费马点的两证明方法

费马点的两证明方法
费马点的两证明方法

费马点的两证明方法

费马点,就是平面上到三角形三顶点距离之和最小的点。

当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶角为120 度的点。

点的连线两两夹

1、费马点不在三角形外,这个就不用证了,很显然。但为了严谨,还是说一下

2、当有一个内角大于等于120 度时候

对三角形内任一点P

B A至C'使得AC=AC,' 做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说延长

了这么多,其实就是把三角形APC以A为中心做了个旋转

则△APC≌△AP'C'

∵∠BAC≥120°

∴∠PAP'=180°- ∠BAP - ∠C'AP'=180°-∠BAP - ∠CAP=18°0-∠BAC≤60°

∴等腰三角形PAP' 中,AP≥PP'

∴PA+PB+P≥CPP'+PB+PC'>BC'=AB+AC

所以A 是费马点

3、当所有内角都小于120°时

做出△ABC内一点P,使得∠APC=∠BPC=∠CPA=12°0,分别作PA,PB,PC的垂线,

结P'A,P'B,P'C ,过P' 作

交于D,E,F 三点,如图,再作任一异于P的点P' ,连

P'H 垂直EF于H

为d,面积

为S

边长

易知∠D=∠E=∠F=60°,即△DEF为等边三角形,计

则有2S=d(PA+PB+PC)

∵P'A≥P'H

所以2S△EP'F≤P'A*d

同理有

2S△DP'F≤P'B*d

2S△EP'D≤P'C*d

相加得2S≤d(P'A+P'B+P'C)

即PA+PB+P≤C P'A+P'B+P'C,当且仅当P,P' 重合时取到等号

所以P是费马点

,我们先假设他在某个位置,做出来,证明他不可能具

虽然不知道费马点在那

于120 度的时候。

有某些性质,最后确定他的位置,这个证明仅限于三个内角都

以A,C 为焦点,AP+PC为长轴长,做椭圆,以B为圆心,BP为半径,做圆我们先假定椭圆与原是相交的,并取他们公共部分内部一点P'

则P' 在圆内也在椭圆内

所以P'A+P'B+P'C>PA+PC+P,C与假设矛盾,所以圆与椭圆必相切(不可能没有公共点吧,因为都过P)

做他们的公切线,并作直线BP,显然BP与公切线垂直

由椭圆的几何性质易知,BP平分角APC,所以∠APB=∠CPB 同理有∠APC=∠CPB

所以∠APC=∠APB=∠CPB=12°0

即为费马点

“费马点”说明及例举

费马点 费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。 他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费 马还研究了对方程 2 21y ax= +整数解的问题。得出了求导数所有约数的系统方法。 所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。这是费马通信的一贯作风。当时欧洲所有数学家对他都十分头疼的。人们称这个点为“费马点”。还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。可到死也没告诉人家这个所谓证明。结果困扰世界数学界一百多年。直到去年才解决。 著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不 可能把任一个次数大于2的方幂表示成两个同方幂的和。” 即: )3 (,2≥ = +n z y x n n 无整 数解。1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。 费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 几何光学已有悠久的发展历史,由于费马原理的确立,几何光学发展到了较为完善的程度。。1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

6.第二章利用费马原理对光的反射与折射这两个实验定律进行推证

第二章利用费马原理对光的反射与折射这两个实验 定律进行推证 2.1 反射定律和折射定律 在教材中我们早就学习了折射定律和反射定律]1[,反射定律的传统表达为:入射光线与反射光线在同种介质中,且对称分居于法线两侧,即入射角i 等于反射角i ',或i =i '。折射定律的传统表达为:光折射时,折射光线、入射光线、法线在同一平面内,折射光线和入射光线分别位于法线的两侧。折射角随入射角的改变而改变:入射角增大时,折射角也增大;入射角减小时,折射角也减小。这两个定律通俗易懂,但它们在教材中都是通过实验推出,并没有从理论的角度进行推证。本章利用费马原理从理论角度对反射定律和折射定律进行推导。 我们已经学过nds 称为光程,并且当两列波在同一点相遇并叠加时,其光强取决于相位差,而相位差又取决于光程差。可以证明,几何光学中,有关光线的实验事实也可以归结为光程问题,即不考虑光的波动性,而只从光线的观点出发通过光程的概念。 2.2费马原理 费马原理是费马在1650年概括光线传播的实验定律提出的[2],其内容为:连结给定两点P 和Q 可以有许多路径,而光线只遵循两点间光程为极值的路径,数学表达形式为: Q P nds =?极值(极小值、极大值或恒值) (2-1) 费马原理要求光程为极值,可以是最小值,这是最常见的,也可以是最大值,还可以是稳定值。 几何光学的核心就是费马原理,虽然几何光学被看作是波动光学的近似,但现在光学设计中的光线追迹及光学成像等还是利用由费马原理推出的几何光学的知识,费马原理是物理学和数学的精妙结合。 2.3 折射定律的推导 设光线由P 点传播到Q 点, P 和Q 两点分别在折射率为1n 和2n 的均匀媒质中,首先建立笛卡儿空间直角坐标系,选两种介质的分界面为x y 平面,选过P 和Q 两点并与媒质分界面垂直的平面为yz 平面,如果P 和Q 两点的连线与分界

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

关于费马点知识总结

费马点 一、研究目的 费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。 二、研究结果 (一)费马点的发现者 费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。 他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。 由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。 (二)费马点的求法 △ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。 (三)费马点的验证 1.△ABC是等边三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④ 点P是垂心,是△ABC各边的高线的交点;⑤△ABP、 △ACP、△BCP全等。⑥点P是△ABC各边的中线的交 点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点 P为费马点时和最小。 2.△ABC是等腰三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①△ABC的三顶点的距离之和为AP+BP+CP,且点P为 费马点时和最小;②∠APB=∠BPC=∠APC=120°;③ △ABP与△ACP全等;④△BCP为等腰三角形。 3.△ABC是直角三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

三角形的费马点

三角形的费马点 有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小,请同学们想一想,这个供水站应该建在哪里? 事实上,这是法国著名数学家费马提出的一个关于三角形的有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小,人们称这个点为“费马点”. 当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;当三角形三个内角都在120°以内,那么费马点就是三角形内与三角形三顶点的连线两两夹角 为120°的点.显然在第一种情况下,费马点的位置就是那个大于或等于120°的内角的顶点.在第二种情况下,如图所示:我们只需要以△ABC三边AB、AC、BC为边在三角形外作三个等边△ABC1、△ACB1和△BCA1,连接AA1、BB1和CC1,三线交点P就是费马点. 同学们肯定会想为什么?等同学们学习了三角形全等 的知识后就可以去探索这其中的道理了. 再看一个数学问题:将军从甲地出发到河边饮马,然后再到乙地军营视察,显然有许多走法,那走什么样的路线最短呢?这个问题被古希腊亚历山大里亚城的一位久负盛名 的学者海伦解决了,后来被人们称作“将军饮马”问题.费马

思考了这个问题,他觉得不仅是将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.人们总希望寻求最佳的路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短路线问题.费马就把这样的问题联想到某一个图形中,他大胆提出在任意三角形中有且仅有一点到三个顶点的距离最短,并对此进行了充分的证明.现在研究表明不止是三角形,其它多边形也存在这样的点. 平面四边形的费马点:在凸边形中,对角线交点即费马点;在凹四边形中,凹顶点即为费马点. 那费马点在我们的生活中有没有应用价值呢?文章开头的供水站建在费马点肯定是最节约成本的;再譬如打篮球、踢足球时,你时刻注意的是怎样进攻,但要与自己的队友保持最好的距离和方位,前后左右都要顾及,这其实就是在找多边形中的“费马点”. 数学为科学之母,现在已经有很多方面应用到费马点的性质,在医学上、建筑上、军事上…… 像类似费马点这样的问题还有很多,同学们只要你们积极思考,遇到问题多问几个为什么,多一些打破砂锅问到底的精神,你们也会像费马一样发现更多更有趣的数学问题.

费马点问题(含答案)

> 费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 【 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 ) 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ^ ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵ AH=BH=AB=12. ! ∴∠AGH=120°, ∠HGP=60°. ∴ A、G、P三点一线。

再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ! ∴∠PHD=30°,. 在△HGB和△HPD中 ∵ HG=HP ∠GHB=∠PHD; : HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. @ ∴ G、P、D三点一线。 ∴ AG=GP=PD,且同在一条直线上。 ∵ GA+GH+GB=GA+GP+PD=AD. ∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。, 、

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

费马点的证明

1、费马点一定不在三角形外(证明略) 2、当有一个内角大于或等于120°时 对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转) 则△APC ≌△AP'C'∵∠BAC ≥ 120°∴∠PAP' = 180°-∠BAP-∠C'AP' = 180°-∠BAP-∠CAP = 180°-∠BAC ≤ 60°∴等腰三角形PAP'中,AP ≥ PP'∴PA + PB + PC ≥ PP' +PB + PC' > BC' = AB + AC ∴点A即费马点 3、当三个内角都小于120°时 在△ABC内做一点P,使得∠APC =∠BPC =∠CPA = 120°,过A、B、C分别作PA、PB、PC的垂线,交于D、E、F三点,如图,再作任一异于P的点P',连结P'A、P'B、P'C,过P'作P'H ⊥EF于H 易证明∠D =∠E =∠F = 60°,即△DEF为正三角形,设边长为d,面积为S 则有2S = d(PA + PB + PC)∵P'H ≤ P'A所以2S△EP'F ≤ P'A ·d ①同理有2S△DP'F ≤ P'B·d ② 2S△EP'D ≤ P'C·d ③ ① + ② + ③,得2(S△EP'F +S△DP'F + S△EP'D)≤ P'A·d + P'B·d + P'C·d ∴2S ≤ d(P'A + P'B + P'C) 又∵2S = d(PA + PB + PC) ∴d(PA + PB + PC) ≤ d(P'A + P'B + P'C)即PA + PB + PC ≤ P'A + P'B + P'C当且仅当P与P'重合时,等号成立

四点共圆练习题

作业16 1、锐角ABC ?的三条高AD 、BE 、CF 交于H ,在A 、B 、C 、D 、E 、F 、H 七个点中.能组成四点共圆的组数是( ) A 、4组 B 、5组 C 、6组 D 、7组 2、已知点)02(,A ,)53(,B ,直线l 过点B 与y 轴交于点)0(c ,C ,若 O 、A 、B 、C 四点共圆,则c 的值为( ) A 、 522 B 、5 28 C 、17 D 、无法求出 3.如图, AB 是⊙O 的直径, 弦CD ⊥AB, P 是弧CAD 上一点(不与C 、D 重合) . (1) 求证:∠CPD =∠COB ; (2) 若点P 在劣弧CD 上(不与C 、D 重合), ∠CPD 与∠COB 的数量关系是否发生变化?若不变, 请画图并证明;若变化, 请写出新的关系式并画图证明. 4、如图,在平行四边形ABCD 中,BAD ∠为钝角,且BC AE ⊥,CD AF ⊥. (1)求证:A 、E 、C 、F 四点共圆; (2)设线段BD 与(1 )中的圆交于M 、N .求证:ND BM =. 5、如图所示, I 为ABC ?的内心,求证:BIC ?的外心O 与A 、B 、C 四点共圆. B

B A 6.如图, ⊙O 的内接△ABC 的外角∠AC B 的平分线交⊙O 于E, EF ⊥BD 于F. (1) 探索EO 与AB 的位置关系, 并予以证明; (2) 当△AB C 的形状发生改变时, AC CF BF +的值是否发生改变?若不变, 请求出该值;若改变, 请求出其变化范围. 7.如图,已知AB 是⊙O 的直径,D 是弧AB 上一点,C 是弧AD 的中点,AD 、BC 相交于E ,CF ⊥AB ,F 为垂足,CF 交AD 于G ,求证:CG=EG. 8、如图,已知ABC ?中的两条角平分线AD 和CE 相交于H ,?=∠60B ,F 在AC 上,且AF AE =. (1)证明:B ,D ,H ,E 四点共圆; (2)证明:CE 平分DEF ∠. B

费马原理与光的反射和折射

费马原理与光的反射和折射 福建省石狮市石光中学 陈龙法 1650年法国数学家费马对光的传播传播原理作了一个概括性的叙述:光从空间一点A 到另一点B,光沿着所需的时间为极值的路径传播。 1.光的反射 光线由A 点入射,经介面MN 反射到B 点(如图)。试求光线以最短时间所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的, C 为界面上的任一点。设光的传播速度是V ,光线 由A 点经C 到B 经历时间 )(1 )(CB AC V x t += ()? ? ? ? ?+-++=2222121h x a h x V 式中V 、h 1、h 2及a 都是已知的,现在的问题是:光线AC 有怎样的一个已知方向(或x 取何值),才能使它由A 点出发到B 点的时间为最短。 为了求得最短时间,我们求t 对x 的导数: ()()???? ??+--- +='22221 21h x a x a h x x V x t 令()0='x t ,则 () 22 2 2 1 2 h x a x a h x x +--= + 若C 点的法线为CC ’,则由图知, Sin α=Sin β 所以,α=β,即入射角等于反射角。 又因为 ()() ()()()?????? ????? ?? ?+-+--+ +-- - ++- += ''2 2 2 2 2 22 22 2 2 122 12221 2 1h x a h x a x a h x a h x h x x h x V x t () ()[ ] ??? ??? ? ? +-+ +=2 /32222 2 2 /32 12211h x a h h x h V 式中所有值都是正的,所以()0>''x t ,故当α=β时,光线由A 点到B 点所需要的时间为最短。 2.光的折射 光线由A 点入射,经介面MN 折射到B 点(如图)。试求光线以最短时间从A 射到B 发生折射所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的,C 为界面上的任一点。设光在第一介质中的传播速度 2)

费马点及其证明.

费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。在平面三角形中: (1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

用爱森斯坦判别法证明费尔马大定理 - 黄河之滨

用爱森斯坦判别法证明费尔马大定理 ——用费尔马不定方程直接证明费尔马大定理的讨论之(Ⅴ) 熊启钊 利用爱森斯坦判别法,可使费尔马大定理的证明大大简化。不过,要用到笔者提出的、即将予以证明的π猜想(何谓“π猜想”请见下段)。本文稿关于大定理的简化证明可陈述为:㈠费尔马不定方程x n+y n=z n,可以改写成一元n次整系数不完全方程x n-(b n-a n)=0(需设:n>2为奇素数;a、b为互素的已知任意正整数,但奇偶性相异,b>a;假设未知数x 有正奇数解);㈡对这个一元n次首1方程,某素数p必然不能整除其首项系数1,能够整除从x n-1到x各项的0系数;㈢根据π猜想,p能够整除常数项(b n-a n)、而p2不能够整除该项;㈣那么,根据爱森斯坦判别法(它只要求不完全方程有整系数,以及p的除法性质,本文稿不赘述),x便无正整数解,于是费尔马大定理就得到证明。如果π猜想是熟知的,方才的几句话就完成了本稿的论证任务。 下文只需证明π猜想:“正整数b n-a n(n为奇素数,a、b为互素的、奇偶性相异的任何正整数,b>a)至少含有一个不等于n的、≥2的素因数p(于此强调一下,素因数p系指p 的一次幂而言)”。猜想如成立,其结论当然是:p│(b n-a n),而p2?(b n-a n);其结果当然是费尔马大定理成立。不过,证明的过程很长,于是不可能数语证明费尔大定理。 §1.b n-a n的分解与分析 令b-a=d。先证明a、d互素(b、d亦然)。设a、d不互素,则a=md(m正整数)。于是b=d+a=d+md=(1+m)d;即a、d如不互素则导致b、a不互素,而与所设b、a互素矛盾。故a、d互素。[设d=ma,同样可证a、d互素。] 再代b=a+d入不完全方程, x n=b n-a n=(a+d)n-a n=na n-1d+C n2a n-2d2+C n3a n-3d3+…+C n n-2a2d n-2+nad n-1+d n =d(na n-1+C n2a n-2d+C n3a n-3d2+…+C n n-2a2d n-3+nad n-2+d n-1) =d[n a n-1+d(C n2a n-2+C n3a n-3d+…+C n n-2a2d n-4+nad n-3+d n-2)]=d[…]。 上式中,㈠如果n?d,因a、d互素,则d、[…]互素;在此情况下,由于d中常含素数的高次幂,因此可以放弃它,只在[…]中寻找素因数p。㈡如果n│d,则d、[…]不互素,即有共同因数n,而且n2│(d[…])=b n-a n。此时[…]中含n(而且仅含此n),但是易见[…]中必有异于n的因数,因为[…]>n之故。这个结论很重要,就是说:当n│d时,仍可能在[…]中寻找异于n的、与d无关的素因数p。总起来说,无论n能否整除d,总可在[…]中寻找异于n的素因数p。 为了方便探讨,b n-a n还可按常用形式分解: b n-a n=(b-a)(b n-1+b n-2a+…+ba n-2+a n-1)=(b-a){…}。 显然[…]={…},即两者实质一样,对{…}的讨论与结论,亦即对[…]者。 §2π猜想证明之一 先了解一下{…}=(b n-1+…+a n-1)的性质。{…}中只有两个正整的元素b、a(请注意b、a的任意性),没有0元,没有单位元1(a可以=1,但不恒等于1);运算方式只有加法和乘法;无正整的常数系数。正整数{…}的表现形式是b、a的n-1次齐次式。 如果{…}是素数,π猜想就不需证明了。如果{…}不是素数,上文已经说明总可在[…]中“寻找”异于n的素因数p。现在设{…}中至少含有一个非n因数P。首先说,因为a、b互素,两者(以及各自的因数)都不能整除齐次表达式{…}=(b n-1+b n-2a+…+ba n-2+a n-1),而P能整除它,那么P不是a、b的幂积b x a y(x、y为正整数,或0),而是a、b的幂积b x a y 之和P=Σx,y b x a y(只能想象其存在,不能目睹)。这个和P应该是齐次的,{…}的其它因数

四点共圆两个判定定理的证明

四点共圆两个判定定理的证明 1,当∠A=∠C=90·时,可以在答题中仅增加两行说明A、B、C、D四点共圆 连BD,设BD的中点为O′ ∵∠A = ∠C =90· ∴AO′ = BO′ = DO′ = CO′ ∴A、B、C、D在以O′为圆心,B O′为半径的圆上。 2,当那两个角不是直角时 一、附:已知∠A + ∠C = 180·,则A、B、C、D 四点共圆 证:设△ABD 的外接圆为⊙O ①假设C 在⊙O 内 则∠C >∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C > 180·与已知矛盾 ②假设C 在⊙O 外 则∠C <∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C < 180·与已知矛盾 综合以上点C在⊙O上

上述证明可压缩为6行: 证:设△ABD 的外接圆为⊙O 假设C 在⊙O 内或外时 则∠C ≠∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C ≠ 180·与已知矛盾,故假设不成立,即点C 在⊙O上∴A、B、C、D四点共圆 二、附:已知∠A = ∠C ,则A、B、C、D 四点共圆 证:设△ABD 的外接圆为⊙O ①假设C 在⊙O 内 则∠C >∠C′ 又因∠A = ∠C′ ∴∠A <∠C 与已知矛盾 ②假设C 在⊙O 外 则∠C <∠C′ 又因∠A = ∠C′ ∴∠A >∠C 与已知矛盾 综合以上点C在⊙O上 上述证明可压缩为6行: 证:设△ABD 的外接圆为⊙O 假设C 在⊙O 内或外时 则∠C ≠∠C′ 又因∠A = ∠C′ ∴∠A ≠∠C 与已知矛盾,故假设不成立,即点C 在⊙O上 ∴A、B、C、D四点共圆

费马大定理的初等巧妙证明(完全版)

费马大定理的初等巧妙证明(完全版) 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程 n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 2 2 2 y x z += ∴ ))((2 2 2 y z y z y z x +-=-= (1) 设 2 2)(m y z =- 则 2 2m y z += 代入(1)得 2 22222222 2 2 2)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 2 2 m l y -= 2 2m l z += 当n=3时,有 3 33y x z += ∴ ))((2 2 3 3 3 y zy z y z y z x ++-=-= (2) 设 3 2 3)(m y z =- 则 3 2 3m y z +=代入(2)得 ][2 3 2 2 3 2 3 2 3 3 3 )3()3(3y y m y m y m y z x ++++=-= )3333(364322 3 2 m y m y m +?+=)33(36 3322 33m y m y m ++= 设 3 6 3 3 2 2 )33(l m y m y =++ (3) 则 ml x 3= (4) 3 2 3m y z += (5) 若z,y 的公约数为k,即 (z,y)=k ,k>1时,方程3 3 3 y z x -=两边可以除以3 k ,下面 分析k=1 即(z,y )=1 , 方程3 33y z x -=的正整数解 因为(z,y )=1,分析(2),(3),(4),(5)式,只有m,l 为正整数时,x,y,z 可能有正整数解,由(3)得 )33)(3(3)3(4 222 26 33 3 2 m l m l m l m l m y y ++-=-=+ (6) ∵ y, m, l 都取正整数, ∴)3(3 2 m y y +< )33()3(4 2 2 2 2 m l m l m l ++<-

相关文档
最新文档