳米ZnO或是体单晶ZnO,文献很好地总结了2003年之前的国外ZnO晶体的研究与发展状况。随着高质量、大尺寸单晶ZnO 生产已经成为可能,单晶ZnO通过加工可以作为GaN衬底材料。ZnO与GaN的晶体结构、晶格常量都很相似。晶格失配度只有2.2%(沿〈001〉方向)、热膨胀系数差异小,可以解决目前GaN生长困难的难题。GaN作为目前主要的蓝、紫外发光半导体材料,在DVD播放器中有重要的应用。由于世界上能生产ZnO单晶的国家不多,主要是美国、日

本。所以ZnO单晶生产具有巨大的市场潜力。近年来,材料制备技术的突破,纳米ZnO半导体的制备、性能及其应用成为材料学的一个研究热点。 本文介绍了ZnO薄膜具有的许多优异特性,优良的压电性、气敏性、压敏性和湿敏性,且原料廉价易得。这些特点使其在表面声波器件(SAW)、太阳能电池、气敏元件等领域得到广泛的应用。随着对ZnO紫外受激发射特性的研究和P型掺杂的实现,ZnO作为光电材料在紫外探测器、LED、LD等领域也有着巨大的应用潜力。另外本文还介绍了纳米氧化锌的许多优点和在许多方面的应用。 目前,我国各类氧化锌处于供不应求的状况,而以活性氧化锌和纳米氧化锌取代传统氧化锌是不可阻挡的趋势,可见,今后纳米氧化锌必会有非常广阔的市场前景。 二、课题关键问题及难点 要深入研究该方面的知识,就要涉猎很多方面的知识。作为本科学生,如何在现有知识的基础上,阅读并理解有关书目、文献,总结归纳相关理论和研究方法,是本课题首先要解决的关键问题。 首先,要了解氧化锌作为宽禁带半导体的特性,然后再细致的查找氧化锌薄膜的诸多性质和这些性质在哪些方面的应用。同时要寻找纳米氧化锌材料与普通氧化锌材料相比有哪些优点、在发展中存在的问题和以后的研究方向。查询相关资料并阅读和理解之后,合理的安排介绍氧化锌作为宽禁带半导体材料的性质和应用。 三、文献综述 当前,电子器件的使用条件越来越恶劣,要适应高频、大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需

宽禁带半导体光电材料研究进展

宽禁带半导体光电材料的研究及其应用 宽禁带半导体材料(Eg大于或等于3.2ev)被称为第三代半导体材料。主要包 括金刚石、SiC、GaN等。和第一代、第二代半导体材料相比,第三代半导体材料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导电性能好,具有更高的击穿电场、更高的抗辐射能力的特点,其本身具有的优越性质及其在微波功率器件领域应用中潜在的巨大前景,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。 以氮化镓(GaN)为代表的Ⅲ族氮化物作为第三代半导体材料,是一种良好的直 接宽隙半导体光电材料,其室温禁带宽度为3.4eV,它可以实现从红外到紫外全可见光范围的光辐射。近年来已相继制造出了蓝、绿色发光二极管和蓝色激光器等光电子器,这为实现红、黄、蓝三原色全光固体显示,制备大功率、耐高温、抗腐蚀器件,外空间紫外探测,雷达,光盘存储精细化、高密度,微波器件高速化等奠定了基础。 氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。这一优点不仅在光纪录方 面具有明显的实用价值,同时在光电子领域的其他方面也可以得 到广泛应用。虽然人们早就认识到氮化镓的这一优点,但由于氮 化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化 镓发光器件的研究很长时间一直没有获得突破。经过近20年的 努力,1985年通过先进的分子束外延方法大大改善了氮化镓材

半导体发光器件(led常识)

半导体发光器件(led常识) 半导体发光器件包括半导体发光二极管(简称led)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)led发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即 λ≈1240/E g(mm) 式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)led的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于led两端正向直流电压与流过它的电流之积的最大值。超过此值,led发热、损坏。 (2)最大正向直流电流I Fm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压V Rm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境t opm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。

宽禁带半导体材料特性及生长技术_何耀洪

宽禁带半导体材料特性及生长技术 何耀洪, 谢重木 (信息产业部电子第46所,天津,300220) 摘要:叙述了宽带半导体材料SiC、G aN的主要特性和生产长方法,并对其发展动态和存在问题进行了简要评述。 关键词:宽禁带半导体材料;碳化硅;氮化硅 中图分类号:TN304 文章编号:1005-3077(1999)-04-0031-09 The Characteristics and Growth Methods of Wide Bandgap Semiconductor Materials HE Yaohong, XIE Chongmu (T he46th Research Institute,M.I.I.,T ianjin,300220) A bstract:The paper presents the main characteristics and g rowth methods o f wide bandgap semiconduc- tor materials,In aditio n,the lastest developments and problems o n SiC and GaN to be reviewed. Key words:w ide bandgap semiconductor materials;SiC;G aN 1 引 言 在半导体工业中,人们习惯地把锗(Ge)、硅(Si)为代表的元素半导体材料称为第一代半导体材料,把砷化镓(GaAs)、磷化铟(InP)为代表的化合物半导体材料称为第二代半导体材料,而把碳化硅(SiC)、氮化镓(GaN)为代表的化合物半导体材料称为第三代半导体材料,由于SiC和GaN材料的禁带宽度较Si、GaAs等材料更宽,因而它们一般具有高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频及大功率器件,故称这类材料为宽禁带半导体材料,也称高温半导体材料。它们在微电子和光电子领域中具有十分广阔的应用潜在优势,如AlGaN HFET最大振荡频率超过100GHz,功率密度大于5.3W/m m(在10GHz时),4H-SiC M EFET在850M Hz(CW)和10GHz(PW)时功率密度3.3W/mm,4H-SiC PIN二极管击穿电压高达5.5kV;在可见光全光固体显示、高密度存储、紫外探测及在节能照明(半导体激光光源能耗仅为相当亮度白炽灯泡的十分之一,而寿命长达10~15年)等方面开创了广阔的应用前景。 2 SiC材料特性及生长技术 近年来,随着半导体器件在航空航天、石油勘探,核能、汽车及通信等领域应用的不断扩 收稿日期:1999-11-30

宽禁带半导体材料与工艺

宽禁带半导体材料与工艺 1.1 宽禁带半导体的概念和发展 宽禁带半导体(WBS)是自第一代元素半导体材料(Si)和第二代化合物半导体材料(GaAs、GaP、InP等)之后发展起来的第三代半导体材料。这类材料主要包括SiC(碳化硅)、C-BN(立方氮化硼)、GaN(氮化镓、)AlN(氮化铝)、ZnSe(硒化锌)以及金刚石等。 第二代半导体GaAs与Si相比除了禁带宽度增大外,其电子迁移率与电子饱和速度分别是Si的6倍和2倍,因此其器件更适合高频工作。GaAs场效应管器件还具有噪声低、效率高和线性度好的特点但相比第三代半导体GaN和SiC,它的热导率和击穿电场都不高,因此它的功率特性方面的表现不足。为了满足无线通信、雷达等应用对高频率、宽禁带、高效率、大功率器件的需要从二十世纪九十年代初开始,化合物半导体电子器件的研究重心开始转向宽禁带半导体。 我们一般把禁带宽度大于2eV的半导体称为宽禁带半导体。宽禁带半导体材料具有宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等特点,在高温、高频、大功率、光电子及抗辐射等方面具有巨大的应用潜力。 1.2 主要的宽禁带半导体材料 近年来,发展较好的宽禁带半导体材料主要是SiC和GaN,其中SiC的发展更早一些,碳化硅、氮化镓、硅以及砷化镓的一些参数如下图所示:

图1-1 半导体材料的重要参数 如上图所示,SiC和GaN的禁带宽度远大于Si和GaAs,相应的本征载流子浓度小于硅和砷化镓,宽禁带半导体的最高工作温度要高于第一、第二代半导体材料。击穿场强和饱和热导率也远大于硅和砷化镓。 2.1 SiC材料 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。 SiC是IV-IV族二元化合物半导体,也是周期表IV族元素中唯一的一种固态化合物。构成元素是Si和C,每种原子被四个异种原子所包围,形成四面体单元(图25a)。原子间通过定向的强四面体SP3键(图25b)结合在一起,并有一定程度的极化。SiC具有很强的离子共价键,离子性对键合的贡献约占12%,决定了它是一

氮化物宽禁带半导体—第三代半导体技术

氮化物宽禁带半导体一第三代半导体技术 张国义1,李树明2 北掌大学韵曩最,卜蘑■一目毫重点宴■宣 ‘2北大董光科技酣青曩公司 北囊1∞耵1 i盲謦。 莳耍曰曩了量化精半导体曲主要持征和应用■量.巨督圈辱上和重内的主曩研兜理状.市场分析与攮测.由此-u蚪再}11.氯化韵帕研究已妊成为高科技鬣壤田际竟争的■膏点之一.t为第三代半■体拄术,育形成蠢科技臣夫产_t群的r口艟 性.也存在着蠢积的竞争和蕞{;‘翻舶风龄. 众所周知,以Ge,Si为基础的半导体技术,奠定丁二十世纪电子工业的基础.其主要产品形式是以大规模集成电路为主要技术的计算机等电子产品.形成了巨大的徽电子产业 群。其技术水平标志是大的晶片尺寸和窄的线条宽度.如12英寸/0.15微米技术.是成 功的标志,被称之为第一代半导体技术.以G“s.InP.包括G吐l^s,IfIGaAsP,InGaAlP瞢 III—v族砷化物和碑化韵半导体技术,奠定了二十世纪光电子产业的基础,其主要产品形 式是以光发射器件,如半导体发光二极管(L肋)和激光嚣(LD)等.为基础的光显示. 光通讯,光存储等光电子系统,形成了巨大的信息光电产业群。其技术水平标志是使通讯 速度,信息容量,存储密度大幅度提高,被称之为第二代半导体技术. 对徽电子和光电子领域来说,二十世纪存在的问矗和二十一世纪发晨趋势是人们关心的问题.高速仍然是微电子的追求目标,高温大功率还是没有很好解决的问题;光电子的 主要发展趋势是全光谱的发光器件,特别是短波长(绿光.蓝光.咀至紫外波段)LED和 LD.光电集成(0EIc)是人们长期追求的目标,由于光电材料的不兼容性,还没有很好的 实现。事实上.这些问题是第一代和第二代半导体材料本身性质决定,不可舱解决的问 题。它需要寻找一种高性能的宽禁带半导体材料.而这一工作二十世纪后半叶就已经开 始.在世纪之交得以确认。那就是第三代半导体技术一III一族氮化物半导体技术. GaN、AlN和InN以及由它们组成的三元合金是主要的III族氰化物材料.所有氮化物晶体的稳定结构是具有六方对称性的纤锌矿结构,而在一些特定的条件下,例如在立方豸多。 衬底上外延时,GaN和InN能够形成立方对称性的闪锌矿结构.这两种结构只是原子层的 堆积次序不同,它们的原予最近邻位置几乎完全相同,而次近邻位置有所不同,因而它们 的性质根接近。三元合金A1GaN,InGaN也是重要的氰化物材料。它们的禁带宽度基本符 合vegard定理[1,2]。№tsuoka[3]通过计算指出AlN与GaN可咀组成组份连续变化的合 金,IrIN与GaN则存在较大的互熔间隙. 以氮化镓为基础的宽禁带半导体可以用来,并已经广泛用来制备高亮度蓝。绿光平"白光LED,蓝光到紫外波段的激光器(LD),繁外光传感器,等光屯子器件:高温人功率场 设麻品体管(FET).双极晶体管(HBT),高电子迁移率晶体管(HEMT)等徽电子器 什:这些器件构成了全色火屏幕LED显示和交通信号灯等应Hj的RGB1:鞋:向光LED将构 ?17?

宽禁带半导体器件对比

宽禁带半导体功率器件 刘海涛陈启秀 摘要阐述了宽禁带半导体的主要特性与SiC、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词宽禁带半导体功率器件碳化硅金刚石 Wide Bandgap Semiconductor Power Devices Liu Haitao,Chen Qixiu (Institute of Power Devices,Zhejiang University,Hangzhou 310027) Abstract The paper presents the main characteristics of wide bandgap semiconductors,and elaborates the latest development of SiC and diamond power devices.At the same time,the future development of SiC and diamond power devices is forcasted. Keywords Wide bandgap semiconductor Power devices SiC Diamond 1 引言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(WBG)主要是指禁带宽度大于2.2电子伏特的半导体材料,包括Ⅱ—O、Ⅱ—S、Ⅱ—Se、Ⅲ—N、SiC、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaAs更适合于制作高温、高频及高功率器件。其中Johnson优值指数(JFOM= E c.v s/2π,E c为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM =λ[C.v s/4πε]1/2,其中C为光速;ε为介电常数)和Baliga优值指数(BFOM=εμE G3,其中E G为禁带宽度,μ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaAs的比较。 表1 宽禁带半导体材料的基本特性

新一代宽禁带半导体材料

新一代宽禁带半导体材料 回顾半导体的发展历程,随着不同时期新材料的出现,半导体的应用先后出现了几次飞跃。 首先,硅材料的发现使半导体在微电子领域的应用获得突破性进展,日用家电和计算机的广泛应用都应该归功于硅材料的应用。 而后,砷化镓材料的研究则使半导体的应用进入光电子学领域。用砷化镓基材料及其类似的一些化合物半导体,如镓铝砷、磷镓砷、铟镓砷、磷化镓、磷化铟和磷砷化镓等,制备出的发光二极管和半导体激光器在光通信和光信息处理等领域起到不可替代的作用,由此也带来了VCD和多媒体等的飞速发展。 目前,人们又开始研究新一代的宽禁带半导体材料,其中最有意义的是碳化硅、氮化镓和氧化锌。这些材料的共同特点是它们的禁带宽度在3.3到3.5电子伏之间,是硅的3倍,比砷化镓的禁带宽度也大了两倍以上。由于它们的一些特殊性质和潜在应用前景使它们备受关注。 碳化硅具有高热导率(硅的3.3倍)、高击穿场强(硅的10倍)、高饱和电子漂移速率(硅的2.5倍)以及高键合能等优点。所以特别适合于制造高频、大功率、抗辐射、抗腐蚀的电子器件,并且可以在几百度高温的恶劣环境下工作。可用于人造卫星、火箭、雷达、通讯、战斗机、海洋勘探、地震预报、石油钻井、无干扰电子点火装置、喷气发动机传感器等重要领域。目前,碳化硅高频大功率器件已应用到军用雷达、卫星通讯和高清晰度电视图像的发送和传播等方面。 氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。这一优点不仅在光纪录方面具有明显的实用价值,同时在光电子领域的其他方面也可以得到广泛应用。虽然人们早就认识到氮化镓的这一优点,但由于氮化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化镓发光器件的研究很长时间一直没有获得突破。经过近20年的努力,1985年通过先进的分子束外延方法大大改善了氮化镓材料的性能;1989年,Akasaki等人利用电子辐照方法实现了氮化镓P型材料的生长并制备出PN结;1995年Nakamura等人制备出发蓝紫光的氮化镓发光二极管,效率达到5%,赶上了传统的磷砷化镓发光二极管的效率,寿命超过一万小时。1997年,用氮化镓基材料制备的半导体激光器也开始面世。这一飞速发展的势头反映了氮化镓材料受重视的程度。有人估计,氮化镓器件在化合物半导体市场的份额将由1997年的2%很快上升到2006年的20%,成为光电子产业中非常重要的产品。 与氮化镓材料相比,氧化锌薄膜的紫外发光是刚刚开始的新兴课题。氧化锌是一种具有六方结构的自激活宽禁带半导体材料,室温下的禁带宽度为3.36eV,特别是它的激子结合能高达60毫电子伏,在目前常用的半导体材料中首屈一指,这一特性使它具备了室温下短波长发光的有利条件;此外,氧化锌具有很高的导电性,它还和其他氧化物一样具有很高的化学稳定性和耐高温性质,而且它的来源丰富,价格低廉。这些优点使它成为制备光电子器件的优良材料,极具开发和应用的价值。1997年日本和香港科学家合作研究得到了氧化锌薄膜的近紫外受激发光,开拓了氧化锌薄膜在发光领域的应用。由于它产生的受激发射的波长比氮化镓的发射波长更短,对提高光信息的纪录密度和存取速度更加有利,而且价格便宜。目前,除了氧化锌薄膜的发光特性外,也有人发现了氧化锌薄膜的光生伏特效应,显示出用它制备太阳能电

相关文档
最新文档