费马点及其证明.

费马点及其证明.
费马点及其证明.

费马点定义

在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。在平面三角形中:

(1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.

(2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.

(3)当△ABC为等边三角形时,此时外心与费马点重合

证明

(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,

△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B

同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度

同理,∠APB=120度,∠APC=120度

(2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度

又∠BPA=120度,因此A、P、D三点在同一直线上,

又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短

在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

浅谈三角形的费马点

法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.本文试以课本上的习题、例题为素材,根据初中学生的认知水平,针对这个问题拟定一则思维训练材料,引导学生通过自己的思维和学习,初步了解这个问题的产生、形成、推理和论证过程及应用.

1.三角形的费马点

费马(Pierre de Fermat,1601--1665)法国数学家、物理学家。生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。

费马在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费马还研究了对方程ax2+1=Y2整数解的问题。得出了求导数所有约数的系统方法。

著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不可能把任一个次数大于2的方幂表示成两个同方幂的和。”1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。

费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。

几何光学已有悠久的发展历史。公元前400年,我国《墨经》中便有光的直线传播和各种面镜对光的反射的记载。公元100年亚历山大里亚的希罗(Hero)曾提出过光在两点之间走最短路程的看法。托勒密在公元130年对光的折射进行过研究。公元1611年开普勒对光学的研究达到了较高的定量程度。最后,1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。

费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。

费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了费马(Pierre De Fermat )是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。费马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.

引例:有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小?将此问题用数学模型抽象出来即为:

在△ABC中确定一点P,使P到三顶点的距离之和PA+PB+PC最小。

解法如下:分别以AB AC为边向外侧作正三角形ABD ACE 连结CD BE交于一点,则该点即为所求P 点。

证明:如下图所示。连结PA、PB、PC,在△ABE和△ACD中,AB=AD AE=AC ∠BAE=∠BAC+60°∠DAC=∠BAC+60°=∠BAE ∴△ABE全等△ACD。

∴∠ABE=∠ADC 从而A、D、B、P四点共圆

∴∠APB=120°,∠APD=∠ABD=60°

同理:∠APC=∠BPC=120°

以P为圆心,PA为半径作圆交PD于F点,连结AF,

以A为轴心将△ABP顺时针旋转60°,已证∠APD=60°

∴△APF为正三角形。∴不难发现△ABP与△ADF重合。

∴BP=DF PA+PB+PC=PF+DF+PC=CD

另在△ABC中任取一异于P的点G ,同样连结GA、GB、GC、GD,以B为轴心

将△ABG逆时针旋转60°,记G点旋转到M点.。

则△ABG与△BDM重合,且M或在线段DG上或在DG外。

GB+GA=GM+MD≥GDGA+GB+GC≥GD+GC>DC。

从而CD为最短的线段。

以上是简单的费马点问题,将此问题外推到四点,可验证四边形的对角线连线的交点即是所求点。较为完善的程度。

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

三角形的有关证明单元测试题

三角形的有关证明单元测试题 时间: 120分钟满分:120分姓名: 一、选择题:(共12个小题,每小题4分,共48分) 1.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 2.三角形ABC中,最多只有一个这个这样的∠A,则∠A的可能度数为()A.40°B.80°C. 85°D.96° 3.下列各组数中,不可能成为一个三角形三边长的是()A.2,3,4 B.5,7,7 C.5,6,12 D.6,8,10 4.三角形的重心是() A.三角形三条边上中线的交点 B.三角形三条边上高线的交点 C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点 5.对三角形的高与三角形的形状描述正确的是()A.三条高都在三角形的内部,这个三角形是直角三角形 B.两条高在三角形的外部,这个三角形是钝角三角形 C.三条高的交点在三角形的内部,这个三角形是直角三角形 D.三角形的三条高不能相交 6.下列不是全等三角形的性质的是()A.全等三角形的面积相等 B.全等三角形的周长相等 C.全等三角形的对应边相等 D.全等三角形的角相等 7.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C. 11 D.12 8.下列说法中,正确的是()A.周长相等的两个三角形全等 B.面积相等的两个三角形全等 C.三边对应相等的两个三角形全等 D.三角对应相等的两个三角形全等 9.下列说法中,正确的是() A.两个等腰三角形一定全等 B.两个等边三角形一定全等 C.两个直角三角形一定全等 D.斜边相等的两个等腰直角三角形一定全等 10.一条直线把等腰三角形分成两个全等的三角形,则这条直线具有的性质是()A.垂直等腰三角形的一条腰 B.平分等腰三角形的一条腰 C.垂直平分等腰三角形的一条腰 D.它是等腰三角形的对称轴 11.如图1,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,添加一个适当的条件,还不能使得△ABC≌△DEF.这个的条件是 () A.AC=DF B.AB=ED C.∠A= ∠D D.AB∥DE 图 1

“费马点”说明及例举

费马点 费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。 他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费 马还研究了对方程 2 21y ax= +整数解的问题。得出了求导数所有约数的系统方法。 所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。这是费马通信的一贯作风。当时欧洲所有数学家对他都十分头疼的。人们称这个点为“费马点”。还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。可到死也没告诉人家这个所谓证明。结果困扰世界数学界一百多年。直到去年才解决。 著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不 可能把任一个次数大于2的方幂表示成两个同方幂的和。” 即: )3 (,2≥ = +n z y x n n 无整 数解。1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。 费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 几何光学已有悠久的发展历史,由于费马原理的确立,几何光学发展到了较为完善的程度。。1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

三角形的证明详细知识点、例题、习题)

第一章 三角形的证明 一、全等三角形 (1)定义: 能够完全相等的三角形是全等三角形。 (2)性质:全等三角形的对应边、对应角相等。 (3)判定:SAS 、SSS 、ASA 、AAS 、HL 注:SSA,AAA 不能作为判定三角形全等的方法,判定两个三角形全等时,必 须有边的参与,若有两边一角相等时,角必须是两边的夹角 证题的思路: ? ? ? ?? ??? ???? ? ? ??????? ????????????????)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角() 找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 例题解析:

二、等腰三角形 1. 性质:等腰三角形的两个底角相等(等边对等角). 2. 判定:有两个角相等的三角形是等腰三角形(等角对等边). 3. 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”). 4. 等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60°; 等边三角形是轴对称图形,有3条对称轴. 判定定理:有一个角是60°的等腰三角形是等边三角形; 三个角都相等的三角形是等边三角形. 5. 含30°的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 例题解析:

三、.直角三角形 1. 勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方. 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2. 命题与逆命题 命题包括题设和结论两部分; 逆命题是将原命题的题设和结论交换位置得到的; 3. 直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等要点诠释: ①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边 的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三 边的平方” 例题解析

沪科版数学八年级上册专题:三角形的有关计算与证明

专题:三角形的有关计算与证明 三角形的有关计算和证明是中考的必考内容之一,这类试题解法比较灵活,通常以全等三角形、等腰三角形、等边三角形和直角三角形的性质和判定为考查重点,以计算题、证明题的形式出现,解答这类问题时,不仅要熟练掌握有关的公式定理,更要注意它们之间的相互联系. 例如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB 交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG. 求证:(1)AF=CG;(2)CF=2DE. 【思路点拨】(1)要证明AF=CG,可以利用“ASA”证明△ACF≌△CBG来得到; (2)要证明CF=2DE,由(1)得CF=BG,则只要证明BG=2DE,又利用△AED≌△CEG可得DG=2DE,故证明DG=BG即可. 【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC. ∴∠BCG=∠CAB=45°. 又∵∠ACF=∠CBG,AC=BC, ∴△ACF≌△CBG(ASA), ∴CF=BG,AF=CG. (2)延长CG交AB于点H. ∵AC=BC,CG平分∠ACB, ∴CH⊥AB,H为AB中点. 又∵AD⊥AB,∴CH∥AD, ∴G为BD中点,∠D=∠EGC. ∵E为AC中点,∴AE=EC. 又∵∠AED=∠CEG, ∴△AED≌△CEG(AAS), ∴DE=EG,∴DG=2DE,∴BG=DG=2DE. 由(1)得CF=BG,∴CF=2DE. 方法归纳:解答与线段或角相等的有关问题时,通常将它转化为全等三角形问题来求解. 1.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.

三角形的证明练习题

1.等腰三角形 一、主要知识点 1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性 质是对应边相等,对应角相等。 2、等腰三角形的有关知识点。 等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一) 3、等边三角形的有关知识点。 判定:有一个角等于60°的等腰三角形是等边三角形; 三条边都相等的三角形是等边三角形; 三个角都是60°的三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。 性质:等边三角形的三边相等,三个角都是60°。 4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从 而证明命题的结论一定成立。这种证明方法称为反证法 2.直角三角形 一、主要知识点 1、直角三角形的有关知识。 直角三角形两条直角边的平方和等于斜边的平方; 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 3.线段的垂直平分线 4.角平分线 一、主要知识点 1、线段的垂直平分线。 线段垂直平分线上的点到这条线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 2、角平分线。 角平分线上的点到这个角的两边的距离相等。 在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。 3、逆命题、互逆命题的概念及反证法 如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

(word完整版)三角形的证明主要知识点,推荐文档

三角形的证明主要知识点 1.三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等还有HL) 2.全等三角形的性质:对应边相等,对应角相等。 3.等腰三角形: 性质:①两条边相等②两个内角相等③三线合一。 判定:①有两条边相等的三角形是等腰三角形; ②有两个角相等的三角形是等腰三角形; 4.等边三角形: 性质:①三条边都相等②三个内角相等,都等于60°③三线合一 判定:①三条边都相等的三角形是等边三角形; ②三个角都是60°的三角形是等边三角形; ③有一个角等于60°的等腰三角形是等边三角形; 5.直角三角形: 性质:①两个锐角互余②直角三角形两条直角边的平方和等于斜边的平方③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半④在直角三角形中,斜边上的中线等于斜边的一半。 判定:①如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形; ②有两个内角互余的三角形是直角三角形。 6.线段的垂直平分线: 性质:线段垂直平分线上的点到这条线段两个端点的距离相等;(证明线段相等) 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(证明某一点在中垂线上) 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(外心)7.角平分线: 性质:角平分线上的点到这个角的两边的距离相等。 判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。(内心)

8.反证法:先假设命题的反面成立,然后推导出与定义、公理、已证定理或已知条件 相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法。 9.互逆命题、互逆定理: 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 任何命题都有逆命题,但逆命题不一定是真命题,定理不一定有逆定理。 坐标系中的等腰三角形 坐标系中任意两点之间的距离公式: 若A (11,y x ),B ),(22y x 则2 212 21)()(y y x x AB -+-= 1.在平面直角坐标系中,已知点A(1,1),O(0,0),在X 轴上确定以点P,使△AOP 为等腰三角形,则满足条件的点P 有几个?并确定其坐标。 2.在平面直角坐标系中,已知点A(1,1),O(0,0),在坐标轴上确定以点P,使△AOP 为等腰三角形,则满足条件的点P 有几个?并确定其坐标 5.在平面直角坐标系中,A(-3,-4)、B (2,8),点P 在Y 轴上,若ABC 是等腰三角形,求点P 的坐标 6.在平面直角坐标系中,已知A (0,-4),B (3,0),在坐标轴上找一点P ,使△PAB 为等腰三角形。求满足条件的所有点P 的坐标。 7.在平面直角坐标系中,有A (-2,1)和B (2,3)两点,在X 轴上求一点P ,使△PAB 为等腰三角形?则满足条件的点N 有几个? 8.在平面直角坐标系中,已知A (2,-2),点P 是y 轴上一点,则使AOP 为等腰三角形的点P 有多少个? 10.在平面直角坐标系中,已知A (0,-4),B (4,0),在坐标轴上找一点P ,使△PAB 为等腰三角形。求满足条件的所有点P 的坐标。 11.在平面直角坐标系中,O 为坐标原点,A(4,3)。在坐标轴上找一点B ,使△OAB 为等腰三角形。求满足条件的所有点B 的坐标。

三角形中的五种常见证明类型

专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等. 证明数量关系 题型1证明线段相等 1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF. (第1题) 题型2证明角相等 2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E. 求证:∠ADB=∠CDE. (第2题) 证明位置关系 3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.

(第3题) 证明倍分关系 4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD. (第4题) 证明和、差关系 5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC. (第5题) 证明不等关系 6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC,求证:AB-AC>PB-PC.

(第6题) 专训二:构造全等三角形的六种常用方法 名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形. 构造基本图形法 1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF. 求证:∠ADC=∠BDF. (第1题) 翻折法

关于费马点知识总结

费马点 一、研究目的 费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。 二、研究结果 (一)费马点的发现者 费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。 他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。 由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。 (二)费马点的求法 △ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。 (三)费马点的验证 1.△ABC是等边三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④ 点P是垂心,是△ABC各边的高线的交点;⑤△ABP、 △ACP、△BCP全等。⑥点P是△ABC各边的中线的交 点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点 P为费马点时和最小。 2.△ABC是等腰三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①△ABC的三顶点的距离之和为AP+BP+CP,且点P为 费马点时和最小;②∠APB=∠BPC=∠APC=120°;③ △ABP与△ACP全等;④△BCP为等腰三角形。 3.△ABC是直角三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为

八年级数学全等三角形的证明知识点整理及练习题

教学课题 与三角形有关的线段、角 教学目标 1、能利用三角形三边关系进行证明 2、能利用三角形有关线段(中线、高、角平分线)的关系进行证明 3、能利用内角和定理计算与三角形有关的角的度数 教学重难点 重点:三角形的概念和三边关系定理,三角形内角和定理及其证明 难点:三边关系定理及三条线段的应用,三角形内角和定理、三角形外角的运用 运用一:利用中线巧构造 例1:在数学活动中,小明为了求231111 (2222) n ++++的值(结果用n 表示),设计了如图 所示的几何图形,你能根据这个几何图形求出231111 ....=2222 n ++++___________。 同步练习:请你利用下图,再设计一个能求的值的几何图形. 运用二:利用高线防漏解 例2:已知AD 是ABC ?的高,70,20BAD CAD ∠=?∠=?,求BAC ∠的度数? 同步练习:已知AD 是ABC ?的高,62,28BAD CAD ∠=?∠=?,则ABC ?是什么三角形? 运用三:周长和边的取值范围 例3 (1)如果三角形的两边长分别为3和5,则周长L 的取值范围是( ) A .6

A.2个 B.3个 C.4个 D.5个 同步练习: 1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________. 2、若等腰三角形的周长为12,则腰长a的取值范围是______. 3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______. 例4 .如图所示,已知P是△ABC内一点,试说明PA+PB+PC>1 2 (AB+BC+AC). 同步练习: 1、设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个? 2、若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少? 运用四:活用“内角和”定理 例5:在ABC ?中, 11 23 A B C ∠=∠=∠,试判断该三角形的形状? 例6:(1)将一副常规的三角尺如图放置,则图中AOB ∠的度数为________ 同步练习:将一副三角板如图所示放在一起,则图中a ∠的度数为________

三角形的费马点

三角形的费马点 有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小,请同学们想一想,这个供水站应该建在哪里? 事实上,这是法国著名数学家费马提出的一个关于三角形的有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小,人们称这个点为“费马点”. 当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;当三角形三个内角都在120°以内,那么费马点就是三角形内与三角形三顶点的连线两两夹角 为120°的点.显然在第一种情况下,费马点的位置就是那个大于或等于120°的内角的顶点.在第二种情况下,如图所示:我们只需要以△ABC三边AB、AC、BC为边在三角形外作三个等边△ABC1、△ACB1和△BCA1,连接AA1、BB1和CC1,三线交点P就是费马点. 同学们肯定会想为什么?等同学们学习了三角形全等 的知识后就可以去探索这其中的道理了. 再看一个数学问题:将军从甲地出发到河边饮马,然后再到乙地军营视察,显然有许多走法,那走什么样的路线最短呢?这个问题被古希腊亚历山大里亚城的一位久负盛名 的学者海伦解决了,后来被人们称作“将军饮马”问题.费马

思考了这个问题,他觉得不仅是将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.人们总希望寻求最佳的路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短路线问题.费马就把这样的问题联想到某一个图形中,他大胆提出在任意三角形中有且仅有一点到三个顶点的距离最短,并对此进行了充分的证明.现在研究表明不止是三角形,其它多边形也存在这样的点. 平面四边形的费马点:在凸边形中,对角线交点即费马点;在凹四边形中,凹顶点即为费马点. 那费马点在我们的生活中有没有应用价值呢?文章开头的供水站建在费马点肯定是最节约成本的;再譬如打篮球、踢足球时,你时刻注意的是怎样进攻,但要与自己的队友保持最好的距离和方位,前后左右都要顾及,这其实就是在找多边形中的“费马点”. 数学为科学之母,现在已经有很多方面应用到费马点的性质,在医学上、建筑上、军事上…… 像类似费马点这样的问题还有很多,同学们只要你们积极思考,遇到问题多问几个为什么,多一些打破砂锅问到底的精神,你们也会像费马一样发现更多更有趣的数学问题.

新北师大版八年级下册数学知识点总结第一章 三角形的证明

新北师大版八年级下册数学知识点总结 第一章 三角形的证明 第 1 页 共 2 页 第一章 三角形的证明 一、全等三角形的判定定理 定理:三边分别相等的两个三角形全等.(SSS ) 定理:两边及其夹角分别相等的两个三角形全等.(SAS ) 定理:两角及其夹边分别相等的两个三角形全等.(ASA ) 定理:两角分别相等且其中一组等角的对边相等的两个三角形全 等.(AAS) 定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL) 二、全等三角形的性质定理 全等三角形对应边相等、对应角相等. 三、等腰三角形的性质定理 1.等腰三角形的两腰相等; 2.等腰三角形的两底角相等.(等边对等角) 3.等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.(等腰三角形的“三线合一”) 四、等腰三角形的判定定理 1.(定义法)有两条边相等的三角形是等腰三角形; 2.有两个角相等的三角形是等腰三角形(等角对等边); 五、等边三角形的性质定理 1.等边三角形的三条边相等; 2.等边三角形的三个内角都相等,并且每个角都等于60°; 3. 等边三角形具有等腰三角形的一切性质; 六、等边三角形的判定定理 1.(定义法)有三条边相等的三角形是等边三角形; 2.三个角都相等的三角形是等边三角形. 3.有一个角等于60°的等腰三角形是等边三角形. 七、反证法 在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法. 八、直角三角形的性质定理 1.直角三角形的两个锐角互余. 2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 3.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°; 4.(勾股定理)直角三角形两条直角边的平方和等于斜边的平方. 年级 班级 姓 密 封 线 内 不 要 答 卷 …… … … …… … …… …… … … … … … … … … … 装 … ……… … … 订 … … ……… … …线… … … … … … … … … … … … … … … … … …… …… …

三角形的证明

第一章三角形的证明 课题§1.1 等腰三角形(1) 教学目标 1.能证明等腰三角形的性质定理和判定定理; 2.了解分析的思考方法,掌握用综合法证明的格式; 3.感受证明的必要性,感受合情推理和演绎推理都是认识事物的途径. 教学重点等腰三角形的性质定理和判定定理. 教学难点等腰三角形的性质定理和判定定理. 教学过程 复备 一.【预习指导】 1.用_______________的过程,叫做证明. 经过________________称为定理. 2.证明与图形有关的命题,一般步骤有哪些? 3. 我们初中数学中,选用了哪些真命题作为基本事实: 4.什么叫做等腰三角形?(等腰三角形的定义)________________________ 5.我们曾经利用等腰三角形的对称性,发现了等腰三角形的哪些性质?____________;____________ . 6.这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?___________________________. 二.【效果检测】 1.证明:等腰三角形的两个底角相等. 点拨:要证明两个角相等,可以构造一对全等三角形.图中的∠B、∠C,AB、AC要分别是这两个三角形的角与边.如果用“SAS”证明,如何作辅助线?讨论:还有不同的证明方法吗? 2. “等边对等角”用符号语言如何表示? 三.【布置任务】师生互动探究 思考与探索 问题1.证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. 点拨:上面的证明你作的辅助性是等腰三角形的什么线?接着刚才的证明,你一定能发现“三线合一”的真相。请按照证明题的三个步骤,进行证明. 思考:“三线合一”用符号语言如何表示? 问题2.如何证明“等腰三角形的两个底角相等”的逆命题是正确的? ①写出它的逆命题:______________________ ②画出图形,写出已知、求证,并进行证明. 思考:“等角对等边”一符号语言如何表示? 问题3.已知:如图∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC. 求证:AB=AC 四.【小组交流】学生展示 已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,交AB、AC于点M、N.

费马点问题(含答案)

> 费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 【 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 ) 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ^ ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵ AH=BH=AB=12. ! ∴∠AGH=120°, ∠HGP=60°. ∴ A、G、P三点一线。

再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ! ∴∠PHD=30°,. 在△HGB和△HPD中 ∵ HG=HP ∠GHB=∠PHD; : HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. @ ∴ G、P、D三点一线。 ∴ AG=GP=PD,且同在一条直线上。 ∵ GA+GH+GB=GA+GP+PD=AD. ∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。, 、

八年级数学下册三角形证明知识点

第一节. 等腰三角形 1. 性质:等腰三角形的两个底角相等(等边对等角). 2. 判定:有两个角相等的三角形是等腰三角形(等角对等边). 3. 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”). 4. 等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴. 判定定理:(1)有一个角是60°的等腰三角形是等边三角形; (2)三个角都相等的三角形是等边三角形. 第二节.直角三角形 1. 勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方. 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2. 含30°的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半. 3.直角三角形斜边上的中线等于斜边的一半。 要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”. 4.斜边和一条直角边分别相等的两个直角三角形全等。 第三节. 线段的垂直平分线 1. 线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等. 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.该点就是三角形的外心。以此外心为圆心,可以将三角形的三个顶点组成一个圆。 3.如何用尺规作图法作线段的垂直平分线: 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN就是线段AB 的垂直平分线。 第四节. 角平分线 1. 角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2. 三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心 通用篇 1.真命题与假命题 真命题:真命题就是正确的命题,即如果命题的条件成立,那么结论一定成立。 假命题:条件和结果相矛盾的命题是假命题, 命题与逆命题 命题包括已知和结论两部分;逆命题是将原命题的已知和结论交换; 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题。其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理。这两个定理称为互逆定理。 2、证明命题的一般步骤: (1)理解题意:分清命题的条件(已知),结论(求证); (2)根据题意,画出图形; (3)结合图形,用数学语言写出“已知”和“求证”; (4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因“ (5)依据思路,运用数学语言条理清晰地写出证明过程; (6)检查表达过程是否正确,完整. 3、用反证法证明几何命题的步骤: (1)假设命题的结论不成立. (2)由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推导直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾. (3)从而判断假设错误,原命题成立

最新初二有关三角形证明的中考题

第一章三角形的证明测试卷 (源于中考的试题) 参考答案与试题解析 一.选择题(共9小题) 1.(2013?郴州)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于() A.25°B.30°C.35°D.40° 解答:解:∵在Rt△ACB中,∠ACB=90°,∠A=25°, ∴∠B=90°﹣25°=65°, ∵△CDB′由△CDB反折而成, ∴∠CB′D=∠B=65°, ∵∠CB′D是△AB′D的外角, ∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°. 故选D. 2.(2012?潍坊)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A 的距离是()海里. A.25B.25C.50 D.25 解答:解:根据题意, ∠1=∠2=30°, ∵∠ACD=60°, ∴∠ACB=30°+60°=90°,

∴∠CBA=75°﹣30°=45°, ∴△ABC为等腰直角三角形, ∵BC=50×0.5=25, ∴AC=BC=25(海里). 故选D. 3.(2011?贵阳)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是() A.3.5 B.4.2 C.5.8 D.7 解答:解:根据垂线段最短,可知AP的长不可小于3; ∵△ABC中,∠C=90°,AC=3,∠B=30°, ∴AB=6, ∴AP的长不能大于6.故选D. 4.(2012?铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=9,则线段MN的长为() A.6B.7C.8D.9 考点:等腰三角形的判定与性质;平行线的性质. 分析:由∠ABC、∠ACB的平分线相交于点E,∠MBE=∠EBC,∠ECN=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得结论. 解答:解:∵∠ABC、∠ACB的平分线相交于点E, ∴∠MBE=∠EBC,∠ECN=∠ECB, ∵MN∥BC, ∴∠EBC=∠MEB,∠NEC=∠ECB, ∴∠MBE=∠MEB,∠NEC=∠ECN,

费马点的证明

1、费马点一定不在三角形外(证明略) 2、当有一个内角大于或等于120°时 对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转) 则△APC ≌△AP'C'∵∠BAC ≥ 120°∴∠PAP' = 180°-∠BAP-∠C'AP' = 180°-∠BAP-∠CAP = 180°-∠BAC ≤ 60°∴等腰三角形PAP'中,AP ≥ PP'∴PA + PB + PC ≥ PP' +PB + PC' > BC' = AB + AC ∴点A即费马点 3、当三个内角都小于120°时 在△ABC内做一点P,使得∠APC =∠BPC =∠CPA = 120°,过A、B、C分别作PA、PB、PC的垂线,交于D、E、F三点,如图,再作任一异于P的点P',连结P'A、P'B、P'C,过P'作P'H ⊥EF于H 易证明∠D =∠E =∠F = 60°,即△DEF为正三角形,设边长为d,面积为S 则有2S = d(PA + PB + PC)∵P'H ≤ P'A所以2S△EP'F ≤ P'A ·d ①同理有2S△DP'F ≤ P'B·d ② 2S△EP'D ≤ P'C·d ③ ① + ② + ③,得2(S△EP'F +S△DP'F + S△EP'D)≤ P'A·d + P'B·d + P'C·d ∴2S ≤ d(P'A + P'B + P'C) 又∵2S = d(PA + PB + PC) ∴d(PA + PB + PC) ≤ d(P'A + P'B + P'C)即PA + PB + PC ≤ P'A + P'B + P'C当且仅当P与P'重合时,等号成立

相关文档
最新文档