盘形制动器安装

盘形制动器安装

盘形制动器安装

SEW制动器

SEW制动器 一.概述 1. 系统组成:BMG型制动器是直流励磁盘式制动器,由弹簧施加作用力来实现制 动,用电磁力来释放,系统满足失效安全原则:当断电时,制动器自动动作。制动系统主要部件包括:制动线圈框体,其中嵌入抽头线圈(加速线圈+部分线圈=保持线圈)、可移动压力盘、制动弹簧、可在轴上花键套上移动的制动盘组件和制动器端盖。 2. 基本功能:当电磁铁断电时,压力盘由制动弹簧压在制动盘上,BMG的制动盘 压在制动器端盖上,电机于是被制动,制动力矩由制动弹簧的个数和型号来决定。 若制动线圈由合适的直流电压供电,电磁力会克服制动弹簧的作用力使压力盘于制动线圈框体接触,制动盘脱开,电机自由转动。工作气隙对正确的制动作用是十分主要的,它影响释放和制动时所传递的制动力矩和反应时间。由于制动衬层磨损(正常情况下,磨损一般很低),气隙会逐渐增加,因此气隙必须重新调整到最佳数值。 3. 双线圈系统:SEW制动器以双线圈运行,专门的制动整流器BMG起初只是加 速线圈,随后是保持线圈(即整套线圈)引入线路。加速线圈的强力波动磁化会引起一个很短的制动释放反应事件而达不到饱和极限,制动盘释放非常快,电动机在几乎没有制动损耗的情况下起动。 4. 制动整流器:SEW制动释放反应时间特别短,制动器衬垫磨损微不足道,具有 很高的起动频率和长的使用寿命。一旦BMG制动器释放,就立即用电子开关切换到保持线圈,制动器磁体充分磁化,这样吸引状态的压力盘就能足够安全地保持原状态,当线圈再次切断时,去磁很快,制动距离很短,具有很高的重复精度和安全性。 二.接线端子安排 1. 正常制动反应时间,断开交流回路。 ? 当电动机断电时,制动作用延迟,因为在电动机减速期电机端子产生反馈电压。 ? 制动线圈与整流器连接:白线(ws)---1号端子;红线(rt)---3号端子;蓝线(bl)---5号端子。 ? 交流电源始终连接整流器的2号和3号端子。 2. 快速制动反应时间,断开直流回路。 ? 制动线圈与整流器连接:白线(ws)---1号端子;红线(rt)---3号端子;蓝线(bl)---4号端子。 ? 交流电源始终连接整流器的2号和3号端子。 ? 整流器端子4和5经一外部接触器连接,一旦制动器触发,接触器打开,在整流器内并联一个变阻器,保护线圈和开关接触器防止超压。 三.接线图例 1. 使用电机相线电源,正常制动。 ? 关键点:整流器交流电源使用电机相线供电,不需要更改电机制动器接线。 ? 使用场合:没有使用变频器等调速装置,对制动时间没有要求。 ? 接线图如下:

高速列车轮装式盘形制动器的开发_M_Tirovic

?动态?综述? 文章编号:100726077(2001)0120001206 高速列车轮装式盘形制动器的开发 [英国]M.T irovic 摘 要:介绍了高速列车动车轮装式盘形制动器的开发情况。这种制动盘由用螺栓连接到轮毂的两个圆环组成,车轮两侧各装一个。在制动盘的最初设计阶段就大量采用有限元法。这大大缩短了开发时间,并成功设计出在恶劣工况的载荷下使用的制动盘。在开发过程中发现,对总的热效应进行计算机模拟是形状优化和预测圆盘总体特性最有效的方法,而要确定更详细的设计公差还需进行更加细致的分析。测功试验和装车试验结果与理论结果之间有很好的相互关系,并表明这种设计完全能适应所要求的载荷。 关键词:盘形制动器;轮装式;高速列车;有限元分析;制动盘 中图分类号:U260.351 文献标识码:A Abstract:T h is paper describes the developm en t of a w heel2m oun ted disc b rake fo r the pow er car of a h igh2sp eed train.T he disc design con sists of tw o rings bo lted on to the w heel hub,one either side of the w heel.T he fin ite elem en t m ethod w as u sed ex ten sively from the very beginn ing of the design p rocess.T h is con siderab ly re2 duced developm en t ti m e and enab led the successfu l design of a disc fo r an ex trem ely severe du ty.M odelling of bu lk ther m al effects w as found to be m o st effective fo r shap e op ti m izati on and p redicti on of global disc behavi ou r,w ith m o re soph isticated analyses requ ired to deter m ine m o re detailed design li m its.R esu lts from dynam om e2 ter tests and veh icle trials gave good co rrelati on w ith theo retical resu lts and p roved the design su itab ility fo r the requ ired du ty. Key words:disc b rake;w heel2m oun ted typ e;h igh2speed train;fin ite elem ecn t analy2 sis;b rake disc 1 引言 由于空间的限制,铁道车辆驱动轴的制动尤其困难。动力传动部件占了相当的空间,因而留给装用在从动轴(拖车车轴)上相同制动装置的安装空间常常就很有限了。因此,要安装轴装式盘形制动器,尽管每轴只装一个盘,都是不可能的。通常不大要求对驱动轴实施常规摩擦制动,因为实际上采用的是动力制动。然而,万一动力制动失灵,那么实施紧急制动时对驱动轴摩擦制动器的要求就要高得多。 为了对驱动轴实施有效制动,开发了一系列制动装置,其中有些只适用于如传动闸的某些应用领域,而有些也适用于拖车轴制动,例如,踏面制动装置和轮装式制动装置。 就空间要求而言,最老式的踏面制动装置的优点十分明显。制动装置不需要有旋转部分,因为车轮本身在旋转。这就有了安装空间大的优点,且同时大大节省了成本,减小了质量(重量)。这项技术人人皆知,而其缺点也同样如此,主要缺点有:能量耗散能力有限、车轮踏面磨耗大和车轮损坏快。踏面制动装置与车轮踏面修整有关的另一大缺点是,在轮轨界面产生的噪声。“不良”的车轮表面使得车辆产生的噪声更大,尤其是高速车辆。 传动闸也具有某些优点,因为其旋转速度比车轮速度高,这样就有比例地减少了转矩要求。然而,空间限制、可接近性、高旋转速度以及因传动轴断裂而致使制动器失效,均限制了传动闸的应用。 现在已开发和应用了各种不同型式的轮装式制动装置。除在车轴周围提供更多的空间外,它们的主要优点还有简化了车轴的设计,因为不需要轴“座”。

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

盘形制动器的使用维护注意事项

盘形制动器的使用维护注意事项 盘形制动器的使用维护注意事项 和常见事故及处理方法 1闸瓦不得沾油,使用中闸盘不得有油,以免降低闸瓦的摩擦系数影响制动力。 2在正常使用中应经常检查闸瓦间隙,如闸瓦间隙超过#$$时应及时调整,以免影 响制动力。 3在作重物下放使用的矿井,不能全靠机械制动,这样会使闸盘发热,一旦出现紧急 情况就会影响制动力矩、造成重大事故,应采用动力制动等。 4更换闸瓦时应注意将闸瓦压紧,尺寸不符合时应修配。 5在提升机正常运转时,若发现制动器液压缸漏油应及时更换密封圈。6修理制动盘时应将容器搁在井底或井口的罐坐上(空容器),或将两容器提升到中 间平衡状态进行检修。检修时要有一、二副制动器处于制动状态。 7闸盘粗糙度不够和闸盘端面偏摆量大都将加速闸瓦的磨损,建议重车闸盘。 8提升机在正常运行中发现松闸慢时应用放气阀放气。 9每年或经5×103次制动作用后,应检查蝶形弹簧组。 检查方法:首先使制动器处于全制动状态,再逐步向液压缸充入压力

油,使制动液压 缸内压力慢慢升高,各闸就在不同压力下逐个松开,记录下不同闸瓦的松闸压力,其中最 高油压与最低油压之差不应超过最大工作压力P的百分之十,否则应更换其中松闸油压最低的制动器中的蝶形弹簧。 常见故障及其处理方法 1制动器不开闸。原因是液压站没有油压或油压不足应检查液压站。2制动器不能制动。原因可能是液压站或制动器损坏,卡住引起的,应检查液压站 和制动器并修理。 3制动时间长,制动时滑行距离长、制动力小。原因可能是: 3.1超负荷使用、超速使用; 3.2闸瓦间隙太大; 3.3制动盘和闸瓦上有油和水等杂物; 3.4蝶形弹簧有毛病,找出原因对症采取处理措施。 4闸瓦磨损不均匀、磨损太快。原因是制动器安装不正,制动盘偏摆太大,窜动或主 轴倾斜太大,查明原因分别处理。 5松闸和制动缓慢。原因是: 5.1液压系统有空气; 5.2闸瓦间隙太大;

盘式制动器使用说明书

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20) 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来 确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放 气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线 BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4) 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动 块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。 如上所述,盘式制动器的工作原理是油压松闸,弹簧力制动。如(图4)所示:当油腔Y 通入压力油时,碟形弹簧组(3)被压缩,随着油压P的升高,碟形弹簧组(3)被压缩并贮存弹簧力F,且弹簧力F越来越大,制动块离开闸盘的间隙随之增大,此时盘形制动器处于松闸状态,调整闸瓦间隙△为1mm (注:调整方法见后);当油压P降低时,弹簧力释放,推动活塞、滑套连同其上的制动块(又名闸瓦),使制动块向制动盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上并产生正压力,随着油压P的降低正压力加大,当油压P=0时,正压力N=Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态);当P=Pmax时,N=0,△=△max,即全松闸。 由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后:

§1制动器的结构型式及选择

§1 制动器的结构型式及选择 除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,即是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。 汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。 鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。 盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。 车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。 鼓式制动器和盘式制动器的结构型式也有多种,其主要结构型式如下表所示.

SP2型盘形制动单元的作用原理

SP2型盘形制动单元的作用原理 SP2型盘形制动单元的工作状态分为:正常间隙制动位,正常间隙缓解位,过大间隙制动位,过大间隙缓解位。其中过大间隙缓解位又有第一阶段状况和第二阶段状况。 (一)合成闸片与制动盘正常间隙时的作用 制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移,压缩复原弹簧,同时也带动引导挡铁、引导螺母,调整螺母合丝杠一起向左移动,此时,调整挡铁也在调整弹簧的推动下移动了一个距离,[见下图(a)]这时闸片正好与制动盘接触,即完成了制动作用。在此过程中,闸片间隙调整器不发生调整作用。 当制动机缓解时,压力空气由制动缸膜板的右侧排出[见下图(b)],活塞在复原弹簧的伸张作用下,恢复到缓解位置。引导挡铁随着活塞退回到原位。这样,调整挡铁也退回原位,移动的距离正好是标准间隙A值。 (二)合成闸片与制动盘间隙过大时的作用 制动时压力空气进入制动缸膜板的右侧,推动膜板及活塞向左移动的同时,带动引导挡铁,引导螺母,调整螺母和丝杠一起向左移动,所移动的距离超过了标准间隙A值,见下图(c)过大间隙制动位。设闸片与制动盘磨耗后活塞等增加的移动距离为f,即丝杠向左移动了A+f的距离,而此过程中调整挡铁去被导向螺栓挡住,仅移动了标准距离A值,不断继续移动,调整螺母与调整挡铁啮合部分脱开,在调整弹簧的作用下,推动轴承向右旋转的同时,带动了调整螺母在非自锁螺纹丝杠上放置很快与调整挡铁重新啮合,此时,在调整螺母与护管之间形成了间隙f。 缓解时分为两个阶段,第一阶段,膜板右侧的压力空气排除,活塞在复原弹簧伸长的作用下向右移动,在此过程中引导挡铁和调整挡铁等跟随活塞一起向右移动,所移动的距离为标准间隙A值,见下图(d)过大间隙缓解位的第一阶段。 缓解第二阶段过程中,膜板右侧的压力空气继续排除。活塞在复原弹簧的伸长作用下继续移动。引导螺母与引导挡铁脱开,在引导弹簧的作用下,推动轴承向右旋转的同时,带动了引导螺母在非自锁螺纹丝杠上旋转,很快与引导挡铁重新啮合。在这一阶段丝杠没有移动,消除了闸片和制动盘磨耗后增加的间隙,见下图(e)过大间隙缓解位的第二阶段。 通过这两个阶段的缓解过程,闸片间隙调整器对超出标准间隙值A的f值进行了调整,也就是消除了合成闸片和制动盘的磨耗增大的间隙,使闸片间隙又恢复到了标准值。

1.6米TP1型盘形制动器结构与原理

TP1型盘形制动器结构与原理(一)结构 盘形制动器装置是把两个相同的制动器用螺栓成对地把在支架上组成。每个支架上都可以同时安装1、2、3、4、5、6、付,甚至更多,其规格和付数,根据提升机所需要的制动力矩选定 制动器装置由制动器<2>、支架<1>、管路<3>、闸瓦间隙指示器<4>、螺栓<5>等组成 单个制动器由闸瓦<29>、带筒体的衬板<28>、碟簧组合<2>和液压组件活塞内套<15>、链接螺栓<14>、后盖<11>、密封圈<12、13>制动器体<1>等组成 液压组件由挡圈<5>油封<24>油缸<21>调节螺母<20>密封圈<23、8>活塞<10>密封圈<16、19>油缸盖<9>固定螺钉<31>垫圈<30>等组成 在制动其中可以单独整体写下和换液压组件。 液压组件,对一宗规格的制动器来说是同用互换件用户可想制造厂单独定购以作备用。 制动器也是单独部件,用户可单独订购必要的备件。 (一)原理: 在液压盘形制动器的基本原理是液压松闸,弹簧力制动。 调正时向Y腔给入油压P,碟簧组被压缩,闸瓦离开闸盘贮存与弹簧力F,在弹簧压缩状态,调整间隙△,此时,制动器处于松闸状态,当P值降低时,弹簧力F推衬板及闸瓦向制动盘移动,当△

=0后,若P继续下降,弹簧力F便作用于闸盘上,该力即为正压力N。当P=0,N=Nmax,即全制动,在N力的作用下产生摩擦力,即制动力,当P=Pm时,N=0,△=△max。 2、制动力调节,P下降, △=0后,若忽略制动器内阻力和各构件的变形。则,N=F-F1=F-PA 闸瓦帖闸盘后F为常数,A亦为常数,则:N=f(P) 上式说明改变P可以获得各种不同的N值,N值的变化,改变了制动力的大小。P值的改变借助于液压站的电液调压装置,调压的电讯号,当手动控制时,由制动手柄操纵,当自动控制时,由外反馈电控系统供给给予调节。 P=F(I) (I—电流值) (三)制动器的选型

盘型制动器说明书1

第四部分盘型制动器器使用说明书 4.1概述 4.1.1用途与型号 TP系列液压制动器主要与制动盘配套组成盘型制装置,用于大型机电设备的工作制动和紧急安全制动,实现可控制动停车。由于其属常闭式结构,因此也具有定车作用。其型号的含义为: T P -- 制动正压力(KN) 制动 液压 4.1.2主要技术性能 4.1.2.1、提供平稳均匀的摩擦制动力; 4.1.2.2、产品及零部件互换性好; 4.1.2.3、与电控和液压系统配合,使大型机电设备的停车减速度保持在0.05-0.3m/s2 4.1.2.4、系统突然断电时,仍能保证大型机电设备平稳地减速停车; 4.1.2.5、能满足井下防爆要求。 4.1.3使用环境 4.1.3.1、工作环境温度不大于40℃; 4.1.3.2、无足以锈蚀金属的气体及尘埃的环境; 4.1.3.3、无滴水、漏水的地方。

4.2、TP系列盘型制动器的结构原理及工作原理 液压制动器的结构如图所示,主要有调整螺母1、活塞2、缸体3、基架4、碟形弹簧5、闸盘6、闸瓦7、制动盘8组成。液压组件可单独整体拆下并更换。 液压制动器的制动力是由闸瓦7与制动器8摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N的大小决定于油压P与蝶簧5的作用结果。机电设备正常工作时,液压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙。即制动器处于松闸状态。当机电设备需制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。当闸瓦7磨损,制动器与制动盘的间隙大于2mm时,通过调整螺母1来调整闸瓦间隙。

盘式制动器结构和原理

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器

3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制

动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

矿用绞车盘形制动器液压系统问题与改进措施

1 JTP 矿用绞车盘形制动器简介 JTP 矿用绞车被广泛应用于同煤集团挖金湾虎龙沟煤业有限公司矿山生产中,其制动部分为盘形 制动器。 盘形制动器是执行机构,其驱动和调节则由单独的液压站完成。 1)主要技术性能:提供平稳均匀的摩擦力,治污零部件互换性好;与电控和液压系统配合,使停车时 减速度保持在0.05~0.3m/s 2; 系统突然断电时,仍能保证大型机电设备平稳地减速停车;能满足井下防爆要求。 2)使用环境:工作环境温度不大于40℃;避免 在锈蚀金属的气体及尘埃的环境中;无滴水、 漏水的环境。 2盘形制动器的结构及工作原理 1)盘形制动器的结构如图1所示。其中液压组件可单独整体拆下并更换。2)盘形制动器的工作原理。盘形制动器工作原 理是通过碟形弹簧制动(抱紧),通过液压压缩弹簧松开制动(松开),制动器为常闭状态,闸盘都是成对 使用。制动力矩为: M z =2NR μn . 式中:N 为制动盘的正压力,N =F -p ,F 为碟形弹簧作用力,p 为液压油压力;R 为制动盘的平均摩擦半径;μ为闸瓦与制动盘间的摩擦因数;n 为制动副数。 闸瓦与制动器摩擦产生制动力,调节闸瓦对制动盘的正压力来改变制动力,正压力由油压与碟形弹簧 作用所得。工作时, 油压达最大值,正压力为0,制动器处于松闸状态;当设备制动时,电液控制系统自动减小油压,正压力调整为最大值,实现制动要求。 JTP 矿用绞车盘形制动器的主要特点是闸瓦不 作用于制动轮上,而是作用在制动盘上。 由于盘形制动器反应迅速、动作快,它的安全制动空行程不超过0.3s ,比油压块闸制动器安全制动空行程时间0.6s 缩短了一半。闸瓦为耐磨材料制成,摩擦因数大,耐磨性好[1-2]。 3盘形制动器使用中存在问题3.1液压油管问题 由于采掘作业生产的特点是点多面广,一处作业面完成后要换到新的作业点继续采掘,相应的绞 车要经常安装、 拆除、安装、拆除等。在多次拆除、安装中发现,盘形制动器上的液压油管及接头损坏的非常频繁,分析原因是:由于该液压油管使用的是铜管,其长度及弯曲的形状在第一次安装时是一次成形的,其互换性差;同时在拆除过程中维修人员没有做记号和编号,导致安装时维修人员仅靠感觉进行安装。经多次拆除、安装后,液压油管的安装顺序混乱,已无法回到最初的顺序,甚至几台绞车的液压油管掺和到一起使用。另外液压油管在运输中因多种原因被损坏而需要进行维修或更换。3.2液压缸密封问题 盘形制动器在使用维护中发现液压缸的漏油现象比较频繁,初次安装虽没有问题,但使用一段时间和多次安装后出现漏油现象,经现场将液压缸拆开 收稿日期:2019-04-02 作者简介:段继红(1980—),女,毕业于黑龙江科技大学机械电子工程专业,助理工程师。 矿用绞车盘形制动器液压系统问题与改进措施 段继红 (同煤集团挖金湾虎龙沟煤业有限公司,山西 朔州038300) 摘 要:针对同煤集团挖金湾虎龙沟煤业有限公司生产中矿用绞车盘形制动器液压系统出现的问题,分析了 盘形制动器的结构及工作原理,以及JTP 绞车盘形制动器在使用和维护中存在的问题,从液压油管、液压缸密封和液压油三个方面给出了设计改造措施,实践应用效果良好。关键词:盘形制动器胶管密封圈氢化丁腈橡胶液压油 中图分类号:TD534 文献标识码:A 文章编号:1003-773X (2019)07-0278-02 DOI:10.16525/j.cnki.cn14-1134/th.2019.07.125 总第195期2019年第7期机械管理开发 M ECHANICAL M ANAGEM ENT AND DEVELOPM ENT Total 195No.7,2019 1—调整螺母;2—活塞;3—缸体;4—基架;5—碟形弹簧; 6—闸盘;7—闸瓦;8—制动盘(绞车) 图1盘形制动器的结构示意图 12345 6 78 进油孔 经验交流

客车盘形制动装置运用故障的判断与处理

客车盘形制动装置运用故障的判断与处理 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

客车盘形制动装置运用故障的判断与处理 何拥军 (通讯地址:河南省郑州市解放路100号郑州铁路局郑州车辆段邮编:450000)摘要:本文对客车盘形制动装置故障进行分析,对运用中单元制动缸产生抱闸不缓解与漏风故障的原因进行分析,制定处理方法,并提出合理化建议,努力减少单元制动缸抱闸与漏风故障,确保旅客列车安全运行。 关键词:客车盘形制动装置故障分析建议。 为满足铁路客车不断提速和安全运行的需要,盘形制动装置在我国新型客车大量使用,盘形制动方式成为现代铁路车辆制动的主要形式。我段配属的2400多辆运用客车中,使用盘形制动装置的比例占65%。客车盘形制动装置以其制动效能高、使用寿命长的显着特点,目前在我国主型客车转向架上广泛采用,如209P、206P、SW系列、CW系列等转向架均采用了盘形制动装置。但盘形制动装置因其结构和安装部位的原因,一旦发生故障呈现有隐蔽性和频发性的特点,严重危及行车安全和延误列车。并且由于在使用中经验积累较少,处理难度较大,因此积极预防和判断处理盘形制动装置故障是确保客车安全的重要工作。 一、客车盘形制动装置结构及特点 盘形制动装置主要特点是制动摩擦方式与运行速度关系较小,并且耐磨性好、制动力强。盘形制动装置主要的部件为制动盘、单元制动缸和制动连接软管,其制动缸是由若干个单元制动缸组成,每辆车的1台转向架可以有4个或6个单元制动缸安装在转向架狭小空间内。单元制动缸按用途分两类:一类是和制动盘配合使用的盘形单元制动缸,每个单元制动缸通过制动夹钳杠杆控制着2个闸片作用于制动盘,来完成制动缓解作用。另一类是和车轮踏面配合使用的踏面清扫器单元制动缸,起踏面清扫作用。有的新型客车还安装有电子防滑器与盘型制动装置配合使用,防止发生制动抱死故障。普通客车制动系统中只有一个制动缸,它通过拉杆、移动杠杆等控制着闸瓦,进行制动和缓解。 盘形制动和踏面制动的车辆在运行途中发生的故障,因其结构不同,故障特征也有所区别。由于盘形制动系统结构较复杂,因此抱闸故障与踏面制动抱闸和漏风等故障有着明显的区别而较难判断处理。如盘形制动装置一旦发生自动抱闸故障,造成轮对抱死擦伤,或造成闸盘发热变红、闸片磨损冒烟(故障图见图1、2),危害及后果严重。特别是带踏面清扫器车辆发生漏泄故障时,故障疑点多,不易查找,发现处理难度大、时间长,易造成较大影响。发生的典型故障有: 1.2007年1月3日,我段担当的1488次列车在运行至民权车站时,乘务员 348666客车8位踏面清扫器有抱闸现象,经处理后开车。该作业发现编组中YZ 25B 列车入库后检查该故障踏面清扫器靠近厕所排污筒,分解单元缸内发现有进水锈蚀,造成单元制动缸动作卡滞而缓解不良。 2.2013年3月5日,我段担当的由郑州至乌鲁木齐的L27次列车运行至零口站换挂机车试风时发现列车漏风,车辆乘务员进行列车分段查找漏风,造成列车

TP1-98SM 盘型制动器说明书介绍

矿井提升机(通用部件) TP1盘形制动器 使用说明书 TP1-98SM 洛阳百 特科技发展股份有限公司

目录 1、盘形制动器的用途和适用范围-------------2 2、盘形制动器装置的主要结构和工作原理--------2 3、盘形制动器装置的安装、调整-------------3 4、盘形制动器的使用与维护---------------6 5、易损件------------------------7 6、盘形制动器性能参数表----------------8 7、盘形制动器的故障原因及维护-------------9附图一-------------------------10附图二-------------------------11附图三-------------------------12附图四-------------------------12附图五-------------------------13附图六-------------------------14

1、盘形制动器的用途和适用范围 盘形制动器是一种新型高性能制动器,是当今机械式制动器的发展方向。 它是有下列优点:体积小、重量轻、惯量小、动作快、可调性能好、可靠性高、能用性高、结构简单、维修调整方便。 盘形制动器可用于矿井提升机、皮带运输机、架空索道、升船机等各种机械。 盘形制动器在矿井提升机上作工作制动和紧急制动用,其驱动和控制由单独的液压站完成。 为满足大型提升机的需要,中高压盘型制动器的四种规格,性能参数见表1。 2、盘形制动器装置的主要结构和工作原理 2.1盘形制动器装置的主要结构 如图1所示盘形制动器装置由盘形制动器(1)、支架(2)、制动器限位开关(3)、螺栓(4)、(5)等组成。盘形制动器用螺栓(4)、(5)成对地把在支架(2)上,每支架可以同时安装1、2、3、4、5、6对,甚至更多,其规格和对数可根据提升机所需要的制动力矩选定。 盘形制动器由闸瓦(8)、衬板(9)、碟形弹簧(10)、液压组件(11)、连接螺栓(13)、密封圈(12)、制动器体(14)等组成。 液压组件由油缸(1)、活塞(2)、调整螺母(3)、密封(4)、(5)、油缸盖(6)等组成(如图2所示)。 盘形制动器和液压组件对同一种规格为通用互换件。 制动器限位开关由接线板(1)、开关盒(2)、微动开关(3)、压板(4)、(7)、调整螺钉(5)、轴(6)等组成(图3所示)。制动器限位开关分A 组和B组各装一半(见图4).制动器限位开关用以监视闸瓦的磨损(压板4)和碟形弹簧的疲劳(压板7)。 2.2盘形制动器的工作原理 盘形制动器靠油压力松闸、靠弹簧力制动,如图5所示。当油腔Y通入

前后盘式制动器制动系统

第1章制动系统设计计算 1.盘式制动器形式 与全盘式相比,浮动钳盘式具有如下优点: 在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管,家之液压缸;冷却条件好,所以制动液汽化的可能性小;成本低。所以,本设计前后盘式制动器均采用浮动钳式盘式制动器。 2.制动能源的选择 3.制动管路的布置 X型的结构简单。直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%。 但是,一旦某一管路损坏造成制动力不对称,此时前轮将朝制动力大的一边绕主销转动,使汽车丧失稳定性。因此,这种方案适用于主销偏移距为负值(达20mm)的汽车上。 这时,不平衡的制动力使车轮反向转动,改善了汽车的稳定性。所以本次设计选择X型管路。 4.液压制动主缸的设计 采用双回路制动系统,双回路制动系统的制动主缸为串联双缸制动主缸。,当制动系统中任一回路失效时,串联双缸制动主缸的另一腔仍能够工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大的提高了工作的可靠性。 5.行车制动与驻车制动形式 行车制动用液压,而驻车制动时通过拉线用机械力推动凸轮或螺杆推动活塞,使活塞移动,让制动盘与刹车片接触。

第2章 制动系统设计计算 2.1 制动系统主要参数数值 2.1.1 相关主要参数 2.1.2 同步附着系数的确定 根据相关资料查得,通常应满足空载同步附着系数在0.6-0.7之间较为合适,满载同步附着系数在0.8- 0.9之间较为合适。 2.2 制动器有关计算 2.2.1 确定前后制动力矩分配系数β 任何附着系数?路面上前后同时抱死的条件为、(?=0.8): G F F f f ?=+21 g g f f h L h L F F ??-+= 122 1 得: 1 f F =7788.2N 2 f F =3556.3N 一般常用制动器制动力分配系数β来表示分配比例 空载条件: 686.02 1 == f f F F β 空载条件: N F f 4.54061= N F f 3.30372=

矿井提升机和矿用提升绞车 盘形制动器.doc

矿井提升机和矿用提升绞车盘形制动器 JB 8519—1997 中华人民共和国机械工业部1997—03—04批准1997—10—01实施 前言 本标准是对ZB D93 002—88《矿井提升机和矿用绞车盘形制动器》的修订。 本标准为机械行业强制性标准。 本标准自1997年10月1日起实施。自生效之日起,同时代替ZB D93 002—88。 本标准由全国矿山机械标准化技术委员会提出并归口。 本标准负责起草单位:机械工业部洛阳矿山机械研究所。 本标准主要起草人:裴玉兰、黄立平、张积良、郭明、杨现利。 本标准委托全国矿山机械标准化技术委员会负责解释。 1 范围 本标准规定了矿井提升机和矿用提升绞车用盘形制动器的基本参数、技术要求、试验方法与标志、包装、运输、贮存。 本标准适用于矿井提升机和矿用提升绞车成对使用的盘形制动器。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 191—90 包装储运图示标志 JB 3721—84 矿井提升机盘形制动器闸瓦 JB 3812—84 矿井提升机和矿用绞车盘形制动器用碟形弹簧 TJ 831(六)一?8 机械设备安装工程施工及验收规范 煤矿安全规程(1992年版) 3 基本参数 盘形制动器的基本参数应符合表1的规定。 4 要求 4.1 一般要求 4.1.1 盘形制动器应符合本标准的要求,并按照经规定程序批准的图样及技术文件制造。4.1.2 盘形制动器应符合《煤矿安全规程》的规定。 4.1.3 配套件应符合现行标准或技术文件的规定。

图解盘式制动器

图解盘式制动器 1.盘式制动器概述 盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。 其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。 钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。 盘式制动器结构图如下图所示

2.定钳盘式制动器 跨置在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。 制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。 这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动

的驻车制动钳。 定钳盘式制动器示意图 1.制动盘 2.活塞 3.摩擦块 4.进油口 5.制动钳体 6.车桥部3.浮钳盘式制动器 制动钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。 制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。 与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充

盘式制动器说明书

执行标准:Q/09TLB002-2005 KZP自冷盘式可控制动装置使用说明书

目录 1. 概述 (2) 2. 装置结构特征与工作原理 (3) 3.主要技术参数及安装尺寸 (4) 4.制动装置的安装、调整与使用操作 (6) 5.注意事项 (8) 6.故障分析与排除 (9) 7.安全保护装置及事故处理 (9) 8.保养与维修 (9) 9.运输与贮存 (9) 10.开箱及检查 (10) 11.订货要求 (10) 12.其它事项 (10)

1. 概述 1.1用途与型号 KZP系列自冷盘式可控制动装置主要用于大型机电设备的可控制动停车,特别适用于煤矿井下下运带式输送机的制动与停车,由于其属常闭式结构,因此适合于各种机电设备的定车。 1.2型号意义 K ZP - / 制动器数量与型号 制动盘直径 盘式制动 可控 1.3主要技术性能 (1)与电控装置配合,使大型机电设备的停车减速度保持在0.05-0.3m/s2; (2)系统突然断电时,仍能保证大型机电设备平稳地减速停车; (3)与电控装置配合,在有载工况下具有可控起车性能; (4)液压控制系统采用闭式回路控制,工作可靠性高。 (5)自冷盘式可控制动装置在环境温度为30°C时,每小时制动10次,盘的最高温度远小于150°C。 (6)最大制动力矩不应小于静制动 力矩的1.5倍。 1.4适用环境 (1)工作环境温度不大于40°C; (2)无显著摇摆和剧烈振动、冲击 的场合; (3)无足以锈蚀金属的气体及尘埃 的环境; (4)无滴水、漏水的地方; (5)适合煤矿井下要求防爆的场合。 1—电动机;2—联轴器;3—牵引体;4—传动轮;5—联轴器;6—垂直轴减速器;7—制动盘;8—弹簧; 9—活塞;10—闸瓦;11—油管 图1 制动装置布置图

相关文档
最新文档