逆变器系统死区效应补偿原理及几种电路实现

逆变器系统死区效应补偿原理及几种电路实现
逆变器系统死区效应补偿原理及几种电路实现

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

SVPWM中全新的死区时间效应补偿方法

SVPWM中全新的死区时间效应补偿方法 杨来坡王泰宇徐鸿李千里 安徽中家智锐科技有限公司 摘要:文章对3相逆变的死区时间效应进行了分析,同时给出了一种全新的针对永磁同步电机驱动中死区效应的补偿方法。该方法同时考虑了零电流钳位和寄生电容的影响,经过计算和实际验证,确实改善了死区效应的影响。本方法理论分析的有效性及其实际效果都通过在空调直流电机驱动控制应用中得到了充分验证。 关键词:三电平逆变器;死区时间;补偿;PWM Dead-time compensation in the application of SVPWM  Laipo YangTaiyu WangHong XuQianli Li Anhui Cheari Zhi Rui Technology Limited Company Abstract: The Dead-time effect of the three phases bridge inverter is analyzed in this paper. A Dead-time compensation strategy is presented for a permanent-magnet synchronous motor drive taking zero-current damp and parasitic capacitance effects into account. It improves the Dead-time effect, with practicality and little calculation .The validity of theory analysis and this method is proved by the experiment results, the method is applied to the controlling of Air conditioner motor.  Keywords: Three-level inverter;Dead time;Compensation;PWM

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

逆变器原理及电路图

逆变器原理及电路图 2009-09-10 21:52 场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 [img]https://www.360docs.net/doc/4f16687028.html,/UploadFiles/200942618167800.jpg[/img] 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 [img]https://www.360docs.net/doc/4f16687028.html,/UploadFiles/2009426181249965.jpg[/img] 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。

基于直流电压调节的死区效应削弱方法研究

第47卷 2014年 第6期6月MICROMOTORSVol畅47畅No畅6Jun畅2014 收稿日期:20131021 作者简介:王晓远(1962),男,博士,教授,研究方向为电机电器的设计与控制。 张志军(1987),男,硕士,研究方向为电机电器的设计与控制。基于直流电压调节的死区效应削弱方法研究 王晓远,张志军 (天津大学电气与自动化工程学院,天津300072) 摘 要:在变频调速系统中为了防止同一桥臂上的两只开关管直通引入死区时间,但它造成相电流畸变转矩脉动。本文通过分析系统在轻载低速运行时的特点提出了一种基于直流母线电压调节的死区削弱方法,虽然此方法不能完全消除死区效应,但可以在不增加系统芯片运算量的情况下极大地改善电流波形,降低转矩脉动。最后通过仿真和实验分别验证了该方法的有效性和可行性。 关键词:变频调速;死区时间;脉宽调制 中图分类号:TP273 文献标志码:A 文章编号:1001-6848(2014)06-0022-04 StudyonDeadZoneEffectWeakenedMethodBasedonDCVoltageRegulation WANGXiaoyuan,ZHANGZhijun(TianjinUniversity,Tianjin300072,China) Abstract:Inthevariablefrequencyspeedregulationsysteminordertopreventthesamebridgearmtwoswitchtubethroughintroducingdeadzoneoftime,butitcausephasecurrentdistortiontorqueripple畅ThisarticlethroughtheanalysissysteminlightloadslowrunningcharacteristicsoftheproposedbasedonDCbusvoltageregulationofthedeadzoneweakenmethod,althoughthismethodcannotcompletelyeliminatedeadzoneeffect,butcannotincreasethecomputationsystemonachipundertheconditionofgreatimprovecur-rentwaveformtoreducetorqueripple畅Atlast,throughsimulationandexperimentswereverifiedtheeffec-tivenessandfeasibilityofthismethod畅Keywords:Frequencycontrolofmotorspeed;Deadzonetime;Pulsewidthmodulation 0 引 言 脉冲宽度调制(PWM)技术现已普遍用于整流逆 变调速等系统中。在使用PWM技术时为了防止同一 个桥臂的两个管开关上下直通,需要在开通和关断 时刻之间加入一定的死区时间。由死区时间所产生 的死区效应使得逆变器输出电压的基波分量减小、 谐波增大,造成电流波形畸变导致转矩脉动。 死区效应的补偿问题是逆变器、变频调速等系 统开发过程中的一个重要难点。针对死区问题已有 不少文献做过相应的研究,其基本原理都基于一个 本质[1-5]:增大或减小给定脉冲宽度使其实际大小与 期望大小相等。 本文通过分析逆变器在低频轻载和高频重载下 的死区效应影响的区别,提出了一种基于直流母线 电压调节的死区效应削弱方法,该方法通过改变直 流母线电流可以极大地降低死区效应对低频轻载时的影响。 1 死区效应及其影响因素分析理想PWM逆变器单个桥臂的一个开关管关断时另一个管子立刻开通,但实际上由于死区时间的加入,使得在死区时间内两个管子都关断,电流只能通过二极管续流。电压型逆变器主电路如图1所示,文献[1-4]均对开关管的开关过程进行了详细分析,最后都得出了与死区时间相对应的偏差电压。图1 逆变器主电路

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

车载电源逆变器电路原理图及维修

车载电源逆变器电路原理图及维修 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL4 94或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS 功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/5 0kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

死区补偿总结

死区补偿技术 清华大学电机系 缪学进 1 引言 微处理和电力电子技术的迅速发展,极大地促进了PWM技术的发展和应用,各种PWM 交流传动技术在工农业生产、国防和日常生活中得到了广泛的应用。我们知道,任何固态的电子开关器件都具有一定的固有开通和关断时间。对于确定的开关器件,固有开通和关断时间内输出信号是不可控制的。三相桥式逆变器系统中,同一桥臂上的两个开关器件工作于互补状态。由于一般开关器件的开通时间小于关断时间,因此,如果将互补的控制信号加到同一桥臂上两个开关器件的控制极上,那么这两个开关器件将会发生“直通”,其后果非常严重。所以目前的逆变器系统广泛采用时间延迟的控制技术即将理想的PWM控制信号上升沿或下降沿延迟一段时间,在这段时间内输出信号是不可控的,这就是死区时间[1]。死区的存在使逆变器不能完全精确复现控制信号的波形,输出电压产生幅值和相位的误差。由于死区的作用,每一个调制周期内引起的微小畸变经积累后,必然会使逆变器的输出电流波形产生畸变,它不但会降低基波幅值,而且会产生低次谐波,直接影响电动机在低速下的运行性能。过去为了消除死区的影响,通常采用硬件和软件相结合的解决方案,但硬件补偿方法存在着检测精度差、滞后以及实现困难等问题。微处理器在电机控制中的应用使死区补偿变得容易,尤其是TI公司的专为电机控制设计的2000系列处理器(如TMS320F240、TMS320LF2407、TMS320F2812等)在芯片内部集成了专门的硬件电路进行死区补偿,减少了电压误差,可以获得满意的效果。 2 死区效应分析 三相电压型逆变器的基本构成如图 1 所示,与电流型逆变器相比,电压型逆变器可以提高逆变器的开关频率,有利于快速控制和抑制逆变器噪声,并且输出阻抗小,适合于交流电机调速控制。 为了防止逆变器区桥臂的上下功率开关发生直通,在上下功率开关改变状态时必须插入死区时间,即先将已开通的功率管关断,插入一定的死区延时,再开通另一个处于关断状态的功率管。

常用逆变电源电路图

常用逆变电源电路图 收藏此信息打印该信息添加:用户发布来源:未知 双端工作的方波逆变变压器的铁心面积乘积公式为 AeAc=Po(1+η)/(ηDKjfKeKcBm)(1) 式中:Ae(m2)为铁心横截面积; Ac(m2)为铁心的窗口面积; Po为变压器的输出功率; η为转换效率; δ为占空比; K是波形系数; j(A/m2)为导线的平均电流密度; f为逆变频率; Ke为铁心截面的有效系数; Kc为铁心的窗口利用系数; Bm为最大磁通量。 图3 变压器原边的开关管S1和S2各采用IRF32055只并联,之所以并联,主要是因为在逆变电源接入负载时,变压器原边的电流相对较大,并联可以分流,可有效地减少开关管的功耗,不至于造成损坏。

PWM控制电路芯片SG3524,是一种电压型开关电源集成控制器,具有输出限流,开关频率可调,误差放大,脉宽调制比较器和关断电路,其产生PWM方波所需的外围线路很简单。当脚11与脚14并联使用时,输出脉冲的占空比为0~95%,脉冲频率等于振荡器频率的1/ 2。当脚10(关断端)加高电平时,可实现对输出脉冲的封锁,与外电路适当连接,则可以实现欠压、过流保护功能。利用SG3524内部自带的运算放大器调节其输出的驱动波形的占空比D,使D>50%,然后经过CD4011反向后,得到对管的驱动波形的D<50%,这样可以保证两组开关管驱动时,有共同的死区时间。 3DC/AC变换 如图3所示,DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。由4个IRF740构成桥式逆变电路,IRF740最高耐压4 00V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

(完整word版)最常见的车载逆变器电路原理图

最常见的车载逆变器电路原理图见图1。车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz 工频交流电的转换电路,最后通过XAC插座输出220V /50Hz交流电供各种便携式电器使

用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA 的驱动能力。 TL494芯片的内部电路 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。 IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150 Ω~300Ω范围内任选,适当选大些可提高过热保护电路启动的灵敏度。热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功能有效。 IC1的15脚的对地电压值U是一个比较重要的参数,图1电路中U≈Vcc×R2÷

SVPWM逆变器死区效应补偿方法的研究[1]

SVPWM逆变器死区效应补偿方法的研究 DEAD-TIME COMPENSATION FOR VECTOR-CONTROL INDUCTION MOTOR PWM INVERTER 王高林,贵献国,于泳,徐殿国 (哈尔滨工业大学电气工程系,黑龙江省 哈尔滨市 150001) (Email: Wanggl@https://www.360docs.net/doc/4f16687028.html,, Xianggui@https://www.360docs.net/doc/4f16687028.html,, Yuyong@https://www.360docs.net/doc/4f16687028.html,, Xudiang@https://www.360docs.net/doc/4f16687028.html, ) 摘要:针对伺服系统矢量控制系统,提出了一种可以补偿死区误差电压并消除零电流钳位效应的死区补偿方法。在分析了影响死区效应的因素以及等效死区时间的表达式的基础上,采用平均死区时间补偿法,在两相静止轴系中对等效死区时间产生的误差电压进行了补偿。为了提高电流极性检测的准确性,利用旋转轴系中的励磁电流和转矩电流分量经过坐标反变换,判断电流在两相静止轴系所处的扇区来决定需要施加的补偿电压。另外为了更好地消除由于死区时间而产生的零电流钳位效应,将一种消除零电流钳位效应的方法结合到上述补偿方法中。最后通过TMS320F2812 DSP芯片来实现补偿算法,并在11kW 伺服电机矢量控制系统中验证了补偿算法的有效性。 ABSTRACT: A dead-time compensation strategy is presented to compensate dead-time error-voltage and eliminate zero-current clamping effect for servo motor vector control system. The factor influencing dead-time effect is analyzed, and expression of equivalent dead time is deduced. Average dead-time compensation technique is adopted to compensate error-voltage at two-phase stationary frame. To improve accuracy of detection of current direction, components of magnetizing current and torque current are transformed into two-phase stationary frame. Therefore compensating voltage vector can be decided according to the sector the current vector is locating. In addition, a kind of zero-current clamping effect eliminating scheme is adopted combining with the above compensation method to improve the compensation performance. The proposed compensation method is performed with TMS320F2812 DSP chip. Experimental results demonstrate the efficiency of the dead-time compensation method in 11kW servo motor vector control system. 关键词:伺服系统,空间矢量PWM,死区效应,零电流钳位,补偿 KEY WORDS:servo system; space vector PWM; dead-time effect; zero-current clamping; compensation 1 引言 由于伺服系统在各种工业场合应用非常普遍,永磁伺服电机相关控制技术研究也获得了广泛重视,其中空间矢量脉宽调制技术(SVPWM)一直是一个热门的研究课题[1,2]。在SVPWM逆变器中,为了防止同一桥臂的两只开关管产生直通,需要在两只开关管的开通与关断时刻之间加入一定的死区时间,所产生的死区效应会造成逆变器输出电压基波分量减小、输出电流波形畸变及输出转矩脉动[3]。在感应电机矢量控制场合,往往需要知道电压的状态量,由于输出电压是由离散的脉冲组合而成难以测量,通常直接将参考电压当作输出电压。但与参考电压相比,实际的输出电压由于受死区时间影响而与参考电压有所差别。因此为了能够进一步提高感应电机的控制性能,有必要对死区效应进行有效地补偿。 已经有众多学者对死区效应进行了研究,并提出了许多补偿方法[3-10]。这些方法基本上可以分为两种,一种是基于平均误差电压补偿法,这种方法具有易于实现的优点,缺点是补偿不够精确,后来又有学者对开关器件管压降引起的附加死区时间,以及电路中寄生参数对死区效应的影响进行了研究[11,12]。另一类方法是基于脉冲的补偿方法,这种方法可以对死区时间进行较精确地补偿,但对控制芯片的要求也更高,要求在一个PWM载波周期内进行两次采样[12]。死区补偿中电流极性的检测很重要,如果对电流过零点判断不够准确反而会引起误补偿。尽管很多补偿方法能够取得不错的补偿效果,但在低速轻载的场合,经常会发生零电流钳位的现象,使输出电流产生畸变[12]。本文研究了一种采用平均误差电压补偿法并结合消除零电流钳位效应的方法对感应电机PWM逆变器的死区效应进行了补偿,最后在11kW伺服

三相方波逆变电路原理说明

1 引言 设计要求 本次课程设计题目要求为三相方波逆变电路的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab 仿真等,巩固了理论知识,基本达到设计要求。完成三相方波逆变电路的仿真,开关管选IGBT,直流电压为530V, 阻感负载,负载有功功率1KV y感性无功功率为100Var。 逆变的概念 逆变即直流电变成交流电,与整流相对应 电力系统中,将电网交流电通过整流技术变成直流电,然后通过逆变技术,将直流变成高频交流,再通过高频变压器降压,就达到缩小变压器体积和提高供电质量的目的了。

三相逆变 三相逆变技术广泛应用于交流传动、无功补偿等领域。在三相PWM交流 伺服系统中,一般采用三个桥臂的结构,即逆变桥主电路有6 个功率开关器件 (功率MOSFE或IGBT)构成,若每个开关器件都用一个单独的驱动电路驱动,则需6 个驱动电路,至少要配备4 个相互独立的直流电源为其供电,使得系统硬件结构复杂,可靠性下降,且调试困难,设计成本偏高。 2三相电压源型SPW逆变器 PWM的基本原理 PWM(Pulse Width Modulation) 控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWh控制技术最重要的理论基础是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。 SPW控制技术是PW M空制技术的主要应用,即输出脉冲的宽度按正弦规律变化而和正弦波等效。 SPWM逆变电路及其控制方法 SPW逆变电路属于电力电子器件的应用系统,因此,一个完整的SPW逆变电路应该由控制电路、驱动电路和以电力电子器件为核心的主电路组成。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。 目前应用最为广泛的是电压型PW逆变电路,脉宽控制方法主要有计算机法和调制法两种,但因为计算机法过程繁琐,当需要输出的正弦波的频率、幅值或相位发生变化时,结果都要变化,而调制法在这些方面有着无可比拟的优势,因此,调制法应用最为广泛。 所谓调制法,就是把希望输出的波形作为调制信号U t,把接收调制的信号作 为载波U c,通过信号波的调制得到所期望的PW波形。 三相方波逆变器 电路结构相同,只是控制方式不同。每一开关元件在输出电压的一个周期中闭合180°

PWM型逆变器死区问题的解决

电源技术 < 2008年5月 20 ■<阿城继电器股份有限公司电源公司 李文全 引言 PWM 电压型逆变器广泛地应用于交流变速传动系统和不停电电源中。逆变器的输出电压波形的质量尤为重要。理想的电压波形通常为纯正的正弦波,但实际上在输出级存在着是输出波形畸变的固有源,因而输出波形存在较大的畸变。其中一个重要的畸变根源是同一桥臂上、下两个器件在开关过程中必有一个死区时间,以防止桥臂直接短路。另外一些根源如开关器件的导通压降、开关时间等。每个PWM 调制周期内引起的微小畸变经积累后,会引起输出电压波形较大的畸变,降低基波幅值,改变低次谐波含量,曾加电机的谐波损耗。因此必须对逆变器的死区问题进行补偿。 在死区期间,逆变器输出的电压不受逻辑信号控制,而是有输出电流的极性确定,通过反馈二极管嵌位在直流回路的正侧或负侧。因此电流极性的检测是死区补偿的关键技术。本文对死区时间引起的逆变器输出电压畸变进行了详细分析,给出了电流极性检测方法和死区效应的电压补偿方法。 1 PWM逆变器死区效应的分析 不失一般性,以逆变器其中的一个桥臂A 相为例(如图 1)。在死区期间,上、下两个功率器件均不导通,只有一个二极管导通续流。若电流流向负载,则下面的二极管导通;反之,上面的二极管导通。控制信号与电压波形如图2所示。 对于i>0(流向负载)而言,如图2(a )、(b )、(d)所示。当A -信号在T 1时刻关断,延时死区时间T d 后,A +变为高电平(图2d );在T 2时刻A +变为低电平,延时T d 后A -变为高电 平(图2b ),此时电压U AN 时电压U AN 经过开关管的关断时间t off 后变为低电平(图2d )。因而U AN 为高值的实际时间是T 2 –T 1 +T off –T on –T d ,标准时间应为T 2 –T 1,因而,死区时间和开关管共同引起的导通时间误差为 T err = T off –T on –T d (1)同理,当时 i<0时,由图2(a 、b 、c )可得时间误差为 T err = -(T off –T on –T d ) (2)因此误差时间为T err = sign(i)(T off –T on –T d ) (3) 其中sign(i)= PWM型逆变器死区问题的解决 摘要:本文对PWM电压型逆变器的死区问题提出了一种实时补偿方法,设计了电流瞬时值过零点的检测方法,该方法简单易行,可适用于变压变频调速系统中。 关键词: PWM逆变器 电流检测 死区补偿 图1 逆变器桥臂 图2 PWM逆变器控制信号与输出电压波形

三电平逆变器的主电路结构及其工作原理

三电平逆变器的主电路结构 及其工作原理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

三电平逆变器的主电路结构及其工作原理 所谓三电平是指逆变器交流侧每相输出电压相对于直流侧有三种取值,正端电压 (+Vdc/2)、负端电压(-Vdc/2)、中点零电压(0)。二极管箱位型三电平逆变器主电路结构如图所示。逆变器每一相需要4个IGBT开关管、4个续流二极管、2个箱位二极管;整个三相逆变器直流侧由两个电容C1、C2串联起来来支撑并均衡直流侧电压,C1=C2。通过一定的开关逻辑控制,交流侧产生三种电平的相电压,在输出端合成正弦波。 三电平逆变器的工作原理 以输出电压A相为例,分析三电平逆变器主电路工作原理,并假设器件为理想器件,不计其导通管压降。定义负载电流由逆变器流向电机或其它负载时的方向为正方向。 (l) 当Sa1,、Sa2导通,Sa3、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流从正极点流过主开关Sa1、Sa2,该相输出端电位等同于正极点电位,输出电压 U=+V dc/2;若负载电流为负方向,则电流流过与主开关管Sa1、Sa2反并联的续流二极管对电容C1充电,电流注入正极点,该相输出端电位仍然等同于正极点电位,输出电压U=+V dc/2。通常标识为所谓的“1”状态,如图所示。

“1”状态“0”状态 “-1”状态 (2) 当Sa2、Sa3导通,Sa1、Sa4关断时,若负载电流为正方向,则电源对电容C1充电,电流 从O点顺序流过箱位二极管D a1,主开关管Sa2:,该相输出端电位等同与0点电位,输出电压U=O;若负载电流为负方向,则电流顺序流过主开关管Sa3和箱位二极管D a2,电流注入O点,该相输出端电位等同于O点电位,输出电压U=0,电源对电容C2充电。即通常标识的“0”状态,如图所示。 (3) 当Sa3、Sa4导通,Sa1、Sa2关断时,若负载电流为正方向,则电流从负极点流过与主开 关Sa3、Sa4反并联的续流二极管对电容C2进行充电,该相输出端电位等同于负极点电位,输出电压U=-V dc/2;若负载电流为负方向,则电源对电容C2充电,电流流过主开关管Sa3、Sa4注入负极点,该相输出端电位仍然等同于负极点电位,输出电压U=-V dc/2。通常标识为“-1”状态,如图所示。

开关死区对SPWM逆变器输出电压波形的影响

开关死区对SPWM逆变器输出电压波形的影响 类别:电源技术阅读:1379 作者:北京航天工业总公司二院206所刘凤君(北京100854)来源:《电源技术应用》开关死区对SPWM逆变器 输出电压波形的影响摘要:分析开关死区对SPWM逆变器输出电压波形的影响,讨论考虑开关死区时的谐波分析方法,并导出谐波计算公式。用计算机辅助分析和实验方法对理想的和实际的SPWM逆变器进行对比研究,得出一些不同于现有理论的结果。关键词:逆变器脉宽调制谐波开关死区 1 引言对于SPWM三相半桥式逆变器,由于开关管固有开关时间ts的影响,开通时间ton往往小于关断时间toff,因此容易发生同臂两只开关管同时导通的短路故障。为了避免这种故障的发生,通常要设置开关死区△t,以保证同桥臂上的一只开关管可靠关断后,另一只开关管才能开通。死区的设置方式有两种:一种是提前△t/2关断、延滞△t/2开通的双边对称设置;另一种是按时关断、延滞△t开通的单边不对称设置。典型的电压型三相SPWM半桥式逆变器如图1(a)所示。其中图1(b)是死区对称设置时的波形图;图1(c)是死区不对称设置时的波形图。在这两种波形图中,uAO为相与直流电源中点“0”之间的理想电压波形(载波比N=(ωc/ωs)=9),uAO′为设置死区时的电压波形。 在感性负载时,当V1导通时A点为+(Ud/2),当V4导通时A点为-(Ud/2)。在死区△t内V1和V4 都不导通时,感性负载使D1和D4续流以保持电流iA连续。当iA为正时D4续流,A点与直流电源负极接通,A点电位为-(Ud/2);当iA为负时D1续流,A点与直流电源正极接通,A点电位为+(Ud/2),这样就产生了误差电压uD1.4。uD1.4与uAO′叠加就产生出实际输出电压uAO″。比较uAO″与uAO可知,实际输出电压发生了畸变。在iA为正时所有正脉冲宽度都减小△t,所有负脉冲宽度都增加△t;在iA为负时所有负脉冲宽度都减小△t,所有正脉冲宽度都增加△t。这是由死区△t内的二极管续流造成的,畸变后的实际输出电压波形如图中uAO″所示。2 实际输出电压uAO″的谐波分析假定载波与调制波不同步,则在调制波各周期中所包含的脉冲模式就不相同,因此不能用调制波角频率ωs为基准,而应当用载波角频率ωc为基准。这样,研究它的基波与基波谐波、载波与载波谐波及其上下边频的分布情况时,就能很方便地用双重傅立叶级数来表示: 2.1 死区双边对称设置时uAO′的谐波分析 如图1(b)所示,uAO′相当于二极管不续流时输出电压的波形。载波三角波的方程式为: 正弦调制波的方程式为:us=Ussinωst 对于理想波uAO,二阶SPWM波正脉冲前沿(负脉冲后沿)采样点a为:Ussinωst=-(ωct-2π-π/2)2Uc/π-Uc 令x=ωct;y=ωst;M=Us/Uc,则可得 x=2πk+π/2-π/2(1+Msiny) 二阶SPWM波负脉冲前沿(正脉冲后沿)采样点b为: Ussinωst=(ωct-2πk-π/2)2Uc/π-Uc x=2πk+π/2+π/2(1+Msiny) 对于图1(b)中uAO′,在x=ωct的2πk-π/2到2π(k+1)-π/2区间内,可以得到二阶SPWM波的时间函数为: y=(ωs/ωc)x,k=0,1,2,3…经分析可以得出: 2.2 对死区双边对称设置时uD1.4的谐波分析图(1)b中误差波uD1.4,其双重傅立叶级数中的Amn+jBmn=-(Ud/mπ)Jn((mMπ/2))[cos(m+n]π+1]sinm(△tωc) (3) 对于载波及载波m次谐波的上下边频:2.3 死区双边对称设置时uAO″的谐波分析由图1(b)可知,实际波uAO″等于有死区波uAO′与误差波uD1.4之和。由于死区是双边对称设置,所以uAO′与调制波uS相位相同,电流iA滞后于uAO′一个φ角,而误差波uD1.4又与iA相位相反,因此,uD1.4的相位超前于uAO′180°-φ,如图(2)所示。因此,当以uAO′的相位为基准时可得: uAO′与uD1.4的基波幅值uAO(1)′=MUd/2;

相关文档
最新文档