解三角形应用举例

解三角形应用举例
解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角

形应用举例

1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里.

答案:5 6

解析:由正弦定理, 知

BC sin60°=AB

sin (180°-60°-75°)

解得BC =56(海里).

2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.

答案:10 3

解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°=

3

3

×30=103,由余弦定理,得

MN =

900+300-2×30×103×

3

2

=300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m.

答案:20 6

解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆,

所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m.

答案:10

解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10.

由余弦定理得OD 2=OC 2+CD 2

-2OC·CD cos ∠OCD , 即(3h)2

=h 2

+102

-2h×10×cos120°,

∴ h 2

-5h -50=0,解得h =10或h =-5(舍).

5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险.

答案:mcos αcos β>nsin(α-β)

解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m

sin (α-β),

解得BM =

mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β

sin (α-β)

>n ,

所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险.

1. 用正弦定理和余弦定理解三角形的常见题型

测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角

与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).

(2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

(3) 方位角:指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②).

(4) 坡度:坡面与水平面所成的二面角的度数.

[备课札记

]

题型1 测量距离问题

例1 要测量河对岸A 、B 两点之间的距离,选取相距 3 km 的C 、D 两点,并且测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A 、B 之间的距离.

解:△ACD 中,∠ACD =120°,∠CAD =∠ADC=30°,∴ AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°,∴ BC =

3sin75°sin60°=6+2

2

.在△ABC 中,由

余弦定理得AB 2

=AC 2

+BC 2

-2AC·BC·cos ∠ACB =(3)2

+? ??

??6+222

-2·3·6+22

cos75°=5,∴ AB = 5 km.故A 、B 之间的距离为 5 km.

变式训练 设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°,求A 、B 两点的距离.

解:由题意知∠ABC=30°,

由正弦定理AC sin ∠ABC =AB

sin ∠ACB ,

得AB =AC·sin ∠ACB

sin ∠ABC

50×22

12=50 2 m.

故A 、B 两点的距离为50 2 m. 题型2 测量高度问题

例2 某兴趣小组要测量电视塔AE 的高度H(单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE=α,∠ADE =β.

(1) 该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;

(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?

解:(1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=H

tan β,

解得H =htan αtan α-tan β=4×1.24

1.24-1.20

=124.

因此,算出的电视塔的高度H 是124 m. (2) 由题设知d =AB ,得tan α=H

d

.

由AB =AD -BD =H tan β-h tan β,得tan β=H -h

d

所以tan(α-β)=tan α-tan β1+tan αtan β=h d +

H (H -h )d

≤h

2H (H -h )

当且仅当d =H (H -h )

d ,即d =H (H -h )=125×(125-4)=555时,上式取等

号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π

2,所以当d

=55

5时,α-β最大.故所求的d 是555m.

备选变式(教师专享)

如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD=α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB.

解:在△BCD 中,∠CBD =π-α-β,由正弦定理得BC sin ∠BDC =CD

sin ∠CBD ,所以BC =

CD·sin ∠BDC sin ∠CBD =s·sin β

sin (α+β)

.

在Rt △ABC 中,AB =BCtan ∠ACB =s·tan θsin βsin (α+β)

.

题型3 测量角度问题

例3 在海岸A 处,发现北偏西75°的方向,距离A 2海里的B 处有一艘走私船,在A 处北偏东45°方向,距离A (3-1)海里的C 处的缉私船奉命以103海里/小时的速度追

截走私船.此时,走私船正以10海里/小时的速度从B 向北偏西30°方向逃窜,问缉私船沿什么方向能最快追上走私船?

解:由已知条件得,AB =2,AC =3-1,∠BAC =120°,

∴ BC =AB 2+AC 2

-2AB·AC·cos ∠BAC =4+4-23+23-2= 6.

在△ABC 中,AB sin ∠ACB =BC

sin ∠BAC ,

解得sin ∠ACB =

2

2

,∴ ∠ACB =45°, ∴ BC 为水平线,设经过时间t 小时后,缉私船追上走私船,则在△BCD 中, BD =10t ,CD =103t ,∠DBC =120°,

sin ∠BCD =BDsin ∠CBD

CD =10t×

3

2103t

=12,

∴ ∠BCD =30°,

∴ 缉私船沿北偏西60°的方向能最快追上走私船. 备选变式(教师专享)

如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 h 追上,此时到达C 处.

(1) 求渔船甲的速度; (2) 求sin α的值.

解:(1) 依题意知,∠BAC =120°,AB =12海里,AC =10×2=20海里,∠BCA =α.

在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB·AC·cos ∠BAC =122+202

-2×12×20×cos120°=784,解得BC =28海里.

所以渔船甲的速度为BC

2

=14海里/小时.

(2) 在△ABC 中,因为AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC

sin120°

.

即sin α=AB·sin120°

BC =12×

3228=3314

.

1. 在△ABC 中,若sin 2

A +sin 2

B <sin 2

C ,则△ABC 的形状是________.

答案:钝角三角形

解析:由正弦定理可把不等式转化为a 2

+b 2

<c 2

,cosC =a 2

+b 2

-c

2

2ab

<0,所以三角形为

钝角三角形.

2. 已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.

答案:-

24

解析:设最小边为a ,则其他两边分别为2a ,2a.由余弦定理,得最大角的余弦值为cos α=a 2

+(2a )2

-(2a )2

2a ×(2a )

=-2

4.

3. (2013·上海一模)一人在海面某处测得某山顶C 的仰角为α(0°<α<45°),在

海面上向山顶的方向行进m m 后,测得山顶C 的仰角为90°-α,则该山的高度为________m .(结果化简)

答案:1

2

mtan2α

解析:由题意知∠CAB=α,∠CDB =90°-α,∠CDA =90°+α,且AD =m ,则∠ACD =90°-2α.由正弦定理得

AD sin (90°-2α)=AC sin (90°+α),即m cos2α=AC

cos α

,即

AC =mcos αcos2α,所以山高BC =ACsin α=msin αcos αcos2α=1

2

mtan2α.

4. 已知△ABC 中,AB 边上的高与AB 边的长相等,则AC BC +BC AC +AB 2

BC ·AC 的最大值为

________.

答案:2 2

解析:AC BC +BC AC +AB 2BC ·AC =AC 2+BC 2+AB 2

BC ·AC .

又AC 2

+BC 2

=AB 2

+2AC·BC·cosC , ∴ 原式=2cosC +2AB 2

BC ·AC =2cosC +4S △ABC

BC ·AC

=2cosC +2BC·AC·sinC

BC ·AC

=2cosC +2sinC

=22sin ?

????C +π4,

∴ 当C =π

4

时,最大值为2 2.

1. 某人在汽车站M 的北偏西20°

的方向上的A 处(如图所示),观察到C 处有一辆汽车

沿公路向M 站行驶,公路的走向是M 站的北偏东40°

.开始时,汽车到A 处的距离为31 km ,汽车前进20 km 后,到A 处的距离缩短了10 km.问汽车还需行驶多远,才能到达汽车站M?

解:设汽车前进20 km 后到达B 处,在△ABC 中,AC =31,BC =20,AB =21,由余弦定理,得cosC =AC 2

+BC 2

-AB 2

2AC ·BC =2331,则sinC =123

31.所以sin ∠MAC =sin ()120°-C =

sin120°cosC -cos120°sinC =

35362.在△MAC 中,由正弦定理,得MC =AC·sin ∠MAC

sin ∠AMC

=31×

353

62

32

=35,从而有MB =MC -BC =15 km. 答:汽车还需行驶15 km ,才能到达汽车站M.

2. 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里

/时的航行速度匀速行驶,经过t 小时与轮船相遇.

(1) 若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2) 假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

解:(1) 设相遇时小艇航行的距离为S 海里,则

S =900t 2

+400-2·30t·20·cos (90°-30°)

=900t 2

-600t +400 =

900? ??

??t -132

+300 . 故当t =1

3时,S min =10 3 海里,

此时v =103

13

=30 3 海里/时.

即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小. (2) 设小艇与轮船在B 处相遇,

则v 2t 2=400+900t 2-2·20·30t·cos(90°-30°),故v 2

=900-600t +400t 2.

∵ 0<v≤30,

∴ 900-600t +400t 2≤900,即2t 2-3t ≤0,解得t≥2

3

.

又t =23时,v =30海里/时.故v =30海里/时时,t 取得最小值,且最小值等于23.

此时,在△OAB 中,有OA =OB =AB =20海里,故可设计航行方案如下:航行方向为北

偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.

3. 如图,A 、B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°、B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D 点需要多长时间?

解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=

45°,所以∠ADB=180°-(45°+30°)=105°.在△ADB 中,由正弦定理得DB

sin ∠DAB =

AB sin ∠ADB ,所以DB =AB·sin ∠DAB sin ∠ADB =5(3+3)·sin45°

sin105°

5(3+3)·sin45°

sin45°cos60°+cos45°sin60°

=103海里.

又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC =203海里,在△DBC 中,

由余弦定理得CD 2=BD 2+BC 2

-2BD·BC·cos ∠DBC =300+1 200-2×103×203×12=

900,所以CD =30海里,则需要的时间t =30

30

=1 h .所以救援船到达D 点需要1 h.

4. 如图,半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC.问:点B 在什么位置时,四边形OACB 面积最大?

解:设∠AOB=α,在△AOB 中,由余弦定理得AB 2=OA 2+OB 2-2×OA×OBcos∠AOB=12

+22

-2×1×2×cos α

=5-4cos α,

于是,四边形OACB 的面积为

S =S △AOB + S △ABC =12OA ·OBsin α+34AB 2

=12×2×1×sin α+3

4

(5-4cos α) =sin α-3cos α+534=2sin ?

????α-π3+534.

因为0<α<π,所以当α-π3=π2,α=5π6,即∠AOB=5π

6

时,

四边形OACB面积最大.

1. (1) 利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.

(2) 利用正、余弦定理解出所需要的边和角,求得该数学模型的解.

(3) 应用题要注意作答.

2. (1) 测量高度时,要准确理解仰、俯角的概念.

(2) 分清已知和待求,分析(画出)示意图,明确在哪个三角形中应用正、余弦定理.

(3) 注意竖直线垂直于地面构成的直角三角形.

请使用课时训练(A)第8课时(见活页).

[备课札记]

1.2解三角形应用举例(测量距离、高度、角度)解析 (2)

福建美佛儿学校自主型发展大课堂数学导学案 班级 姓名 设计者 日期 课题:§1.2应用举例(第一课时 测量距离问题) 课时: 3课时 ●教学目标 知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,帮助学生掌握解法,能够类比解决实际问题。 情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点 实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点 根据题意建立数学模型,画出示意图 ●教学过程 一、课题导入 1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、[设置情境] 请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。 二、讲授新课 (1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题讲解] (2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m)

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

最新解三角形应用举例练习题

解三角形应用举例练习题 一、选择题 1.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为() A.3B.2 3 C.23或 3 D.3 2.已知船A在灯塔C北偏东85°且到C的距离为2km,船B在灯塔C西偏北25°且到C的距离为3km,则A,B两船的距离为() A.23km B.32km C.15km D.13km 3.已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积是() A.14 B.214 C.15 D.215 4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为() A.a km B.3a km C.2a km D.2a km 5.已知△ABC中,a=2、b=3、B=60°,那么角A等于() A.135°B.90° C.45°D.30° 6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时() A.5海里B.53海里 C.10海里D.103海里 二、填空题 7.(2010~2011·醴陵二中、四中期中)已知A、B两地的距离为10km,BC两地的距离

为20km,经测量∠ABC=120°,则AC两地的距离为________km. 8.如图,为了测量河的宽度,在一岸边选定两点A,B,望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度是__________. 9. (2011·北京朝阳二模)如图,一艘船上午在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距42n mile,则此船的航行速度是________n mile/h. 三、解答题

解三角形应用举例

东方中学教案 1.知识与技能: 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;通过解三角形的应用的学习,提高解决实际问题的能力 2.过程与方法: 通过巧妙的设疑,顺利的引导新课,为下节课做好铺垫。结合学生的实际情况,采用“提出问题—引发思考—探索猜想—总结规律—反馈练习”的教学过程,根据大纲要求以及教学内容之间的内在联系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。 3.情感、态度与价值观: 实际问题中抽象出一个或几个三角形,然后逐个解三角形,得到实际问题的解。

修改简记教学过程: 一、复习引入: 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构,设计时需要计算 油泵顶杆BC的长度已知车箱的最大仰角为60°,油泵顶点 B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角 为6°20′,AC长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件, AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC 的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571 ∴BC≈1.89 (m) 答:油泵顶杆B C约长1.89 m 评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转 换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系 从题目准确地提炼出来 例2某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔 船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向, 以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救, 试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

解三角形应用举例

第三章 三角函数、三角恒等变换及解三角形第8课时 解三角 形应用举例 1. (必修5P 11习题4改编)若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里. 答案:5 6 解析:由正弦定理, 知 BC sin60°=AB sin (180°-60°-75°) , 解得BC =56(海里). 2. (必修5P 20练习第4题改编)江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 答案:10 3 解析:如图,OA 为炮台,M 、N 为两条船的位置,∠AMO =45°,∠ANO =60°,OM =AOtan45°=30,ON =AOtan30°= 3 3 ×30=103,由余弦定理,得 MN = 900+300-2×30×103× 3 2 =300=103(m). 3. (必修5P 18例1改编)如图,要测量河对岸A 、B 两点间的距离,今沿河岸选取相距40 m 的C 、D 两点,测得∠ACB=60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是__________ m. 答案:20 6 解析:由已知知△BDC 为等腰直角三角形,故DB =40;由∠ACB=60°和∠ADB=60°知A 、B 、C 、D 四点共圆, 所以∠BAD=∠BCD=45°;

在△BDA 中,运用正弦定理可得AB =20 6. 4. (必修5P 21习题2改编)某人在C 点测得塔顶A 在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为________m. 答案:10 解析:如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h. 在Rt △AOD 中,∠ADO =30°,则OD =3h. 在△OCD 中,∠OCD =120°,CD =10. 由余弦定理得OD 2=OC 2+CD 2 -2OC·CD cos ∠OCD , 即(3h)2 =h 2 +102 -2h×10×cos120°, ∴ h 2 -5h -50=0,解得h =10或h =-5(舍). 5. 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α角,前进mkm 后在B 处测得该岛的方位角为北偏东β角,已知该岛周围nkm 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件________时,该船没有触礁危险. 答案:mcos αcos β>nsin(α-β) 解析:∠MAB=90°-α,∠MBC =90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴ ∠AMB =α-β.由题可知,在△ABM 中,根据正弦定理得BM sin (90°-α)=m sin (α-β), 解得BM = mcos αsin (α-β).要使船没有触礁危险,需要BMsin(90°-β)=mcos αcos β sin (α-β) >n , 所以α与β满足mcos αcos β>nsin(α-β)时船没有触礁危险. 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (1) 仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等.

1.2 解三角形应用举例练习题及答案解析

1.在△ABC 中,A =60°,AB =1,AC =2,则S △ABC 的值为( ) A.12 B.32 C. 3 D .2 3 解析:选B.S △ABC =12AB ·AC ·sin A =sin 60°=3 2 . 2.已知△ABC 的面积为3 2 ,且b =2,c =3,则( ) A .A =30° B .A =60° C .A =30°或150° D .A =60°或120° 解析:选D.∵S =12bc sin A =32,∴12×2×3sin A =3 2. ∴sin A =3 2 .∴A =60°或120°. 3.在△ABC 中,AC =5,AB =2,cos A =25 5 ,则S △ABC =________. 解析:在△ABC 中,cos A =25 5 , ∴sin A =5 5, ∴S △ABC =12AB ·AC ·sin A =12×5×2×55=2 2. 答案:2 2 4.在△ABC 中,已知B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB . 解:在△ADC 中, cos C =AC 2+DC 2-AD 22·AC ·DC =72+32-522×7×3=11 14 . 又0°<C <180°,∴sin C =53 14 . 在△ABC 中,AC sin B =AB sin C , ∴AB =sin C sin B AC =5314×2×7=56 2. 一、选择题 1.在△ABC 中,a 2=b 2+c 2-bc ,则角A 为( ) A.π3 B.π6 C.2π3 D.π3或2π3 解析:选A.∵a 2=b 2+c 2 -bc , ∴cos A =b 2+c 2-a 22bc =12,即A =π 3 . 2.在△ABC ,下列关系一定成立的是( )

(完整版)三角形中的几何计算、解三角形的实际应用举例

三角形中的几何计算、 解三角形的实际应用举例 1.仰角和俯角 在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①). 2.方位角 从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②). 3.方向角 相对于某一正方向的水平角(如图③) (1)北偏东α°即由指北方向顺时针旋转α°到达目标方向. (2)北偏西α°即由指北方向逆时针旋转α°到达目标方向. (3)南偏西等其他方向角类似. 【思考探究】 1.仰角、俯角、方位角有什么区别?

以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 以平面几何图形为背景,求解有关长度、角度、面积、最值和优化等问题,通常是转化到三角形中,利用正、余弦定理加以解决.在解决某些具体问题时,常先引入变量(如边长、角度等),然后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之. 如右图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β. (1)证明:sinα+cos 2β=0; (2)若AC=3DC,求β的值. 【变式训练】 1.如图,在四边形ABCD中,已知AD⊥CD,AD =10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为________.

求距离问题要注意: (1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解. (2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 例题2.如图所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152海里/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ? ?? ??tan θ=12的方向作匀速直线航行,速度为105海里/小时. (1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?最近距离为多少海里?

《§3 解三角形的实际应用举例》教学案1

《§3 解三角形的实际应用举例》教学案1 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理:2sin sin sin a b c R A B C === 2、余弦定理: ,cos 2222A bc c b a -+=? bc a c b A 2cos 222-+= ,cos 2222B ca a c b -+=? ca b a c B 2cos 222-+= C ab b a c cos 2222-+=,?ab c b a C 2cos 222-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:060=A 075=B ∴045=C 由正弦定理知00 45sin 1060sin =BC 6 545sin 60sin 1000 ==?BC 海里 750 600 C B A

例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为/02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m , 求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东020, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东065方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020sin 45sin BS AB = ' 2066'20660?=?+?=∠BAC A AC AB AC AB BC cos 2222?-+=)(89.1571.3'2066cos 40.195.1240.195.122m BC ≈∴= ????-+=D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450650200

高一教案解斜三角形应用举例(1)

课题:解斜三角形应用举例(1) 教学目的: 1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法; 2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系; 3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等; 4通过解三角形的应用的学习,提高解决实际问题的能力 教学重点:实际问题向数学问题的转化及解斜三角形的方法 教学难点:实际问题向数学问题转化思路的确定 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪

教学方法:启发式 在教学中引导学生分析题意,分清已知与所求,根据题意画出示意图,并启发学生在解三角形时正确选用正、余弦定理教学过程: 一、复习引入: 1.正弦定理:R C c B b A a 2sin sin sin === 2.余弦定理:,cos 2222A bc c b a -+=?bc a c b A 2cos 222-+= ,cos 22 22B ca a c b -+=?ca b a c B 2cos 2 22-+= C ab b a c cos 22 22-+=,?ab c b a C 2cos 222-+= 3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力

中的一些应用 二、讲解范例: 例1 自动卸货汽车的车箱采用液压结构, 设计时需要计算油泵顶杆BC的长度已知 车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20′,AC 长为1.40m,计算BC的长(保留三个有效数字) 分析:求油泵顶杆BC的长度也就是在△ABC内,求边长BC的问题,而根据已知条件,AC=1.40m,AB=1.95 m,∠BAC=60°+6°20′=66°20′相当于已知△ABC的两边和它们的夹角,所以求解BC可根据余弦定理解:由余弦定理,得 BC2=AB2+AC2-2AB·AC cos A =1.952+1.402-2×1.95×1.40×cos66°20′=3.571

《解三角形的实际应用举例》教学设计

课题:解三角形的实际应用举例 一、教材分析 本节课是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。 二、教学目标 1、知识与技能 ①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义 ②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题和基本图形和基本等量关系,理解各种应用问题中的有关名词、术语(如:坡度、俯角、仰角、方向角、方位角等) 2、过程与方法 ①采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架 ②通过解三角形的应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用 3、情感态度价值观 ①激发学生学习数学的兴趣,并体会数学的应用价值 ②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力 三、教学重点、难点 1、重点:①实际问题向数学问题的转化 ②掌握运用正、余弦定理等知识方法解三角形的方法 2、难点:实际问题向数学问题转化思路的确定 四、教学方法与手段 本节课的重点是正确运用正弦定理、余弦定理解斜三角形,而正确运用两个定理的关键是要结合图形,明确各已知量、未知量以及它们之间的相互关系。通过问题的探究,要让学生结合实际问题,画出相关图形,学会分析问题情景,确定合适的求解顺序,明确所用的定理;其次,在教学中让学生分析讨论,在方程求解繁与简的基础上选择解题的思路,以提高学生观察、识别、分析、归纳等思维能力。

解三角形应用举例

解三角形应用举例 目标认知 学习目标:初步运用正弦定理、余弦定理等知识和方法解决一些有关计算角度和测量高度、距离以及航海等的实际问题,了解常用的测量相关术语. 重点:根据正弦定理、余弦定理的特点找到已知条件和所求角的关系,应用正、余弦定理解斜三角形,解决实际问题. 难点:如何在理解题意的基础上将实际问题数学化,灵活运用正弦定理和余弦定理解关于角度的问题 学习策略: 解斜三角形的知识主要用于测量及航海两大类型问题.实际应用中,首先要弄清题意,画出直观示意图,将实际问题转化为解三角形的问题,再确定是哪类解三角形问题,即应用哪个定理来解决. 知识要点梳理 知识点一:实际问题中的一些名词、术语 1. 仰角和俯角 与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示: 2. 坡角和坡度 坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i 表示。坡比是坡角的正切值。 3. 方位角与方向角: 方位角:一般指正北方向线顺时针到目标方向线的水平角。方位角的取值范围为0°~360°。 如图,点B 的方位角是0 135α=。 方向角:一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度。 如图为南偏西060方向(指以正南方向为始边,向正西方向旋转0 60);

如图为北偏东030方向(指从正北开始向正东方向旋转0 30). 东南方向:指经过目标的射线是正东与正南的夹角平分线.依此可类推西南方向、西北方向等; 知识点二:解三角形应用题的一般步骤 (1)准确理解题意,尤其要理解应用题中的有关名词和术语;明确已知和所求,理清量与量之间的关系; (2)根据题意画出示意图,并将已知条件在图形中标出,将实际问题抽象成解三角形模型; (3) 分析与所研究的问题有关的一个或几个三角形,正确运用正弦定理和余弦定理,有顺序的求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位及近似计算要求,回答实际问题. 知识点三:常见应用题型 正弦定理和余弦定理解三角形的常见题型有: 1. 测量高度问题; 2. 测量距离问题; 3. 测量角度问题; 4. 计算面积问题; 5. 航海问题; 6. 物理问题等. 规律方法指导 1.应用正弦定理、余弦定理解应用题主要用于测量及航海两大类型问题.实际应用中,首先要弄清题意,画出直观示意图,将实际问题转化为解三角形的问题,并将实际问题中的长度、角度看成三角形相应的边和角,再利用边角关系对已知条件进行变形、转化,从而使问题得以解决. 2. 解三角形的应用题时,通常会遇到两种情况: (1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之; (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。 3.解斜三角形的应用问题常常是综合应用问题.在解这类问题时,还经常涉及方程、几何、最大(小)值、方位角等方面的知识,因此,应当注意分析问题特点,选用恰当的解题方法.

高中数学必修5《解三角形应用举例》教案

人教版必修5课题:《解三角形应用举例》 教材:人教版 教学目标: (1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题; (3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力; (5)指导学生学会评价分析与改进优化。 教学重点、难点: 分析测量问题的实际情景,从而找到合适的测量距离的方法。 教学方法与手段: 学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。 教学内容设计: 一、情境导入 位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示: 探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上) 测量工具为:测角仪与皮尺 首先通过示图,了解测角仪的原理与作用 测角仪常用于测量: (1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)

图1 图2 图3 此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。 二、学生设计方案交流 从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。 三、分析与解决问题 学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。 交流方案一:(以张靖同学为组长来介绍) 如图4,线段CA 表示西塔,线段DB 表示海心塔 在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ?得 海心塔与西塔的距离α tan h AB = 教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便; (3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。 不足与改进:(1)测角仪器本身的高度没有考虑,会产生误差。改进如图5; 则两塔间的距离为 α tan d h AB -= (2)如果在AB 间有一幢较高的楼房挡住了视线,让测量者无法看到西塔的底部A ,而也不知两塔的底部在不在同一水平线上,则仰角α无法测量。改进如图6,把测量的地点改到能看到西塔底部的地方,或是岛上的其它点,或是在海心塔的顶部测俯角; 图5 图6 αcot 1h AE =,βcot 2h EB =, C A α B D h 仰角 A B C 俯角 水平线 方向角 测量点 北 西 东 南 α C A α B D h d C D α β A B E h 2 h 1

高中数学-解三角形应用举例练习

高中数学-解三角形应用举例练习 基础巩固题组 (建议用时:40分钟) 一、填空题 1.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的________. ①.北偏东10°;②北偏西10°;③南偏东10°;④南偏西10° 解析灯塔A,B的相对位置如图所示,由已知得∠ACB=80°,∠CAB=∠CBA=50°,则α=60°-50°=10°,即北偏西10°. 答案② 2.在某个位置测得某山峰仰角为α,对着山峰在水平地面上前进900 m后测得仰角为2α,继续在水平地面上前进300 3 m后,测得山峰的仰角为4α,则该山峰的高度为________m. 解析如图所示,易知,在△ADE中,∠DAE=2α,∠ADE=180°-4α, AD=300 3 m,由正弦定理,得 900 sin 4α= 3003 sin 2α , 解得cos 2α= 3 2 , 则sin 2α=1 2 ,sin 4α= 3 2 ,

所以在Rt△ABC中山峰的高度h=3003sin 4α=3003× 3 2 =450(m). 答案450 3.在相距2千米的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为________千米. 解析由已知条件∠CAB=75°,∠CBA=60°,得∠ACB=45°.结合正弦定 理,得 AB sin∠ACB = AC sin∠CBA ,即 2 sin 45° = AC sin 60° ,解得AC=6(千米). 答案 6 4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔的高度是________m. 解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos∠BCD,得3h2=h2+5002+h·500,解得h=500(m). 答案500 5.(·广州调研)如图所示,长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A 在离堤足C处1.4 m的地面上,另一端B在离堤足C处2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=________m.

(完整版)解三角形应用举例

解三角形应用举例 【重要知识】 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的叫做 仰角;视线在水平线下方的叫做俯角。 2、方向角: 方向角是正北方向或正南方向到目标方向线所成的锐角。 方向角α的取值范围是:?<

2、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是42m,∠BAC=45?, ∠ACB=? 75。求A、B两点的距离. 3、为了开凿隧道,要测量隧道上D、E间的距离,为此在山的一侧选取适当点C,如图,测得CA=400m,CB=600m,∠ACB=60°,又测得A、B两点到隧道口的距离AD=80m,BE=40m(A、D、E、B在一条直线上),计算隧道DE的长.

经典习题 相似三角形应用举例

课堂学习检测 一、选择题 1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( ) A .15m B .60m C .20m D .m 310 2.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A . m 7 11 B . m 7 10 C . m 7 9 D . m 2 3 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m , 窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( ) A .1.5m B .1.6m C .1.86m D .2.16m 第3题 第四题 4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( ) A .3.85m B .4.00m C .4.40m D .4.50m 二、填空题 5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m . 第5题图 6.如图所示,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB =10m ,BC =20cm ,PC ⊥AC ,且PC =24cm ,则点光源S 到平面镜的距离即SA 的长度为______cm . 第6题图 三、解答题 7.已知:如图所示,要在高AD =80mm ,底边BC =120mm 的三角形余料中截出一个正方形板材PQMN .求它的边长.

相关文档
最新文档