东北大学稳态法测固体的导热系数详细过程

东北大学稳态法测固体的导热系数详细过程
东北大学稳态法测固体的导热系数详细过程

(1)实验准备中

首先是实验报告,这次的实验记录的表格,书中并没有给出,所以我们需要自己画表格,需要画的表格一共三个,一个是求稳态时T1、T2的表格,第二个是算待测物厚度h 的表格,最后一个是求散热时T2-t的关系的表格。下铜盘直径D、下铜盘厚度δ、下铜盘质量m都不需要测量。第一个表格的话画10~11列左右就够用了,其实也可以再少点,以防万一可以多画2、3列,表一是个3行11列(这个列数可以自由调整)左右的表格。待测物厚度要测量三次最后取平均值,所以需要画2行4列。表三的话要多画一些,数据还是不少的,地方不够可以另起一行接着画,最后我测得了14个数据,所以一般数据15列(加表头一共16列)比较保险。三个表具体怎么画在学长们的报告里都有,参考一下就可以了。其他的没什么可说,接下来进入实验吧。

(2)实验开始啦

实验台,中间偏左的仪器即为YBF-2型导热系数测试仪。接下来是各个角度的图片

面板(开启前)

面板(开启后)

测试仪上半部分

仪器上半部分(后部)

仪器后部,左边的按钮是电源开关

冰水混合物,温度在0?C左右,一个人拿一个

铜盘及待测物

首先打开仪器后部的电源开关,可以看到仪器面板上有示数,此时先检查一下第三个面板下半部分的黄字是否是50.0(如之前的图所示),然后检查一下面板上“控制方式”的那个开关是否为“自动”,最后检查一下风扇是否打开,若打开则可以听到风扇的声音,将其关闭,整个实验用不到风扇。

使上、下铜盘与待测物紧密接触,待测物的半径与铜盘半径基本相同,所以要使其严密对齐,水平方向看去不要有明显的缝隙,若有缝隙则可以通过调节下铜盘下方的三个螺丝,使其严密接触。

连线,面板左侧一共有两根线,每根线上伸出了两个接头

黑色接头伸入冰水混合物中,蓝色接头伸入上、下铜盘的小孔中:

接好以后就准备读数了

线路接好后旋转上图中的旋钮,旋至I时显示的是上面的线两端的电势差,旋至II 时显示的则是下面的线两端的电势差,所以一般来说I线接上铜盘,II线接下铜盘。

旋至II时面板情况接下来就是计时和读数了。

中间的面板是一个计时器,“复位”将时间归零,“启停”键控制时间开始/暂停,注意要令计时器开始运行,旋钮要旋到最左边“断路”才可以,否则计时器不会运行,如果计时器损坏,用手机以及其他计时的东西一样可以。每3min记录一组数据(每3min旋转旋钮记录下上、下盘温度(即电势差),相差几秒也没有太大差别),直至有三组数据完全一样为止。

这里有两点需要注意,一个就是开始计时的时机,由于整个加热至稳态的过程耗时并不短,如果刚一加热就开始计数的话很可能都记到超过30min了仍然没有达到稳态,这样表格中就没有地方记录新数据了,所以可以采取的方法是加热开始后等待至少10min再开始记录数据,根据我得到的结果以及学长的报告中的结果来看,一般上盘电势差在1.9X 左右(或者1.8X也可以)时比较接近,可以开始记录数据了(我测得的是2.00,学长的报

告中测得的也是2.00,同学的有1.9x的,还有1.7x的)总之开始记录的时机不要太早,否则会有些麻烦,而且我们真正需要的只是稳态时的数据,其中的变化不需要记录的特别详细。

第二个就是注意接线端,尤其是上午做实验的同学,冰水混合物刚从冰箱中拿出来的时候,冰块的体积很大,水则没有多少,所以热电偶温度计的黑线并不能确实地伸进去,在实验过程中很有可能露出水面暴露在空气中,那样的话温度就不准了,所以一定要注意,如果发现某此得到的数据与之前的相差过大,则很有可能是热电偶温度计的黑线段露出水面了,同样需要注意的还有蓝线端,蓝线端即使伸得足够深了也有可能因为被黑线带动而接触不良,导致示数有变化,如果遇到这种情况,不要停止计时,将黑线端与蓝线端重新插进去就可以了,数据也照常记录(如果实在是相差过大可以按照整体的趋势稍微改动一下,在最后的稳态值要保证是准的前提下),只要最后能得到稳态值就没有问题。

稳态值得到以后我们需要测得下铜盘散热时T2与t的关系。

首先将下铜盘加热(将中间待测物拿下,另上、下铜盘直接接触),旋钮旋到II,观察下铜盘的电势差,在电势差为u2(下铜盘稳态时的读数)+0.10时,移开上铜盘(与上铜盘连接着的旋臂上有一个固定旋钮,拧开后可以移动上铜盘,在前面的图中可以看到),旋钮旋到“断路”,开始计时,并计第一个数值为u2(下铜盘稳态时的读数)+0.10,此后每3 0s计一次数,直到读数降到u2(下铜盘稳态时的读数)-0.10时停止计数,至此该过程结束。

下盘加热

移开上盘,令下盘散热然后是测量待测物厚度h,使用游标卡尺,一共测量三次取平均值。熟练的同学可以一边做上个实验一边测量。

至此整个过程就结束了。

(3)实验结束喽

实验结束后是实验数据的处理:

1.电势差转换成温度

对照书中的热电偶分度表,用内插法将电动势换算成温度,比如将2.00mV换算成温度,我们发现49?C时电势差为1.992mV,50?C时电势差为2.035mV,则所求温度应在4 9和50之间,我们用线性内插,有

设所求为T,则(T-49)/(2.00-1.992)=(50-49)/(2.035-1.992) 求得T=49.18604051≈49. 2?C。

2.下铜盘直径D、下铜盘厚度δ、下铜盘质量m

这三个数据均在下铜盘上刻出:

第一个H代表下铜盘厚度δ,单位为mm,图中则为7.1mm。

第二个R代表下铜盘半径R,单位为mm,图中下铜盘半径为64.9mm,经过简单计算可得到直径为129.8mm。

第三个M代表下铜盘质量m,单位为g,图中下铜盘质量为831g。

注意每个铜盘的参数都可能不一样。

比热容c在书中给出。

思考题做1、3题。

整个实验就结束。

物理实验报告-稳态法导热系数测定实验

稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定材料的导热系数与温度之间的依变关系。 4、学习用温差热电偶测量温度的方法。 5、学习热工仪表的使用方法 二、实验原理 平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。 三、实验设备 实验设备如图2所示。 图2 平板式稳态法导热仪的总体结构图 1.调压器 2.铜板 3.主加热板 4.上均热片 5.中均热片 6.下均热片 7.热电偶 8.副加热板 9.数据采控系统10.温度仪表 11.试样装置12.循环水箱电位器13.保温材料14.电位器 键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。 数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。“RST”复位键:复位数据,重新选择。 控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。 四、实验内容 1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。 2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。 3、对实验结果进行分析与讨论。 4、分析影响制导热仪测量精度的主要因素。 5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。 五、实验步骤 1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。 2、测量加热板的内部电阻。 3、校准热工温度仪表。 4、向水箱内注入冷却水。 5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。 6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。

准稳态法测量比热和导热系数

准稳态法测量比热和导热系数 【实验目的】 1.了解利用准稳态方法测量物质的比热和导热系数的原理; 2.学习热电偶测量温度的原理和使用方法。 【实验背景】 本实验内容属于热物理学的内容,热传递的三种基本方式包括热传导,热对流和热辐射,而衡量物质热传导特性的重要参数是物质的比热和导热系数。以往对于比热和导热系数的测量大都使用稳态法,但是该方法要求温度和热流量均要稳定,因而要求实验条件较为严格,从而导致了该方法测量的重复性,稳定性及一致性差,误差大。该实验采用一种新的测量方法,即准稳态方法,实验过程中只要求被加热物质的温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到该物质的比热和导热系数。 比热定义为单位质量的某种物质,在温度升高或降低1度时所吸收或放出的热量,叫做这种物质的比热,单位为J/(kg·K),它表征了物质吸热或者放热的本领。导热系数定义为单位温度梯度下,单位时间内由单位面积传递的热量,单位为W/(m·K),即瓦/(米·开),它表征了物体导热能力的大小。 了解物质的热力学特性有很多应用,如了解土壤或岩石的热力学特性有助于人们了解该地区的大气环境特征。了解混凝土制品的比热和导热系数有助于人们了解材料的保温特性,开发更好保温或隔热材料。了解玻璃建筑材料的比热和导热系数,有助于人们研究和开发更加保温以及安全的玻璃制品。交通方面,由于道路结构处于不断变化的温度环境中,了解沥青或沥青混合料的热力学特性参数,能够使人们精确的模拟道路结构温度场,了解不同状况下道路材料对于各种交通工具的影响。了解橡胶的热力学特性参数,有助于人们开发出更加安全的交通道路和轮胎材料。 【实验仪器】 1. ZKY-BRDR型准稳态法比热、导热系数测定仪; 2. 实验样品包括橡胶和有机玻璃各一套,(每套四块),加热板两块,热电偶两只,导 线若干,保温杯一个。 1. 准稳态法测量原理 考虑如图1所示的一维无限大导热模型:一无限大 不良导体平板厚度为2R,初始温度为t0,现在平板两侧 同时施加均匀的指向中心面的热流密度q c,则平板各处 的温度t(x,τ)将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表 达如下: 图1理想的无限大不良导体平板

实验十四 稳态法测量不良导体的导热系数

实验十四 稳态法测量不良导体的导热系数 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数的实验方法一般分为稳态法和动态法两类。在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 【实验原理】 1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在时间内通过样品的热量满足下式: t ΔQ ΔS h t Q B 21 θθλ?=ΔΔ (1) 式中λ为样品的导热系数,为样品的厚度,为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为,则由(1)式得: B h S B d

准稳态法测量比导热系数

准稳态法测量比导热系数

————————————————————————————————作者:————————————————————————————————日期:

准稳态法测量比热和导热系数 【实验目的】 1.了解利用准稳态方法测量物质的比热和导热系数的原理; 2.学习热电偶测量温度的原理和使用方法。 【实验背景】 本实验内容属于热物理学的内容,热传递的三种基本方式包括热传导,热对流和热辐射,而衡量物质热传导特性的重要参数是物质的比热和导热系数。以往对于比热和导热系数的测量大都使用稳态法,但是该方法要求温度和热流量均要稳定,因而要求实验条件较为严格,从而导致了该方法测量的重复性,稳定性及一致性差,误差大。该实验采用一种新的测量方法,即准稳态方法,实验过程中只要求被加热物质的温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到该物质的比热和导热系数。 比热定义为单位质量的某种物质,在温度升高或降低1度时所吸收或放出的热量,叫做这种物质的比热,单位为J/(kg·K),它表征了物质吸热或者放热的本领。导热系数定义为单位温度梯度下,单位时间内由单位面积传递的热量,单位为W/(m·K),即瓦/(米·开),它表征了物体导热能力的大小。 了解物质的热力学特性有很多应用,如了解土壤或岩石的热力学特性有助于人们了解该地区的大气环境特征。了解混凝土制品的比热和导热系数有助于人们了解材料的保温特性,开发更好保温或隔热材料。了解玻璃建筑材料的比热和导热系数,有助于人们研究和开发更加保温以及安全的玻璃制品。交通方面,由于道路结构处于不断变化的温度环境中,了解沥青或沥青混合料的热力学特性参数,能够使人们精确的模拟道路结构温度场,了解不同状况下道路材料对于各种交通工具的影响。了解橡胶的热力学特性参数,有助于人们开发出更加安全的交通道路和轮胎材料。 【实验仪器】 1. ZKY-BRDR型准稳态法比热、导热系数测定仪; 2. 实验样品包括橡胶和有机玻璃各一套,(每套四块),加热板两块,热电偶两只, 导线若干,保温杯一个。 【实验原理】 1. 准稳态法测量原理 考虑如图1所示的一维无限大导热模型:一无限大 不良导体平板厚度为2R,初始温度为t0,现在平板两侧 同时施加均匀的指向中心面的热流密度q c,则平板各处 的温度t(x,τ)将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表 达如下: R R x q c q c q c q c 图1理想的无限大

稳态法测量材料的导热系数

稳态法测量材料的导热系数 2015-04-02 导热系数是表征材料导热能力大小的量。导热系数是指在稳定传热条件下,1m厚的材料的两侧温度相差1°C时,在单位时间内,通过1m2所传导的热量。 材料结构的变化与含杂质等因素都会对导热系数产生明显的影响。由于导热性能有许多种测量方法,事先必须考虑到材料导热系数的大致范围和样品特征,以及使用温度的大致范围,以选用正确的测量方法。本文介绍了导热系数测量的基本理论与定义,热流法、保护平板法测量导热系数的原理与应用。 稳态测试方法主要适用于测量中低导热系数材料。稳态法就是当待测试样上温度分布达到稳定后,通过测量试样内的温度分布和穿过试样的热流来测出导热系数。稳态法通常要求试样质地均匀、干燥、平直、表面光滑。稳态法测导热系数的基本原理图及公式为: λ=Qd/A△T;单位:W/(m?K) 注意:稳态条件下;材料应为单一均质的干燥材料。 Q:热流稳定后,通过试样的热流量(w); d:试样厚度(m); A:试样面积(m); :温度差(℃)。

热流计法 热流计法是一种基于一维稳态导热原理的比较法。将样品插入两个平板间,在其垂直方向通入一个恒定的单向的热流,使用校正过的热流传感器测量通过样品的热流,传感器在平板与样品之间和样品接触。热流法适用于低导热材料,测试时将样品夹在两个热流传感器中间测试,在达到温度梯度稳定期后,测量样品的厚度、上下板间的温度梯度及通过样品的热流便可计算得到导热系数的绝对值。适合测试导热系数范围为0.001~50W/m?K的材料如导热胶、玻璃、陶瓷、金属、铝基板等低导热材料。 护热平板法 护热板法导热仪的工作原理和使用热板与冷板的热流法导热仪相似,保护热板法的测量原理如下图所示。热源位于同一材料的两块样品中间。热板周围的保护加热器与样品的放置方式确保从热板到辅助加热器的热流是线性的、一维的。当试样上、下两面处于不同的稳定温度下,测量通过试样有效传热面积的热流及试样上、下表面的温度及厚度,应用傅立叶导热方程计算Tm温度时的导热系数。 导热系数λ=Qd/A((t2-t1)+(t4-t3)) Q:热流稳定后,通过试样的热流量; d:试样厚度; A:试样面积; t2-t1/t4-t3:温度差。 该法误差较小且可用于测定低温导热系数材料(0.02-2.0W/m?K)如塑料、纤维、陶瓷基板、氧化铝瓷、空心玻璃、各种保温材料等匀质板状材料。试样应是均质的硬质材料,两表面应平整光滑且平行。在用该法对不良导体的导热系数测定时,不宜采用厚度较小的不良导体平板作为实验样品。

稳态法测导热系数

五、数据处理 1、在内容三所测数据中,选取稳态温度附近10组数据,用逐差法计算散热盘C在稳态T2附近的冷却速率Vc。 根据选取稳态温度附近10组数据 由逐差法计算有Vc={(44.7-42.2)+(44.3-41.6)+(44.1-41.2)+(43.3-40.8)+(42.6-40.5)}/(5*2.5)=1.048℃/min=0.0175℃/s 2、计算出待测样品B的导热系数λ: λ={mch B(R c+2h c)/2πR b2 (T1-T2)(R c+h c)}*(△T/△t) B R c=(9.960+9.958+9.980+9.956+9.942)/(2*5)=4.9796cm=4.9796*10^-2m hc=(0.984+0.986+0.982+0.986+0.982)/5=0.984cm=9.84*10^-3m R b=(9.966+9.950+9.948+9.958+9.956)/(2*5)=4.9778cm=4.9778*10^-2m T1=53.1℃T2=42.3℃ △T/△t=Vc=0.0175℃/s λ={0.669*385*8.332*10^-3*(4.9796*10^-2+2*9.84*10^-3)/2*3.14*(4.9778*10^-2)2*(53.1-42.3) ( 4.9796*10^-2+9.84*10^-3)}*0.0175=0.261 W/m*K 3、求出环氧盘λ的不确定度,给出结果表达式。(只考虑冷却速率误差) 由于比较复杂,过程见实验报告纸。 可得结果为Uλ=0.036 W/m*K∴λ=0.261±0.036 W/m*K 4、分析误差原因。 测量盘的直径与厚度时由于是人为读数,有读数误差,再有环境误差,盘的质量可能由于多次实验有磨损存在误差等等。 5、所有测量数据都要列表。

稳态法测量不良导体的导热系数(讲义)

稳态法测量不良导体的热导率 热导率(又称导热系数)是反映材料热传导性能的重要物理量。材料的导热机理在很大程度上取决于它的微观结构.热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。因此,某种材料的热导率不仅与材料的物质种类密切相关,而且还与它的微观结构、温度、压力及杂质含量相联系.在科学实验和工程设计中,所用材料的热导率都需要用实验的方法精确测定. 【实验目的】 (1)掌握用稳态法测量不良导体(橡皮样品)的热导率; (2)掌握用作图的方法求冷却速率; (3)学习温度传感器的应用方法; 【实验仪器】 FD-TC-B型导热系数测定仪(如图1所示它由电加热器、铜加热盘C,橡皮样品圆盘B,铜散热盘P、支架及调节螺丝、温度传感器以及控温与测温器组成)、分度值0.02mm游标卡尺、量程3000g,分度值为0.1g电子天平、量程30cm,分度值为1mm钢板尺、秒表等. 图1 FD-TC-B 导热系数测定仪装置图 【实验原理】 1898年C.H.Lees首先使用平板法测量不良导体的热导率,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。

设稳态时,样品的上下平面温度分别为1T 、2T ,根据傅立叶传导方程,在t ?时间内通过样品的热量Q ?满足下式: S h T T t Q B 21-=??λ (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的半径为B R ,则由(1)式得: 2 21B B R h T T t Q πλ-=?? (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以 借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。 当传热达到稳定状态时,样品上下表面的温度1T 和2T 不变,这时可以认为加热盘C 通过样品传递的热量与散热盘P 向周围环境散出的热量相等。因此可以通过散热盘P 在稳定温度2T 时的散热速率来求出样品的传热速率 t Q ??。 实验时,当测得稳态时的样品上下表面温度1T 和2T 后,将样品B 抽去,让加热盘C 与散热盘P 接触,当散热盘的温度上升到高于稳态时的2T 值C 5后,移开加热盘,让散热盘在电扇作用下冷却,记录散热盘温度T 随时间t 的下降情况,用作图的方法求出散热盘在2T 时的冷却速率 2 T T t T =??,则散热盘P 在2T 时的散热速率为: 2 T T t T mc t Q =??=??散 (3) 其中m 为散热盘P 的质量,c 为其比热容。 在达到稳态的过程中,P 盘的上表面并未暴露在空气中,而物体的冷却速率与它的散热表面积成正比,为此,稳态时铜盘P 的散热速率的表达式应作面积修正: ) 22() 2(2 2 2 P P P P P p T T h R R h R R t T m c t Q ππππ++??=??=散 稳态时样品B 的传热速率等于散热盘P 的散热速率,即:

稳态法测量不良导体的导热系数

稳态法测量不良导体的导热系数 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数的实验方法一般分为稳态法和动态法两类。在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;当适当控制实验条件和实验参数使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 【实验目的】 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 【实验原理】 1898年C.H.Lees 首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为1θ、2θ,根据傅立叶传导方程,在t ?时间内通过样品的热量Q ?满足下式: S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状,设圆盘样品的直径为B d ,则由(1)式得: 2214B B d h t Q πθθλ-=?? (2) 实验装置如图1所示,固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以 借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。 当传热达到稳定状态时,样品上下表面的温度1θ和2θ不变,这时可以认为加热盘C 通过样品传递的热流量与散热盘P 向周围环境散热量相等。因此可以通过散热盘P 在稳定温度2θ时的散热速率来求出热流量 t Q ??。 实验时,当测得稳态时的样品上下表面温度1θ和2θ后,将样品B 抽去,让加热盘C 与

实验稳态法测定材料导热系数实验

实验稳态法测定材料导热系数实验 一.实验目的 1.了解热传导现象的物理过程; 2.掌握用稳态平板法测量材料的导热系数; 3.学习用作图法求冷却速率; 4.掌握用热电转换方式进行温度测量的方法; 二.实验原理 导热系数(热导率)是反映材料热性能的物理量,本实验采用的是稳态平板法测量材料的 导热系数。热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z0 处取一个垂直截面积dS (如图1所示)。以dT/dz 表示在Z 处的温度梯度,以dQ/dτ 表示在该处的传热速率(单位时间内通过截面积dS 的热量),那么传导定律可表示成: (S1-1) 图1 导热示意图 式中的负号表示热量从高温区向低温区传导,式中比例系数λ即为导热系数,可见热导 率的物理意义:在温度梯度为一个单位的情况下,单位时间内垂直通过单位面积截面的热量。利用(S1-1)式测量材料的导热系数λ,需解决的关键问题有两个:一个是在材料内造成一个温度梯度dT/dz ,并确定其数值;另一个是测量材料内由高温区向低温区的传热速率dQ/dτ。 1.温度梯度 为了在样品内造成一个温度的梯度分布,可以 把样品加工成平板状,并把它夹在两块良导体铜板之 间(图2)使两块铜板分别保持在恒定温度T1和T2, 就可能在垂直于样品表面的方向上形成温度的梯度分布。 样品厚度可做成h ≤D (样品直径)。这样,由于样品侧面积比平板面积小得多,由侧面散去的热量可以忽略不计,可以认为热量是沿垂直于样品平面的方向上传导,即只在此方向上有温度梯度。由于铜是热的良导体,在达到平衡时,可以认为同一铜板各处的温度相同,样品内同一平行平面上各处的温度也相同。这样只要测出样品的厚度h 和两块铜板的温度 dt ds dT dQ Z ?-=0 )( λ板 板 图2铜板导热示意图

稳态法测量不良导体导热系数

稳态法测量不良导体导热系数 【实验目的】 1.利用物体的散热速率求传热速率。 2.(用稳态平板法测定不良导体的导热系数。) 【仪器用具】 1.导热系数测定仪(含实验装置、数字电压表、数字秒表) 一台 2.杜瓦瓶(或低温实验仪) 一只/台 3.硬铝样品(附绝缘圆盘一块,供散热时覆盖用) 一根 4.橡皮样品 一块 5.测片 一把 【实验容】 1.测量不良导体----橡皮样品的导热系数。 2.测量金属----硬铝测试样品的导热系数。 3.测量空气的导热系数。 【结构特性】 在使用中,样品架的三个螺旋微头是用来调节散热盘和圆筒加热盘之间距离和平整度的。除测量金属样品时不用圆筒固定外,其它如测橡皮和空气的导热系数时,均将圆筒的固定轴对准样品支架上的圆孔插入,并用螺母旋紧,具体步骤是:先旋下螺母,将加热圆筒放下。使固定轴穿过圆孔,再将螺母旋上并拧紧,最后固定筒后的紧固螺钉,从而由三个螺旋测微头来调节平面和待测样品厚度。 【测量围、精度】 1.温度测量部分:室温0~110℃;测量精度:±1℃ 温差测量的精度0.5℃; 2. 计时部分:围0~100min;最小分辨率1S, 精度:10-5 3. 电压表:精度0.1%; 【实验原理】 导热是物体相互接触时,由高温部分向低温部分传播热量的过程.当温度的变化只是沿着一个方向(设Z 方向)进行的时候,热传导的基本公式可写为: (2-9-1) 它表示在dt 时间通过ds 面的热量为dQ,dT/dz 温度梯度,λ为导热系数,它的大小由物体本身的物理性质决定,单位为w/(m ?k),它是表征物质导热性能大小的物理量,式中负号表示热量传递向着降低的方向进行。 在图一中,B 为待测物,它的上下表面分别和上下铜盘接触,热量由高温铜盘通过待测物B 向低温铜盘传递,若B 很薄,则通过B 侧面向周围环境的散热量可以忽略不计,视热量沿着垂直待测圆板B 的方向传递,那么,在稳定导热(即温度场中各点的温度不随时间而变)的情况下,在Δt 时间,通过面积为S 、厚度为h 的匀质板的热量为 dt ds dz dT dQ Z ?-=0 )( λ

实验八 稳态法测橡胶板的导热系数

实验七 稳态法测橡胶板的导热系数 导热系数是描述物质传导热量特性的物理量,其数值大小与物质本身的性质有关,同时还取决于物质的状态。导热系数测定方法一般分为稳态法和动态法两种。XXXXXXXXXXXX 一、实验目的 1.了解热传导的基本规律,掌握稳态法测定不良导体的导热系数的试验方法。 XXXXXXXXXXXXXXXXXXXXXXXXX 二、实验仪器 导热系数测定仪(真空保温杯、样品、温差热电偶、直流数字电压表等XXXXXXXXXXXX 。 三、实验原理 热量由物体的高温部分自动地传到低温部分称为热传导。XXXXXXXXXXXXXXXXXXXX 1.温度梯度的测量 为了在材料内造成一个温度梯度,可以把样品加工成平板状,并把样品夹在两块热的良导体之间,如图3-7-2所示。XXXXXXXXXXXXXXXXXXXXXXXX 2.传热速率 t Q ??的测量XXXXXXXXXXXXXXXXXXXXXXXXX 四、实验步骤 1.用游标卡尺测量散热盘D 和橡胶盘B 半径和厚度。 2.安装、调试、熟悉使用导热系数测定仪。XXXXXXXXXXXXXXXXXX 五、数据记录与处理 1.数据记录 (1)散热盘D XXXXXXXXXX 2.数据处理XXXXXXXXXXXXXXXXX 六、参量转换实验法 本实验是典型的参量转换测量实验方法。该实验在设计时,避开了传热速率这个无法测量的量,把它巧妙的转化为对铜板散热速率的测量,进而又把铜板散热速率这个不容易测量的量转化为对铜板冷却速率t T ??的测量。XXXXXXXXXXXXXXXXXXXXXXXXX 七、注意事项 1.当散热板D 的温差电动势升到)07.0(22+=εεmV 时,将电热板的供电电压调至零,一定将B 盘覆盖在散热盘D 的上表面。 XXXXXXXXXXXXXXXXXXXXXXXXX 八、思考题 1.分析本实验原理、方法、测量装置及实验结果等方面有什么不足之处,提出如何尽量减少测量误差,提高测量准确度的具体措施及方法。 XXXXXXXXXXXXXXXXXXXXXXXXX

用准稳态法测介质的导热系数和比热的实验报告

用准稳态法测介质的导热系数和比热 热传导是热传递三种基本方式之一。导热系数定义为单位温度梯度下每单位时间内由单位面积传递的热量,单位为W / (m ? K)。它表征物体导热能力的大小。 比热是单位质量物质的热容量。单位质量的某种物质,在温度升高(或降低)1度时所吸收(或放出)的热量,叫做这种物质的比热,单位为J/(kg ·K )。 测量导热系数和比热通常都用稳态法,使用稳态法要求温度和热流量均要稳定,但在实际操作中要实现这样的条件比较困难,因而会导致测量的重复性、稳定性、一致性较差,误差也较大。为了克服稳态法测量的这些弊端,本实验使用了一种新的测量方法——准稳态法,使用准稳态法只要求温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到导热系数和比热。 【实验目的】 1. 了解准稳态法测量导热系数和比热的原理; 2. 学习热电偶测量温度的原理和使用方法; 3. 用准稳态法测量不良导体的导热系数和比热。 【实验仪器】 1. ZKY-BRDR 型准稳态法比热、导热系数测定仪 2. 实验装置一个,实验样品两套(橡胶和有机玻璃,每套四块),加热板两块,热电偶两只,导线若干,保温杯一个 【实验原理】 1. 准稳态法测量原理 考虑如图B2-1所示的一维无限大导热模型:一无限大不良导体平板厚度为R 2,初始温度为0t ,现在平板两侧同时施加均匀的指向中心面的热流密度c q ,则平板各处的温度),(τx t 将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表达如下: ???? ???? ?==??=????=??02 2)0,(0),0(),(),(),(t x t x t q x R t x x t a x t c τλτττ τ 式中c a ρλ/=,λ为材料的导热系数,ρ为材料的密度,c 为材料的比热。 可以给出此方程的解为(参见附录): )cos )1(2621(),(2212 1 220τ ππ πτλτR an n n c e x R n n R R x R R a q t x t - ∞ =+?∑ -+-++= (B2-1) 考察),(τx t 的解析式(B2-1)可以看到,随加热时间的增加,样品各处的温度将发生变化,而且我们注意到式中的级数求和项由于指数衰减的原因,会随加热时间的增加而逐渐变小,直至所占份额可以忽略不计。 定量分析表明,当5.02 >R a τ以后,上述级数求和项可以忽略。这时式(B2-1)可简写成: 图B2-1理想的无限大不良导体平板

稳态法测量物体的导热系数——讲义

实验4 稳态法测量物体的导热系数 导热系数是表征物体传热性能的物理量,它与材料本身的性质、结构、湿度及压力等因素有关。测量导热系数的方法一般分为稳态法和动态法两类。在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,则待测样品内部形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的。本实验采用稳态法。 【实验目的】 (1)了解热传导现象的物理过程; (2)用稳态法测定热的不良导体──橡胶的导热系数; (3)学习用温度传感器测量温度的方法。 【预习要点】 (1)复习游标卡尺的使用; (2)热传导的特点是什么?用什么公式描述这一现象? (3)用稳态法测定不良导体导热系数时,稳态指的是什么?怎样判断是否到达稳态? (4)本实验怎样通过转换法计算传热速率?计算散热速率时,怎样采集和选用实验数据? 【实验原理】 当物体内部温度不均匀时,热量会自动地从高温处传递到低温度处,这种现象称为热传导,它是热交换基本形式之一。设在物体内部垂直于热传导的方向上取相距为h 、温度分别为1T 、2T 的二个平行平面(图4.1)。由于h 很小,可认为二平面的面积均为S ,则在t ?时间内,沿平面S 的垂直方向所传递的热量满足下列傅里叶导热方程式 ()h T T S t Q 21-=??λ (4.1) 上式为热传导的基本公式,由法国数学家、物理学家约瑟夫·傅里叶(Joseph Fourier)导出。式中比例系数λ称为导热系数,又称热导率,它是表征材料热传导性能的一个重要参数。λ与物体本身材料的性质及温度有关,材料的结构变化与杂质多寡对λ都有明显的影响,同时,环境温度对λ也有影响。在各向异性材料中,即使同一种材料,其各个方向上的λ值也不相等。 由式(4.1)知,导热系数λ在数值上等于两个相距单位长度的平行平面,当温度相差一个单位时,在垂直于热传导方向上单位时间内流过单位面积的热量。在国际单位制中, 图4.1热传导

稳态法测固体的导热系数讲义

稳态法测固体的导热系数 热传导是热量传递的三种基本形式之一,是指物体各部分之间不发生相对宏观位移情况下由于温差引起的热量的传递过程,其微观机制是热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。在金属中自由电子起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。 法国科学家傅里叶(J.B.J.Fourier 1786——1830)根据实验得到热传导基本关系,1822年在其著作《热的解析理论》中详细的提出了热传导基本定律,指出导热热流密度(单位时间通过单位面积的热量)和温度梯度成正比关系。数学表达式为: T grad q λ-= 此即傅里叶热传导定律,其中q 为热流密度矢量(表示沿温度降低方向单位时间通过单位面积的热量),λ是导热系数又称热导率,是表征物体传导热能力的物理量, λ在数值上等于每单位长度温度降低1个单位时,单位时间内通过单位面积的热量,其单位是 11K m W --?? 。一般说来,金属的导热系数比非金属的要大;固体的导热系数比液体的 要大;气体的导热系数最小。因此,某种物体的导热系数不仅与构成物体的物质种类密切相关,而且还与它的微观结构、温度、压力、湿度及杂质含量相联系。在科学实验和工程设计中,需要了解所用物体的一些热物理性质,导热系数就是重要指标之一,常常需要用实验的方法来精确测定。 测量导热系数的方法很多,没有哪一种测量方法适用于所有的情形,对于特定的应用场合,也并非所有方法都能适用。要得到准确的测量值,必须基于物体的导热系数范围和样品特征,选择正确的测量方法。测量方法可以分为稳态法和非稳态法两大类。稳态法是在加热和散热达到平衡状态、样品内部形成稳定温度分布的条件下进行测量的方法。非稳态法则是在测量过程中样品内部的温度分布随时间是变化的,测出这种变化,得到热扩散率再利用物体已知的密度和比热,求得导热系数。本实验采用稳态平板法测量物体的导热系数,该法设计思路清晰、简捷,具有典型性和实用性。 【实验目的】 1.了解热传导现象的物理过程。 2.了解物体散热速率和传热速率的关系。 3.学会用铂电阻型传感器测定温度。 4.学习一种测量材料导热系数的实验方法。 【实验原理】 稳态平板法测量物体的导热系数原理示意图如图1,发热盘A 将热量传到待测物体样品盘B ,再传到散热盘C ,由于A 、C 盘是用热的良导体做的,与待测样品盘B 紧密接触,

导热系数实验报告..

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ 1、θ2 的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则 半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

准稳态法测导热系数和比热

一、实验名称:准稳态法测量不良导体的导热系数和比热 二、实验目的: 1. 了解准稳态法测量不良导体的导热系数和比热原理,并通过快速测量学习掌握该方法; 2. 掌握使用热电偶测量温度的方法; 3. 学习使用数字万用表。 三、实验原理: 1. 准稳态法测量原理 考虑如图B2-1所示的一维无限大导热模型:一无限大不良导体平板厚度为R 2,初始温度为0t ,现在平板两侧同时施加均匀的指向中心面的热流密度c q ,则平板各处的温度),(τx t 将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表达如下: ???? ???? ?==??=????=??02 2)0,(0),0(),(),(),(t x t x t q x R t x x t a x t c τλτττ τ 式中c a ρλ/=,λ为材料的导热系数,ρ为材料的密度,c 为材料的比热。 可以给出此方程的解为(参见附录): )cos )1(2621(),(2 2212 1 220τ ππ πτλτR an n n c e x R n n R R x R R a q t x t - ∞ =+?∑ -+-++= (B2-1) 考察),(τx t 的解析式(B2-1)可以看到,随加热时间的增加,样品各处的温度将发生变化,而且我们注意到式中的级数求和项由于指数衰减的原因,会随加热时间的增加而逐渐变小,直至所占份额可以忽略不计。 定量分析表明,当5.02 >R a τ以后,上述级数求和项可以忽略。这时式(B2-1)可简写成: ?? ? ???-++=62),(20R R x R a q t x t c τλτ (B2-2) 这时,在试件中心处(0=x )有: ?? ? ???-+ =6),(0R R a q t x t c τλτ (B2-3) 在试件加热面处(R x ±=)有: ?? ? ???++ =3),(0R R a q t x t c τλτ (B2-4) 由式(B2-3)和(B2-4)可见,当加热时间满足条件 5.02>R a τ 时,在试件中心面和加热面 图B2-1理想的无限大不良导体平板

金属导热系数测量实验报告

金属导热系数测量实验报告

————————————————————————————————作者: ————————————————————————————————日期:

金属导热系数测量实验报告 姓名:陈岩松 学号:550121 5012 学院:高等研究院 班级:15级本硕实验班 一、实验目的: 1.掌握稳态法测定金属良导热体的导热系数。 2.了解物体散热速率和传热速率的关系。 3.理解温差热电偶特性。 二、实验原理: 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为T 1、 T2的平行平面(设T1>T 2),若平面面积均为S ,在t ?时间内通过面积S的热量Q ?免租下述表达式: ? h T T S t Q )(21-=??λ (1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个

单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B,再把带发热器的圆铜盘A放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度T 1、T 2,T 1、T 2分别插入金属圆筒边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 221)(B B R h T T t Q πλ-=?? (2) 式中,b R 为样品的半径,b h 为样品的厚度。当热传导达到稳定状态时,T 1和T2的值不变,通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P在稳定温度T 2的散热速率来求 出热流量t Q ??。实验中,在读得稳定时T 1和T 2后,即可将B 盘移去,而使A 盘的底面与铜盘P直接接触。 当铜盘P的温度上升到高于稳定时的T 2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度T 随时间t 变化情况,然后由此求出铜盘在T 2的冷却速率3 T T t T =??,而3 T T t T mc =??,就是铜盘P在温度为T 3时的 散热速率。但要注意,这样求出的 t T ??是铜盘P 在完全表面暴露于空气中的冷却速率,其散热表面积为P P B h R R ππ222+。然而,在观察测量样品的稳态传热时,P盘的上表面是被样品覆盖着的,并未向外界散热,所以当样品盘B 达到稳定状态时,散热面积仅为:P P P h R R ππ22 +。考虑到物体的冷却速率与它的表面积成正比,在稳态是铜盘散热速率的表达式应作如下修正: ) 22() 2(2 2 P P P p P P h R R h R R t T mc t Q ππππ++??=?? (3) 将式(3)代入(2),得 2211 ))(22()2(B P P B p P R T T h R h h R t T mc πλ?-++??= 三、实验仪器: TC-3导热系数测定仪、杜瓦瓶

最新准稳态法测量比热和导热系数

准稳态法测量比热和 导热系数

准稳态法测量比热和导热系数 【实验目的】 1.了解利用准稳态方法测量物质的比热和导热系数的原理; 2.学习热电偶测量温度的原理和使用方法。 【实验背景】 本实验内容属于热物理学的内容,热传递的三种基本方式包括热传导,热对流和热辐射,而衡量物质热传导特性的重要参数是物质的比热和导热系数。以往对于比热和导热系数的测量大都使用稳态法,但是该方法要求温度和热流量均要稳定,因而要求实验条件较为严格,从而导致了该方法测量的重复性,稳定性及一致性差,误差大。该实验采用一种新的测量方法,即准稳态方法,实验过程中只要求被加热物质的温差恒定和温升速率恒定,而不必通过长时间的加热达到稳态,就可以通过简单的计算得到该物质的比热和导热系数。 比热定义为单位质量的某种物质,在温度升高或降低1度时所吸收或放出的热量,叫做这种物质的比热,单位为J/(kg·K),它表征了物质吸热或者放热的本领。导热系数定义为单位温度梯度下,单位时间内由单位面积传递的热量,单位为W/(m·K),即瓦/(米·开),它表征了物体导热能力的大小。 了解物质的热力学特性有很多应用,如了解土壤或岩石的热力学特性有助于人们了解该地区的大气环境特征。了解混凝土制品的比热和导热系数有助于人们了解材料的保温特性,开发更好保温或隔热材料。了解玻璃建筑材料的比热和导热系数,有助于人们研究和开发更加保温以及安全的玻璃制品。交通方面,由于道路结构处于不断变化的温度环境中,了解沥青或沥青混合料的热力学特性参数,能够使人们精确的模拟道路结构温度场,了解不同状况下道路材料对

于各种交通工具的影响。了解橡胶的热力学特性参数,有助于人们开发出更加安全的交通道路和轮胎材料。 【实验仪器】 1. ZKY-BRDR 型准稳态法比热、导热系数测定仪; 2. 实验样品包括橡胶和有机玻璃各一套, (每套四块),加热板两块,热电偶两只,导线若干,保温杯一个。 【实验原理】 1. 准稳态法测量原理 考虑如图1所示的一维无限大导热模型:一无限大不良导体平板厚度为2R ,初始温度为t 0,现在平板两侧同时施加均匀的指向中心面的热流密度q c ,则平板各处的温度t (x ,τ)将随加热时间τ而变化。 以试样中心为坐标原点,上述模型的数学描述可表达如下: ???? ?? ?? ?==??=????=??02 2)0,(0) ,0(),() ,(),(t x t x t q x R t x x t a x t c τλττττ 式中c a ρλ/=,λ为材料的导热系数,ρ为材料的密度,c 为材料的比热。上述方程的解为(参见附录): )cos )1(2621(),(2 2 212 1 220τππ πτλτR an n n c e x R n n R R x R R a q t x t - ∞ =+?∑-+-++ = (1) 考察),(τx t 的解析式(1)可以看到,随加热时间的增加,样品各处的温度将发生变化,而且我们注意到式中的级数求和项由于指数衰减的原因,会随加热时间的增加而逐渐变小,因而该项对于(1)式的结果影响较小。 图1理想的无限大不良导体平板

相关文档
最新文档