费马点

费马点
费马点

在一个三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小。即在ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”。

目录

1简介

2费马点定义

3费马点的判定

4证明

5费马点作法

1简介

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

费马点

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王“。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

2费马点定义

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

3费马点的判定

(1)对于任意三角形△ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则取到最小值时E为费马点。

费马点的计算

(2)如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

4证明

我们要如何证明费马点呢:

费马点证明图形

(1)费马点对边的张角为120°。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60°=∠ABA1,

△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B

同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60°,得∠PCB+∠CBP=60°,所以∠CPB=120度

同理,∠APB=120°,∠APC=120°(2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60°与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BDP=60°又∠BPA=120°,因此A、P、D三点在同一直线上,

又∠CPB=∠A1DB=120°,∠PDB=60°,∠PDA1=180°,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC最短

在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B 为旋转中心旋转60°与△BGA1重合,连结AM、GM、A1G(同上),则AA1

平面四边形费马点

平面四边形中费马点证明相对于三角形中较为简易,也较容易研究。

(1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。(2)在凹四边形ABCD中,费马点为凹顶点D(P)。

经过上述的推导,我们即得出了三角形中费马点的找法:

当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;如果三个内角都在120°以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120°的点。

另一种更为简捷的

费马点

证明:

设O为三顶点连线最短点,以A为圆心AO为半径做圆P。将圆P视作一面镜子。显然O点应该为B出发的光线经过镜子到 C的反射点(如果不是,反射点为O',就会有BO’+ CO' < BO+ CO,而AO’= AO,就会有AO’+ BO’+ CO' < AO + BO + CO)。

不失一般性。O点对于B、C为圆心的镜子也成立。因此根据对称性AO、BO、CO 之间夹角都是120°

(补充说明:AO、BO、CO是每个镜子的法线)

5费马点作法

费马点

(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。

特殊三角形中:

(2).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.

(3).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求的费马点.

(4)当△ABC为等边三角形时,此时内心与费马点重合

词条图册更多图册

词条图片(6张)

“费马点”与中考数学试题

“费马点”与中考数学试题 费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点. △三个顶点的距离之和P A+PB+PC最小?这就下面简单说明如何找点P使它到ABC 是所谓的费尔马问题. 图1 解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′. 则△APP′为等边三角形,AP= PP′,P′C′=PC, 所以P A+PB+PC= PP′+ PB+ P′C′. 点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小. 这时∠BP A=180°-∠APP′=180°-60°=120°, ∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°, ∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120° △的每一个内角都小于120°时,所求的点P对三角形每边的张角都是因此,当ABC 120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点. 费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换. 本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考. 例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离26

“费马点”说明及例举

费马点 费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。 他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费 马还研究了对方程 2 21y ax= +整数解的问题。得出了求导数所有约数的系统方法。 所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。这是费马通信的一贯作风。当时欧洲所有数学家对他都十分头疼的。人们称这个点为“费马点”。还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。可到死也没告诉人家这个所谓证明。结果困扰世界数学界一百多年。直到去年才解决。 著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不 可能把任一个次数大于2的方幂表示成两个同方幂的和。” 即: )3 (,2≥ = +n z y x n n 无整 数解。1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。 费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 几何光学已有悠久的发展历史,由于费马原理的确立,几何光学发展到了较为完善的程度。。1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理

最值问题(费马点)

最值问题2(费马点) 1、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值. 2、已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.

图2 图1 A' P P A A B C B C 3、(延庆)(本题满分4分)阅读下面材料: 阅读下面材料: 小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。 小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ' ,当点A 落在C A ' 上时,此题可解(如图2). 请你回答:AP 的最大值是 . 参考小伟同学思考问题的方法,解决下列问题: 如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简) 图3 C A B P

4、(朝阳二模)阅读下列材料: 小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30o,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值. 小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60o,得到△EDC ,连接PD 、BE ,则BE 的长即为所求. (1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题: ①如图3,菱形ABCD 中,∠ABC =60o,在菱形ABCD 内部有一点P ,请在图3 中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长. D E A C B P 图 2 D A C B 图 3 A C B P 图1

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

中考专题费马点讲义与练习

图4—11 C B A 从“费马点”说起 前言 解题 题海战术 通性通法 过程与结果 内化 一、走近费马点 1.(浙教版数学八下P82)设计题 你听说过费马点吗?如图4—11,P 为△ABC 所在平面上一点。如果∠APB=∠BPC=∠CPA=120°,则点P 就叫做费马点。费马点有许多有趣并且有意义的性质,例如,平面内一点P 到△ABC 三顶点的距离之和为PA+PB+PC ,当点P 为费马点时,距离之和最小。假设A,B,C 表示三个村庄,要选一处建车站,使车站到三个村庄的公路路程的和最短。若不考虑其他因素,那么车站应建在费马点上。 请按下列步骤对费马点进行探究: (1) 查找有关资料,了解费马点被发现的历史背景; (2) 在特殊三角形中寻找并验证费马点。例如,当△ABC 腰三角形或直角三角形时,费马点有哪些性质? (3) 你的小论文。 2.(2009年浙江省湖州市中考题)若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点. (1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为________; (2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++. 3.(2010年湖南省永州市中考数学试题)探究问题: (1)阅读理解: ①如图(1),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时PA+PB+PC 的值为△ABC 的费马距离. ②如图(2),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD+BC ·DA=AC ·BD ,此为托勒密定理. (2)知识迁移:

中考数学压轴题专题费马点

专题9 费马点 破解策略 费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离. 若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点. 1.若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点 如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点证明: 如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP =AP,连结PP 则△APC≌△APC,PC=PC 因为∠BAC≥120° 所以∠PAP=∠CAC≤60 所以在等腰△PAP中,AP≥PP 所以PA+PB+PC≥PP+PB+PC>BC=AB+AC 所以点A为△ABC的费马点 2.若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.

如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点 证明:在△ABC内部任意取一点O,;连接OA、OB、OC 将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC 所以△AOO′为等边三角形,OO′=AO 所以OA+OC+OB=OO′+OB+O′D 则当点B、O、O′、D四点共线时,OA+OB+OC最小 此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O 如图,在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC =∠COA=120°,所以三角形的费马点也叫三角形的等角中心

费马点与中考试题

识别“费马点”思路快突破 例1 探究问题: (1)阅读理解: ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小, 则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离. ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理 . (2)知识迁移: ①请你利用托勒密定理,解决如下问题: 如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA. A BC ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法: 第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆; 第二步:在上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C) A BC =P′A+; 第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离 . (3)知识应用: 2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水. 已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

简解:(2)①证明:由托勒密定理可知PB ·AC +PC ·AB =PA ·BC ∵△ABC 是等边三角形 ∴ AB =AC =BC ∴PB +PC =PA ②P ′D AD (3)解:如图,以BC 为边长在△ABC 的外部作等边△BCD ,连接AD ,则知线段AD 的长即为△ABC 的费马距离. ∵△BCD 为等边三角形,BC =4, ∴∠CBD =60°,BD =BC =4. ∵∠ABC =30°, ∴∠ABD =90°. 在Rt △ABD 中,∵AB =3,BD =4 ∴AD =5(km ) ∴从水井P 到三村庄A 、B 、C 所铺设的输水管总长度的最小值为5km. 点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视. 如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点: (1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小. 特殊三角形中: (2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求 的费马点. (3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC 为等边三角形时,此时外心与费马点重合. 可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是 2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:

关于费马点知识总结

费马点 一、研究目的 费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。 二、研究结果 (一)费马点的发现者 费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。 他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。 由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。 (二)费马点的求法 △ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。 (三)费马点的验证 1.△ABC是等边三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④ 点P是垂心,是△ABC各边的高线的交点;⑤△ABP、 △ACP、△BCP全等。⑥点P是△ABC各边的中线的交 点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点 P为费马点时和最小。 2.△ABC是等腰三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①△ABC的三顶点的距离之和为AP+BP+CP,且点P为 费马点时和最小;②∠APB=∠BPC=∠APC=120°;③ △ABP与△ACP全等;④△BCP为等腰三角形。 3.△ABC是直角三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为

最新“费马点”与中考试题

“费马点”与中考试题 费马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点. △三个顶点的距离之和P A+PB+PC最小?这就下面简单说明如何找点P使它到ABC 是所谓的费马问题. 图1 解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′. 则△APP′为等边三角形,AP= PP′,P′C′=PC, 所以P A+PB+PC= PP′+ PB+ P′C′. 点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小. 这时∠BP A=180°-∠APP′=180°-60°=120°, ∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°, ∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120° △的每一个内角都小于120°时,所求的点P对三角形每边的张角都是因此,当ABC 120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点. 费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换. 本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考. 例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离26

三角形的费马点

三角形的费马点 有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小,请同学们想一想,这个供水站应该建在哪里? 事实上,这是法国著名数学家费马提出的一个关于三角形的有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小,人们称这个点为“费马点”. 当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;当三角形三个内角都在120°以内,那么费马点就是三角形内与三角形三顶点的连线两两夹角 为120°的点.显然在第一种情况下,费马点的位置就是那个大于或等于120°的内角的顶点.在第二种情况下,如图所示:我们只需要以△ABC三边AB、AC、BC为边在三角形外作三个等边△ABC1、△ACB1和△BCA1,连接AA1、BB1和CC1,三线交点P就是费马点. 同学们肯定会想为什么?等同学们学习了三角形全等 的知识后就可以去探索这其中的道理了. 再看一个数学问题:将军从甲地出发到河边饮马,然后再到乙地军营视察,显然有许多走法,那走什么样的路线最短呢?这个问题被古希腊亚历山大里亚城的一位久负盛名 的学者海伦解决了,后来被人们称作“将军饮马”问题.费马

思考了这个问题,他觉得不仅是将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.人们总希望寻求最佳的路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短路线问题.费马就把这样的问题联想到某一个图形中,他大胆提出在任意三角形中有且仅有一点到三个顶点的距离最短,并对此进行了充分的证明.现在研究表明不止是三角形,其它多边形也存在这样的点. 平面四边形的费马点:在凸边形中,对角线交点即费马点;在凹四边形中,凹顶点即为费马点. 那费马点在我们的生活中有没有应用价值呢?文章开头的供水站建在费马点肯定是最节约成本的;再譬如打篮球、踢足球时,你时刻注意的是怎样进攻,但要与自己的队友保持最好的距离和方位,前后左右都要顾及,这其实就是在找多边形中的“费马点”. 数学为科学之母,现在已经有很多方面应用到费马点的性质,在医学上、建筑上、军事上…… 像类似费马点这样的问题还有很多,同学们只要你们积极思考,遇到问题多问几个为什么,多一些打破砂锅问到底的精神,你们也会像费马一样发现更多更有趣的数学问题.

中考数学押轴题型-费马点相关问题

费马点及其在中考中的应用 一、费马点的由来 费马(Pierre de Fermat,1601—1665)是法国数学家、物理学家.费马一生从未受过专门的数学教育,数学研究也不过是业余爱好.然而,在17世纪的法国还找不到哪位数学家可以与之匹敌.他是解析几何的发明者之一;概率论的主要创始人;以及独承1 7世纪数论天地的人.一代数学大师费马堪称是17世纪法国最伟大的数学家.尤其他提出的费马大定理更是困惑了世间智者358年.费马曾提出关于三角形的一个有趣问题:在△ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”. 二、探索费马点 1.当三角形有一个内角大于或等于120°的时候,则费马点就是这个内角的顶点.

下面来验证这个结论:如图1,对三角形内任意一点P,延长BA至点C′,使得A C′=AC, 作∠C′AP′=∠CAP,并且使得AP′= AP.即把△APC以A为中心做旋转变换.则△APC≌△AP′C′, ∵∠BAC≥120°,∴∠PAP′≤6 0°.∴在等腰三角形PAP′中,AP≥P P′, ∴PA+PB+PC≥PP′+PB+ P′C′>BC′= AB+AC.所以A是费马点. 2.如果三个内角都在120°以内,那么,费马点就是三角形内与三角形三顶点的连线两两夹角为 120°的点.

如图2,以B点为中心,将△APB旋转60°到△A′B P′.因为旋转60°,且PB=P′B,所以△P′PB为正三 角形.因此,PA+PB+PC=P′A′+P′P+PC. 由此可知当A′,P′,P,C四点共线时,PA+PB+PC =P′A′+P′P+PC为最小. 当A′,P′,P共线时,∵∠BP′P=60°,∴∠A′P′B=∠APB=120°.同理,若P′,P,C共线时,则∵∠ BPP′=60°,∴∠BPC=120°. 所以点P为满足∠APB=∠BPC=∠CPA=120°的点. 费马点相关问题 等腰直角三角形,已知在直角平分线上的一点P,PA+PB+PC最小值为√6 +√2,求直角边的长度? 解答:如图 将三角形PAC逆时针旋转60度得三角形DEC,则角PCD=60度, 三角形PCD是正三角形,PC=PD且DE=PA, 所以PA+PB+PC=DE+PD+PB,根据两点之间线段最短,当点E、D、P、B在一条直线上时,DE+PD+P B最小,这时角BPC=120度,角APC=EDC=120。 下证这时的点P就在角ACB的平分线上。 在三角形DCE和PCB中,因CE=CA=CB得角E=角PBC,又有角EDC=BPC=120度, 得三角形CDE、CPA、CBP全等,角ECD=ACP=BCP,点P在角ACB的平分线上。 所以点P是这样一个点:它使角APC=BPC=APB=120度(这个点叫三角形的费马点)。 延长CP交AB于F,则CF垂直AB,且由三角形CPA、CBP全等知PA=PB,得角FPA=60度, 设PF=x,则PA=PB=2x ,AF=CF=√3*x,PC=(√3-1)x, 有2x+2x+(√3-1)x=√6+√2,x=1/3√6。

费马点问题(含答案)

> 费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 【 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 ) 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ^ ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵ AH=BH=AB=12. ! ∴∠AGH=120°, ∠HGP=60°. ∴ A、G、P三点一线。

再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ! ∴∠PHD=30°,. 在△HGB和△HPD中 ∵ HG=HP ∠GHB=∠PHD; : HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. @ ∴ G、P、D三点一线。 ∴ AG=GP=PD,且同在一条直线上。 ∵ GA+GH+GB=GA+GP+PD=AD. ∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。, 、

中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。 之所以称业余,是由于皮耶·德·费马具有律师的全职工作。他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。 费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。 著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。 费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。 托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,

因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。 这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。 “费马点”是指位于三角形且到三角形三个顶点距离之和最短的点。 若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。 这个特殊点对于每个给定的三角形都只有一个。 1.若三角形3个角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的角相等,均为120°。 所以三角形的费马点也称为三角形的等角中心。2.若三角形有一角大于等于120°,则此钝角的顶点就是距离和最小的点。

费马点的证明

1、费马点一定不在三角形外(证明略) 2、当有一个内角大于或等于120°时 对三角形内任一点P延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转) 则△APC ≌△AP'C'∵∠BAC ≥ 120°∴∠PAP' = 180°-∠BAP-∠C'AP' = 180°-∠BAP-∠CAP = 180°-∠BAC ≤ 60°∴等腰三角形PAP'中,AP ≥ PP'∴PA + PB + PC ≥ PP' +PB + PC' > BC' = AB + AC ∴点A即费马点 3、当三个内角都小于120°时 在△ABC内做一点P,使得∠APC =∠BPC =∠CPA = 120°,过A、B、C分别作PA、PB、PC的垂线,交于D、E、F三点,如图,再作任一异于P的点P',连结P'A、P'B、P'C,过P'作P'H ⊥EF于H 易证明∠D =∠E =∠F = 60°,即△DEF为正三角形,设边长为d,面积为S 则有2S = d(PA + PB + PC)∵P'H ≤ P'A所以2S△EP'F ≤ P'A ·d ①同理有2S△DP'F ≤ P'B·d ② 2S△EP'D ≤ P'C·d ③ ① + ② + ③,得2(S△EP'F +S△DP'F + S△EP'D)≤ P'A·d + P'B·d + P'C·d ∴2S ≤ d(P'A + P'B + P'C) 又∵2S = d(PA + PB + PC) ∴d(PA + PB + PC) ≤ d(P'A + P'B + P'C)即PA + PB + PC ≤ P'A + P'B + P'C当且仅当P与P'重合时,等号成立

中考中的费马点问题

费马点 “费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点. 若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C 的距离之和比从其它点算起的都要小. 这个特殊点对于每个给定的三角形都只有一个. 【定义】 1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°。所以三角形的费马点也称为三角形的等角中心.(托里拆利的解法中对这个点的描述是:对于每一个角都小于120°的三角形ABC的每一条边为底边,向外作正三角形,然后作这三个正三角形的外接圆。托里拆利指出这三个外接圆会有一个共同的交点,而这个交点就是所要求的点。这个点和当时已知的三角形特殊点都不一样。这个点因此也叫做托里拆利点。) 2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点. 【费马点问题】 问题:如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小? 图文解析: 如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.则△CPP′为等边三角形,CP=PP′,PA=P′A′, ∴PA+PB+PC= P′A′+PB+PP′BC′. ∵点A′可看成是线段CA绕C点顺时针旋转60°而得的定点,BA′ 为定长 ∴当B、P、P′、A′ 四点在同一直线上时,PA+PB+PC最小.最小 值为BA.′ 【如图1和图2,利用旋转、等边等条件转化相等线段.】 ∴∠APC=∠A′P′C=180°-∠CP′P=180°-60°=120°, ∠BPC=180°-∠P′PC=180°-60°=120°, ∠APC=360°-∠BPC-∠APC=360°-120°-120°=120°. 因此,当△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.

费马点及其证明.

费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。在平面三角形中: (1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

费马点与中考试题

费马点与中考试题 LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】

识别“费马点”思路快突破 解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取. 例1 (2010湖南永州)探究问题: (1)阅读理解: ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距 离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离. ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理. (2)知识迁移: ①请你利用托勒密定理,解决如下问题: 如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA. ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法: 第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;

第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+; 第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离. (3)知识应用: 2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水. 已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值. 思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离. 简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC ∵△ABC是等边三角形 ∴AB=AC=BC ∴PB+PC=PA

关于三角形的费马点

关于费马点的相关问题 一、费马点的由来: 费马(Pierre de Fermat,1601—1665)是法国数学家、物理学家.费马一生从未受过专门的数学教育,数学研究也不过是业余爱好. 然而,在17世纪的法国还找不到哪位数学家可以与之匹敌.他是解析几何的发明者之一;概率论的主要创始人;以及独承17世纪数论天地的人. 一代数学大师费马堪称是17世纪法国最伟大的数学家. 尤其他提出的费马大定理更是困惑了世间智者358年.费马曾提出关于三角形的一个有趣问题:在△ABC内求一点P,使PA+PB+PC之值为最小,人们称这个点为“费马点”. 二、探索费马点: 1. 当三角形有一个内角大于或等于120°的时候,则费马点就是这个内角的顶点. 下面来验证这个结论: 如图1,对三角形内任意一点P,延长BA至点C′,使得AC′=AC,作∠C′AP′=∠CAP,并且使得AP′=AP. 即把△APC以A为中心做旋转变换. 则△APC≌△AP′C′, ∵∠BAC≥120°,∴∠PAP′≤60°. ∴在等腰三角形PAP′中,AP≥PP′, ∴PA+PB+PC≥PP′+PB+ P′C′>BC′=AB+AC. 所以A是费马点. 2. 如果三个内角都在120°以内,那么,费马点就是三角形内与三角形三顶点的连线两两夹角为120°的点. 如图2,以B点为中心,将△APB旋转60°到△C′BP′. 因为旋转60°,且PB=P′B,所以△P′PB为正三角形. 因此,PA+PB+PC=P′C′+P′P+PC. 由此可知当C′,P′,P,C四点共线时,PA+PB+PC= P′C′+P′P+PC为最小. 当C′,P′,P共线时,∵∠BP′P=60°,∴∠C′P′B=∠APB=120°. 同理,若P′,P,C共线时,则∵∠BPP′=60°,∴∠BPC=120°. 所以点P为满足∠APB=∠BPC=∠CPA=120°的点. 1、当有一个内角大于或等于120° 时对三角形内任一点P 延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转) 则△APC ≌△AP'C' ∵∠BAC ≥ 120° ∴∠PAP' = 180°-∠BAP-∠C'AP' = 180°-∠BAP-∠CAP = 180°-∠BAC ≤ 60° ∴等腰三角形PAP'中,AP ≥ PP' ∴PA + PB + PC ≥ PP' +PB + PC' > BC' = AB + AC ∴点A即费马点 2、当三个内角都小于120°时 在△ABC内做一点P,使得∠APC =∠BPC =∠CPA = 120°,过A、B、C分别作PA、PB、PC的垂线,交于D、E、F三点,如图,再作任一异于P的点P',连结P'A、

费马点与中考试题

识别“费马点”思路快突破 解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经 验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取. 例1 (2010湖南永州)探究问题: (1)阅读理解: ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则 称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离. ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理. (2)知识迁移: ①请你利用托勒密定理,解决如下问题: 如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=P A. ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法: 第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆; 第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C) =P′A+; 第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离. (3)知识应用: 2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水. 已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选

相关文档
最新文档