铜的比色测定实验

铜的比色测定实验

实验 1 铜的比色测定

[原理]

氢氧化铵作为显色剂与Cu2+结合成深蓝色的铜氨络离子[Cu(NH3)4]2+,其颜色的深浅与Cu2+浓度呈正比关系,与同样处理的标准液进行比色,可求得待测液中Cu2+的含量。

[试剂]

1. 氢氧化铵溶液(氨水溶液):2mol/L

2.标准Cu2+溶液(100mg%):称取3.927g化学纯CuSO4 .5H2O置于100ml容量瓶中,加40ml水溶解,再加入5ml浓H2SO4防止铜盐水解,最后加水至刻度并充分混匀。

[主要器材]

1. 试管及试管架

2. 刻度吸量管

3.721型分光光度计

[操作步骤]

取试管3支,编号,按表4操作:

表4

试剂(ml) 空白(B) 标准(S) 测定(U)

未知Cu2+溶液——0.5

标准Cu2+溶液(100mg%)—0.5 —

蒸馏水 2.5 2.0 2.0

NH4OH(2mol/L) 2.0 2.0 2.0

室温充分混匀,在580nm波长处,以空白管调零,读取各管OD值。

[结果计算]

Cu2+mg%

100

[注意事项]

1.测定用玻璃器皿必须用去离子水冲洗干净,不得有离子污染。

2.标准Cu2+溶液有较强的酸性,而氢氧化铵溶液有较强的碱性,使用时应注意安全。

荧光分析法练习题82675

第十二章荧光分析法(药学) 一、A型题 1.若需测定生物试样中的微量氨基酸应选用下述哪种分析方法()。 A、荧光光度法 B、磷光光度法 C、化学发光法 D、X荧光光谱法 E、原子荧光光谱法 答案:A 2.分子荧光分析比紫外-可见分光光度法选择性高的原因是()。 A、分子荧光光谱为线状光谱,而分子吸收光谱为带状光谱 B、能发射荧光的物质比较少 C、荧光波长比相应的吸收波长稍长 D、荧光光度计有两个单色器,可以更好地消除组分间的相互干扰 E、分子荧光分析线性范围更宽 答案:B 3荧光量子效率是指()。 A、荧光强度与吸收光强度之比 B、发射荧光的量子数与吸收激发光的量子数之比 C、发射荧光的分子数与物质的总分子数之比 D、激发态的分子数与基态的分子数之比 E、物质的总分子数与吸收激发光的分子数之比 答案:B 4.激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱

C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:C 5.荧光波长固定后,荧光强度与激发光波长的关系曲线称为()。 A、吸收光谱 B、激发光谱 C、荧光光谱 D、工作曲线 E、标准工作曲线 答案:B 6.一种物质能否发出荧光主要取决于()。 A、分子结构 B、激发光的波长 C、温度 D、溶剂的极性 E、激发光的强度 答案:A 7.下列结构中荧光效率最高的物质是()。 A、苯酚 B、苯 C、硝基苯 D、苯甲酸 E、碘苯 答案:A

8.下列因素会导致荧光效率下降的有()。 A、激发光强度下降 B、溶剂极性变小 C、温度下降 D、溶剂中含有卤素离子 E、激发光强度增大 答案:D 9.为使荧光强度和荧光物质溶液的浓度成正比,必须使()。 A、激发光足够强 B、吸光系数足够大 C、试液浓度足够稀 D、仪器灵敏度足够高 E、仪器选择性足够好 答案:C 10.在测定物质的荧光强度时,荧光标准溶液的作用是()。 A、用做调整仪器的零点 B、用做参比溶液 C、用做定量标准 D、用做荧光测定的标度 E、以上都不是 答案:D 11.荧光分光光度计与分光光度计的主要区别在于()。 A、光源 B、光路 C、单色器 D、检测器

接触角的测定实验报告

—、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方 法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固?液界面所取 代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来, 有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润 湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不 粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。 此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类 型示于图仁 图1各种类型的润湿 当液体与固体接触后,体系的自山能降低。因此,液体在固体上润湿程度的 大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固 体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角 的液滴存在,如图2所示。 图2接触角 铺展润湿 粘附湿润 不银润 浸湿

假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 yso- ySL= yLG-COS0 (1) 式中ysG, yi_G,ysi.分别为固?气、液?气和固?液界面张力;8是在固、气、液三 相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0°-180°之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿Wa = ySG - ySL + yLG zO (2) 铺展润湿S = ysG?ysL?yLG >0 (3) 式中Wa, S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: Wa二ysG+yLG -ySL=yLG(1+COS0) (4) S=ySG-ySL-yLG=yLG(COS0-1) (5) 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把8=90。作为润湿与否的界限,当8>90°,称为不润湿,当0<90°时,称为润湿,8越小润湿性能越好;当8角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面

6 铁的比色测定

铁的比色测定 一.实验目的 1. 学会吸收曲线及标准曲线的绘制,了解分光光度法的基本原理; 2. 掌握用邻二氮菲分光光度法测定微量铁的方法原理; 3. 学会722型分光光度计的正确使用,了解其工作原理; 4. 学会数据处理的基本方法; 5. 掌握比色皿的正确使用。 二.实验原理 根据朗伯—比耳定律:A = εbc ,当入射光波长λ及光程b 一定时,在一定浓度范围内,有色物质的吸光度A 与该物质的浓度c 成正比。只要绘出以吸光度A 为纵坐标,浓度c 为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。同时,还可应用相关的回归分析软件,将数据输入计算机,得到相应的分析结果。 用分光光度法测定试样中的微量铁,可选用的显色剂有邻二氮菲(又称邻菲啰啉)及其衍生物、磺基水杨酸、硫氰酸盐等。而目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。 在pH=2~9的溶液中,Fe 2+与邻二氮菲(phen)生成稳定的桔红色配合物Fe(phen)32+, 此配合物的lg K 稳 = 21.3, 摩尔吸光系数ε510 = 1.1×104 L·mol –1·cm –1,而Fe 3+能与邻二氮菲生成3∶1配合物,呈淡蓝色,lgK 稳 = 14.1。 所以在加入显色剂之前,应用盐酸羟胺(NH 2OH·HCl)将Fe 3+还原为Fe 2+,其反应式如下: 2Fe 3+ + 2NH 2OH·HCl → 2Fe 2+ + N 2 + H 2O + 4H + + 2Cl – 测定时控制溶液的酸度为pH≈5较为适宜。 三.仪器与试剂 仪器:722型分光光度计、容量瓶(100 mL ,50 mL)、吸量管 试剂:硫酸铁铵NH 4Fe(SO 4)2·12H 2O(s)(A.R.)、硫酸(3 mol·L –1)、盐酸羟胺(10%)、NaAc(1 mol·L –1)、邻二氮菲(0.15%)。 四.实验步骤 1. 吸收曲线的制作 用吸量管移取1.000 × 10–3 mol·L –1铁的标准溶液10.00 mL 于50 mL 容量瓶中,用吸量管依次加入10%的盐酸羟胺溶液1 mL ,摇匀,加0.15%邻二氮菲溶液2 mL ,1 mol·L –1 NaAc 2+N N 3Fe 2++

荧光分析法实验报告

荧光分光光度法 一、 实验目的 1、学习荧光分光光度法的基本原理; 2、学习荧光光谱仪的结构和操作方法; 3、学习激发光谱、发射光谱曲线的绘制方法。 二、 实验原理 荧光分光光度法(fluorescence spectroscopy, FS )通常又叫荧光分析法,具有灵敏度高、选择性强、所需样品量少等特点,已成为一种重要的痕量分析技术。荧光(fluorescence )是分子吸收了较短波长的光(通常是紫外光和可见光),在很短的时间内发射出比照射光波长较长的光。由此可见,荧光是一种光致发光。 任何荧光物质都有两个特征光谱,即激发光谱(excitation spectrum )和发射光谱(emission spectrum )或称荧光光谱(fluorescence spectrum )。激发光谱表示不同激发波长的辐射引起物质发射某一波长荧光的相对效率。绘制激发光谱时,将发射单色器固定在某一波长,通过激发单色器扫描,以不同波长的入射光激发荧光物质,记录荧光强度对激发波长的关系曲线,即为激发光谱,其形状与吸收光谱极为相似。荧光光谱表示在所发射的荧光中各种波长的相对强度。绘制荧光光谱时,使激发光的波长和强度保持不变,通过发射单色器扫描以检测各种波长下相应的荧光强度,记录荧光强度对发射波长的关系曲线,即为荧光光谱。激发光谱和荧光光谱可用于鉴别荧光物质,而且是选择测定波长的依据。 荧光强度(F )是表征荧光发射的相对强弱的物理量。对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,即 该式即荧光分光光度法定量分析的依据。使用时要注意该关系式只适用于稀溶液。 三、 仪器与试剂 F-4500荧光光谱仪;比色管(10mL );牛血清白蛋白(BSA ) 四、 实验内容 1、 开机准备:接通电源,启动电脑。打开光谱仪主机电源,预热15分钟。 2、 运行FL solution 软件,设定检测方法和测量参数: EX (激发波长):280nm EM (发射波长):340nm EX 扫描范围:210nm ~330nm EM 扫描范围:290nm ~450nm EX 缝宽:2.5nm ,EM 缝宽:2.5nm 扫描速度:240nm/min PMT 电压:700V 3、 激发光谱和发射光谱的绘制: 先固定激发波长为280nm ,在290~450nm 测定荧光强度,获得溶液的发射光谱,在343nm 附近为最大发射波长λem ;再固定发射波长为λem ,测定激发波长为200nm ~λem 时的荧光强度,获得溶液的激发光谱,在280nm 附近为最大激发波长λex 。 4、 退出FL solution 软件,关闭光谱仪主机电源,关闭计算机。 Kc F

第20章 比色法和分光光度法

第20章比色法和分光光度法 【20-1】将下列百分透光度值换算为吸光度: (1)1% (2)10% (3)50% (4)75% (5)99% 解:A=2-lg T% (1)A=2-lg 1 = 2.000 (2)A=2-lg 10 = 1.000 (3)A=2-lg 50 = 0.301 (4)A=2-lg 75 = 0.125 (5)A=2-lg 99 = 0.0044 【20-2】将下列吸光度值换算为百分透光度: (1)0.01 (2)0.10 (3)0.50 (4)1.00 解:lgT%=2-A (1)lgT1%=2-0.01 = 1.99 T1%=97.7 % (2)lgT2%=2-0.10 = 1.90 T2%=79.4 % (3)lgT3%=2-0.50 = 1.50 T3%=31.6 % (4)lgT4% =2-1.00 =1.00 T4%=10.0 % 【20-3】有一有色溶液,用1.0 cm 吸收池在527 nm 处测得其透光度T = 60%,如果浓度加倍,则(1)T值为多少? (2)A 值为多少? (3)用5.0 cm 吸收池时,要获得T = 60%,则溶液的浓度为原来浓度的多少倍? 解:A=-lg T =εbc -lg 0.60 = 0.222 浓度增倍时: (1)lg T =-0.444 T= 36 % (2)A=-lg T = 0.444 (3)1.0cm时:c1 = 0.222 5.0cm时:c2 = 0.222 c2/c1= 1.0 /5.0 = 0.2倍 【20-4】有两种不同浓度的KMnO4溶液,当液层厚度相同时,在527nm处透光度T分别为(1)65.0%,(2)41.8%。求它们的吸光度A各为多少?若已知溶液(1)的浓度为6.51×10-4mol·L-1,求出溶液(2)的浓度为多少? 解:(1)A=εbc =-lgT=-lg 0.650 = 0.187 (2)A=-lg 0.418 = 0.379 (3)当c1= 6.51×10-4 mol ? L-1时,

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

邻二氮菲分光光度法测定微量铁实验报告

实验一邻二氮菲分光光度法测定微量铁 实验目的和要求 1.掌握紫外可见分光光度计的基本操作; 2.掌握邻二氮菲分光光度法测定微量铁的原理和方法; 3.掌握吸收曲线绘制及最大吸收波长选择; 4.掌握标准曲线绘制及应用。 实验原理 邻二氮菲(1,10—邻二氮杂菲)是一种有机配位剂,可与Fe2+形成红色配位离子: Fe2++3 N N N N 3 Fe 2+ 在pH=3~9范围内,该反应能够迅速完成,生成的红色配位离子在510nm波长附近有一吸收峰,摩尔吸收系数为1.1×10-4,反应十分灵敏,Fe2+ 浓度与吸光度符合光吸收定律,适合于微量铁的测定。 实验中,老师我们又见面了采用pH=4.5~5的缓冲溶液保持标准系列溶液及样品溶液的酸度;采用盐酸羟胺还原标准储备液及样品溶液中的Fe3+并防止测定过程中Fe2+被空气氧化。 实验仪器与试剂 1.752S型分光光度计 2.标准铁储备溶液(1.00×10-3mol/L) 3.邻二氮菲溶液(0.15%,新鲜配制) 4.盐酸羟胺溶液(10%,新鲜配制) 5.NaAC缓冲溶液 6.50ml容量瓶7个 7.1cm玻璃比色皿2个 8.铁样品溶液 实验步骤 1.标准系列溶液及样品溶液配制,按照下表配制铁标准系列溶液及样品溶液。

2.吸收曲线绘制用1cm比色皿,以1号溶液作为参比溶液,测定4号溶液在各个波长处的吸光度,绘制吸收曲线,并找出最大吸收波长。 3.标准曲线制作

在选定最大吸收波长处,用1cm 比色皿,以1号溶液作为参比溶液,分别测定2至7号溶液的吸光度,平行测定3次,计算吸光度平均值,绘制标准曲线。 实验数据处理 1、 样品中铁的计算 2.50 50.00 C C X ? =读取值 Cx=4.65×10-5 ×50.00/2.50=9.30×10-4 mol/L 2、 摩尔吸光系数计算 在标准曲线的直线部分选择量两点,读取对应的坐标值,计算邻二氮菲配位物在最大吸收波长出的摩尔吸光系数: 1 21 2c -c A A ε-= ε=(0.460-0.233)/(0.00006-0.00004)=2.00×10-5 7 样品溶液 4.65×10-5 mol/ml

铂钴标准比色法检测水中色度

色度 (铂钴标准比色法) 方法原理 用氯铂酸钾与氯化钴配成标准系列,与水样进行目视比色。 如水样浑浊,则放置澄清,也可用离心法或用孔径为0.45滤膜过滤以去掉悬 浮物。但不能用滤纸过滤,因滤纸可吸附部分溶解于水的颜色。 仪器 50ML具塞闭塞管,其刻线高度应一致。 试剂 铂钴标准溶液:称取1.246g氯铂酸钾K2PCL6(相当于500铂)及1.000六水合氯化钴(相当于250mg钴),溶于水中,加100ml浓盐酸,用水定容至1000ml。 此溶液色度为500度,保存在密塞玻璃瓶中,暗处存放。 步骤 标准色列的配置: 向50mL比色管中加入0mL、0.5mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL、3.50mL、4.00mL、4.50mL、5.00mL、6.00mL及7.000mL铂钴标准溶液,用水稀释至标线,混匀。各管的色度依次为5、10、15、20、25、30、35、40、45、50、60和70度。密封保存。 水样的测定: 1、分取50.0ML澄清透明水样于比色管中,如水样色度较大,可酌情少取水样,用水稀释至50.0ML。 2、将水样与标准色列进行目视比较。观测时,可将比色管至于白瓷板或白板上,使光线从关底部向上透过液柱,目光自管口垂直向下观察。记下与水样色度相同的铂钴标准色列的色度。 计算 色度=A×50/V 式中: A------稀释后水样相当于铂钴标准比色法的色度 V------水样得体积(ML) 注意事项 可用重铬酸钾代替氯铂酸钾配置标准色列。方法是:称取0.0437g重铬酸钾 和1.000g七水合硫酸钴(CoSo4.7H2O)溶于少量水中,加入0.50ml硫酸,用水稀释至500ml。此溶液的色度为500度。不宜久存, 如果样品中有泥土或其它分散很散狠细的悬浮物,虽经处理而得不到透明水 样时,则只测“表面颜色”。

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

水样中铬的测定实验报告

浙江海洋学院 环境监测实验报告 实验名称:水样中铬的测定 指导教师: 专业: 班级: 学生姓名: 同组者姓名: 实验日期: 气压: 温度: 1 实验目的 (1)了解测定铬的意义。 (2)掌握分光光度法测定铬的基本原理和方法。 铬存在于电镀、冶炼、制革、纺织、制药等工业废水污染的水体中。富铬地区地表水径流中也含铬,自然中的铬常以元素或三价状态存在,水中的铬有三价、六价两种价态。 三价铬和六价铬对人体健康都有害。一般认为,六价铬的毒性强,更易为人体吸收而且可在体内蓄积,饮用含六价铬的水可引起内部组织的损坏;铬累积于鱼体内,也可使水生生物致死,抑制水体的自净作用;用含铬的水灌溉农作物,铬可富积于果实中。 铬的测定可采用比色法、原子吸收分光光度法和容量法。当使用二苯碳酰二肼比色法测定铬时,可直接比色测定六价铬,如果先将三价铬氧化成六价铬后再测定就可以测得水中的总铬。水样中铬含量较高时,可使用硫酸亚铁铵容量法测

定其含量。受轻度污染的地面水中的六价铬,可直接用比色法测定,污水和含有机物的水样可使用氧化—比色法测定总铬含量。 2、水样六价铬的测定和标线制作 原理:在酸性溶液中六价铬与二苯碳酰二肼反应生成紫红色产物,可用目视比色或分光光度法测定。本方法的最低检出质量浓度为0.004mg/L铬。测定上限为0.2mg/L铬。 仪器、耗材:(1)分光光度计;(2)25mL比色管等。 试剂:(1)二苯碳酰二肼溶液溶解0.20g二苯碳酰二肼于100mL的95%的乙醇中,一面搅拌,一面加入400mL(1+9)硫酸,存放于冰箱中,可用1个月。(2)(1+9)硫酸。(3)铬标准贮备液溶解141.4mg预先在105~110℃烘干的重铬酸钾于水中,转入1000mL容量瓶中,加水稀释至标线,此液每毫升含50.0μg 六价铬。(4)铬标准溶液吸取1.00mL贮备液至50mL比色管中,加水稀释到标线。此液每毫升含1.00μg六价铬,临用配制。 步骤: (1)吸取5.00mL水样,用蒸馏水稀释至25.00mL,如果水样浑浊可过滤后测定。 (2)依次取铬标准溶液0mL、0.25mL、0.50mL、1.00mL、2.00mL、 3.50mL、5.00mL,至25mL比色管中,加水至标线。 (3)向水样管及标准管中各加1.25mL二苯碳酰二肼溶液,混匀,放置10min,540nm波长、3cm比色皿以试剂空白为参比,测定吸光度。 计算 ρ(Cr6+)=测得铬量(μg)/水样体积(mL) 3、总铬的测定 原理:水样中的三价铬用高锰酸钾氧化成为六价,过量的高锰酸钾用亚硝酸钠分解;过剩的亚硝酸钠为尿素所分解,得到的清液用二苯碳酰二肼显色,测定总铬含量。

综合实验报告-邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁 一、实验目的 ⒈学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理; ⒉掌握721型分光光度计的使用方法,并了解此仪器的主要构造。 二、实验原理 ⒈确定适宜的条件的原因:在可见光分光光度法的测定中,通常是将被测物与显色剂反应,使之生成有色物质,然后测其吸光度,进而求得被测物质的含量。因此,显色条件的完全程度和吸光度的测量条件都会影响到测量结果的准确性。为了使测定有较高的灵敏度和准确性,必须选择适宜的显色反应条件和仪器测量条件。通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响因素及消除等,但主要是测量波长和参比溶液的选择。对显色剂用量和测量波长的选择是该实验的内容。 ⒉如何确定适宜的条件:条件试验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液吸光度,通过吸光度与变化因素的曲线来确定适宜的条件。 ⒊本试验测定工业盐酸中铁含量的原理:根据朗伯-比耳定律:A=εbc。当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即工业盐酸中铁的含量。 ⒋邻二氮菲法的优点:用分光光度法测定试样中的微量铁,目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。 ⒌邻二氮菲法简介:邻二氮菲为显色剂,选择测定微量铁的适宜条件和测量条件,并用于工业盐酸中铁的测定。 ⒍邻二氮菲可测定试样中铁的总量的条件和依据:邻二氮菲亦称邻菲咯啉(简写phen),是光度法测定铁的优良试剂。在pH=2~9的范围内,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+)。

荧光光谱法

荧光分析法测定维生素B2 一、实验目的 1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法; 2.熟悉荧光分光光度计的结构及使用方法; 3、学习掌握固体及液体试样的荧光测试方法。 二、实验原理 当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。当照射光停止照射时,荧光也随之很快地消失。利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。 实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。 图1.荧光分光光度计的结构原理图

荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。 荧光光谱包括激发光谱与发射光谱两种。激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。一般所说的荧光光谱实际上仅指荧光发射光谱。这一光谱为分析指出了最佳的发射波长。 荧光定性定量分析与紫外可见吸收光谱法相似。定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。 定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。对同一物质而言,荧光强度F 与该物质的浓度c 有以下的关系: F = 2、303Фf I0 a b c ⑴ Фf-荧光过程的量子效率; a-荧光分子的吸收系数; I0-入射光强度; b-试液的吸收光程。 在I0 与b 不变时,2、303Фf I0 a b为常数,则⑴式可以表示为 F=Kc ⑵ ⑵即可作为荧光定量检测的依据。 图2 VB2的结构式

比色法

运用“HSB模型”测定烤瓷牙色彩的探讨 章加宇丁加根曾永红 [摘要]目的依据孟塞尔(Munsell)HVC颜色系统,运用Adobe Photoshop6.0软件的“HSB模型”,借助于计算机、数码相机探讨一种科学、量化、精确、快速的方法,以弥补肉眼比色不足的缺陷。方法对450例烤瓷冠用数码相机采集被比色牙与标准比色板色片的图片,通过Photoshop6。0软件局部拾色分析,运用“HSB模型”滑杆显示不同色片及被比色牙的H、S、B数值。结合Nickerson 色差公式,应用Office 2000 excel软件,制定快速运算、自动生成总色差表格,从中选取最小总差植的比色色片的色阶,作为被比色牙的色彩。结果随机选取临床色差极小,不易为肉眼所识别的烤瓷冠450颗,运用“HSB模型”比色,439颗色质良好,与邻牙协调;8颗色质稍偏差,细看能区别出修复体;3颗与邻牙有较大差别。结论:依据孟塞尔HVC颜色系统,运用“HSB模型”,借助数码相机,计算机并结合相关软件,对不同颜色进行测定,分析,制表显示总色差值、比色。该方法科学、量化,比色快速、方便。所需材料易取,具有临床应用价值。 关键词:HSB-模型;HVC颜色系统;烤瓷牙比色;计算机;色差值 随着口腔修复技术水平的日益提高,烤瓷冠、桥已成为牙体、牙列缺损的主要固定修复方式。烤瓷牙的色彩是烤瓷修复成功的重要因素之一,比色也就成为修复医生临床操作的重要步骤。由于比色方法,比色环境及比色操作者的个体差异,常规肉眼比色往往造成有些瓷色不很满意,尤其是遇到色阶差别不很明显的自然牙(以下称被比色牙),比色者更是很难识别。过去厂家曾研制推广出比色仪,由于取色头范围的局限性,而且价格昂贵,临床用于比色的单位相对较少。近年来,我科依据Mussel HVC颜色系统(这个表色系统于1905年由美国人Mussel发明,它使用色相环和色票表现物体的色相、亮度、饱和度三要素,反映了物体颜色的心理规律,可分别代表颜色的色相、亮度和饱和度的色知觉特

测接触角实验方案

测试接触角实验申请 实验内容:主要测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角。 实验目的:通过测定水在石墨、绢云母、石英的接触角,以表征石墨、绢云母、石英的疏水亲水性;通过测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角,可以用来石墨、石英、绢云母的表面能的计算和隐石墨浮选体系中矿物与水、捕收剂与水、矿物与气泡、矿物与捕收剂之间等一系列界面相互作用自由能的计算,进而对各界面之间的范德华力、疏水引力、水化斥力等界面热力学行为进行研究。 样品加工:采用压片机对辉钼矿样品进行压片,制各样品。压片时样品质量为10g,压片压力为2.45×104kPa,压片直径为20mm,压片表面平整光滑。采用“浸渍法”制备捕收剂表面膜,剪取尺寸为20mmx20mm的空白铜板纸,浸入捕收剂纯液中,浸渍时间1min,置于硅胶干燥器内干燥24h,备用。 采用GBX润湿角测量仪测量液体在崮体表面上的接触角。测量时,按照测量接触角的步骤、小心地滴加在固体表面,形成液滴,取10次读数的接触角平均值作为该座滴的接触角。所有测量均在室温(25℃)进行。 实验方法 测量接触角步骤( 自动滴管, 自动平台) 1. 打开计算机 2. 打开接触角仪器的开关 3. 在计算机“桌面”上, 点选GBX digidrop 的快捷方式, 打开接触角的测量与分析软件 4. 选择新的测试选单 5. 选择“Surface Energy Menu” 6. 将滴管针头申到镜头所能看到的范围之内 7. 利用仪器上左下角的旋钮, 将镜头聚焦在滴管之上(通常是滴管最清析, 最大的位置) 8. 在操作软件上的右上角, 点选MVT, 叫出操作选单 9. 选择液滴的大小(VOL) 10. 选择连续摄影模式 11. 将开始拍照录像的时间改成0ms 12. 请点选使用自动成滴系统 13. 请点选“single”, 开始一次的测试 14. 等待仪器自动滴水, 桌面自动升降, 自动在桌面上形成液滴 15. 选择左方的分析功能, 得到你的接触角角度(一共有七种方法, 根据需要选择) 16. 得到你所需要的接触角值 分析表面/界面自由能步骤 ( 在进行本实验之前?Zisman 至少必需准备两种以上的液体, 其它公式必需准备三种以上的液体, 需要极性还是非极性的液体, 请参考)

铁的比色测定实验报告

铁的比色测定实验报告 一、目的要求 1.了解仪器分析。 2.学习比色法用比色法测定绘制标准曲线、测定试样浓度的方法。 3.了解分光光度仪的性能、结构及使用方法。 二、实验原理 仪器分析:英文:instrument analysis,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法 仪器分析的主要特点: 灵敏度高: 大多数仪器分析法适用于微量、痕量分析。例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g。电子光谱甚至可达10-18g,相对灵敏度可在ng-1乃至更小 取样量少:化学分析法需用10-1~10-4g;仪器分析试样常在10-2~10-9g。

在低浓度下 的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~ 10%。 快速 例如,发射光谱分析法在1min内可同时测定水中48个元素,灵敏 度可达ng-1级。 可进行无损 分析有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。有的方法还能进行表面或微区(直径为?级)分析,或 试样可回收 能进行多信 息或特殊功能的分析有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。放射性分析法还可作痕量杂质分析 专一性强 例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指 定离子的浓度等 比色法是根据朗伯—比尔定律发明的,朗伯比尔定律告诉我们,溶液的吸光度和溶液的厚度以及溶液的浓度乘积成正比,如果控制溶液的厚度相同,吸光度

荧光分析法实验(有思考题答案)

实验二.氨基酸的荧光激发、发射及同步荧光光谱的测量五.数据处理 1.用实验获得的数据绘制两种氨基酸的激发、发射、同步光谱图(如图3、4)。2.从激发和发射光谱中找出最大激发波长和最大发射波长值,以及它们相对应的峰高。在它们的同步荧光光谱中也确定最大波长和对应的峰高。 苯丙氨酸的荧光光谱图 苯丙氨酸扫描激发波长在214nm和285m两处出现最高峰,本实验选择214nm为最大激发波长。此外,激发波长曲线在280-300nm处出现了一个十分完美的峰,此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证,如图,我们通过同步扫描荧光光谱技术获得的激发波长也在215nm,与之前基本吻合。 色氨酸的荧光光谱图

色氨酸扫描激发波长在217nm处有一个最大峰,所以激发波长为217,发射波长为361。发射波长曲线在450-460nm处出现了一个十分完美的峰(在这张图上没显示出来),此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证。 六.讨论与思考 1.对待测溶液进行预扫描的有何作用? 从预扫描得到激发和发射波长的初步结果,根据我们得到的初步结果对仪器进行设置,然后对两种氨基酸溶液测量它们的荧光激发、发射和同步荧光光谱。 2.观察激发波长的整数倍处荧光发射光谱在有何特点?该波长是否适合于进行定量分析? 激发波长的整数倍处荧光发射光谱会出现以很强的峰,是倍频峰。不适合定量分析。 3.同步荧光技术有哪些优点?比较激发、发射和同步荧光光谱中的峰值及对应波长,比较他们的不同,并解释原因。 同步荧光法能简化光谱,减少光谱重叠和散射的影响,提高对荧光性质相近化合物同时测定的选择性和灵敏度。同步荧光法相对于激发光谱和发射光谱, 得到的峰比较窄,更明显。同步荧光光谱不是荧光物质的激发光谱和发射光谱

外观色泽的检测方法(铂-钴比色法)

外观色泽的检测方法(铂-钴比色法) 一. 适用范围: 本方法适用于液体外观的色泽测定 二.仪器和试剂: 比色管 磨口无色比色管100毫升、50毫升 比色箱及比色架 见附图 氯化钴 分析纯 氯铂酸钾 分析纯 盐酸 分析纯 三.测定步骤: 1.三种500号铂-钴比色标准原液的配制: (1).黄色:准确称取1.2450克氯铂酸钾和1.0000克氯化钴(精确到 0.0002g)溶于100毫升盐酸中,注入1000毫升容量瓶中,用蒸馏水稀释到 刻度. 此溶液即为500号色度标准比色原液(Ⅰ). (2).黄中带绿:准确称取1.5000克氯铂酸钾和0.3000克氯化钴(精确到 0.0002g)溶于100 毫升盐酸中, 注入1000 毫升容量瓶中, 用蒸馏水稀 释到刻度, 此溶液即为500号色度标准比色原液(Ⅱ). (3).黄中带红:准确称取0.8000克氯铂酸钾和2.000克氯化钴(精确到 0.0002g),溶于100 毫升盐酸中,注入 1000 毫升容量瓶中, 用蒸馏水 稀释到刻度, 此溶液即为500号色度标准比色液(Ⅲ). (4).取不同量的500号色度标准比色原液,用0.1mol/L盐酸溶液稀释至 100毫升,即可制得任意号数的色度标准液.稀释的N号铂-钴比色液,应 储藏于具有磨口塞的比色管中, 比色后比色液应置于暗处储藏,有效期 为一个月。 500号原液应储存于棕色容量瓶中,置于暗处保存,有效期为6个 月. 2.测定: 将试样均匀混合后,注入试管中,用肉眼观察,应是透明油状液体, 无混浊现象,无明显机械杂质,在室温条件下进行比色测定。取二支颜 色相同,高度相等的比色管,一支注入100毫升或50毫升试样,另一支注

铁的比色测定实验报告精编版

铁的比色测定实验报告 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

铁的比色测定实验报告 一、目的要求 1.了解仪器分析。 2.学习比色法用比色法测定绘制标准曲线、测定试样浓度的方法。 3.了解分光光度仪的性能、结构及使用方法。 二、实验原理 仪器分析:英文:instrument analysis,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法 仪器分析的主要特点: 灵敏度高: 大多数仪器分析法适用于微量、痕量分析。例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10-14g。电子光谱甚至可达10-18g,相对灵敏度可在ng-1乃至更小 取样量少:化学分析法需用10-1~10-4g;仪器分析试样常在10-2~10-9g。

在低浓度下 的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~ 10%。 快速 例如,发射光谱分析法在1min内可同时测定水中48个元素,灵敏 度可达ng-1级。 可进行无损 分析有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。有的方法还能进行表面或微区(直径为级)分析,或试 样可回收 能进行多信 息或特殊功能的分析有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。放射性分析法还可作痕量杂质分析 专一性强 例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指 定离子的浓度等 比色法是根据朗伯—比尔定律发明的,朗伯比尔定律告诉我们,溶液的吸光度和溶液的厚度以及溶液的浓度乘积成正比,如果控制溶液的厚度相同,吸光度

(完整版)荧光分析法习题参考答案

荧光分析法 思考题和习题 1.如何区别荧光、磷光、瑞利光和拉曼光?如何减少散射光对荧光测定的干扰? 荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。这时分子发射的光称为荧光。荧光的波长比原来照射的紫外光的波长更长。 磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的最低振动能层后,经过体系间跨越至激发三重态的高振动能层上,再通过振动弛豫降至三重态的最低振动能层,然后发出光辐射跃迁至基态的各个振动能层.这种光辐射称为磷光。磷光的波长比荧光更长。 瑞利光:光子和物质分子发生弹性碰撞时.不发生能量的交换,仅是光子运动的方向发生改变,这种散射光叫做瑞利光,其波长和入射光相同。 拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量交换,使光于能量发生改变。当光子将部分能量转给物质分子时,光子能量减少,波长比入射光更长;当光子从物质分子得到能量时,光子能量增加,波氏比入射光为短。这两种光均称为拉曼光。 为了消除瑞利光散射的影响,荧光的测量通常在与激发光成直角的方向上进行,并通过调节荧光计的狭缝宽度来消除 为消除拉曼光的影响可选择适当的溶剂和选用合适的激发光波长 2.何谓荧光效率?具有哪些分子结构的物质有较高的荧光效率? 荧光效率又称荧光量子效率,是物质发射荧光的量子数和所吸收的激发光量子数的比值称,用Ψf表示。 以下分子结构的物质有较高的荧光效率: (1)长共轭结构:如含有芳香环或杂环的物质。 (2)分子的刚性和共平面性:分子的刚性和共平面性越大,荧光效率就越大,并且荧光波长产生长移。 (3)取代基:能增加分子的π电子共轭程度的取代基,常使荧光效率提高,荧光长移,如-NH2、-OH、-OCH3、-CN等。 3.哪些因素会影响荧光波长和强度? (1)温度:物质的荧光随温度降低而增强。 (2)溶剂:一般情况下,荧光波长随着溶剂极性的增大而长移,荧光强度也有增强。溶剂如能与溶质分子形成稳定氢键,荧光强度减弱。 (3)pH:荧光物质本身是弱酸或弱碱时,溶液的pH对该荧光物质的荧光强度有较大影响。 (4)荧光熄灭剂:荧光熄灭是指荧光物质分子与溶剂分子或溶质分子的相互作用引起荧光强度降低或荧光强度与浓度不呈线性关系的现象。 (5)散射光的干扰:包括瑞利光和拉曼光对荧光测定有干扰。 4.请设计两种方法测定溶液Al3+的含量。(一种化学分析方法,一种仪器分析方法) 配位滴定:利用铝与EDTA的配位反应进行滴定分析,因铝与EDTA的反应速率比较缓慢,而且铝对指示剂有封蔽作用,因此铝的测定一般用EDTA作为标准溶液,返滴定法或置换滴定法测定。 仪器分析法:利作铝离子与有机试剂如桑色素组成能发荧光的配合物,通过检测配合物的荧光强度以来测定铝离子的含量。另可采用原子吸收分光光度法或原子发射光谱法进行测定。

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

相关文档
最新文档