2-2 验证快速电子的相对论效应 实验报告

2-2 验证快速电子的相对论效应 实验报告
2-2 验证快速电子的相对论效应 实验报告

近代物理实验报告

指导教师:得分:

实验时间:2010 年 3 月31 日,第五周,周三,第5-8 节

实验者:班级材料0705 学号200767025 姓名童凌炜

同组者:班级材料0705 学号200767007 姓名车宏龙

实验地点:综合楼507

实验条件:室内温度℃,相对湿度%,室内气压

实验题目:验证快速电子的相对论效应

实验仪器:(注明规格和型号)

本实验的装置主要由以下部分组成:β放射源;半圆聚焦β磁谱仪;真空室;NaI闪烁探头;高压电源;放大器;多道脉冲幅度分析器;微机与数据处理软件;γ放射源(各部如下图所示)

1. β放射源

β-28.6aβ-64.1h

本实验中选用90Sr-90Yβ放射源,其衰变链为:90Sr 90Y 90Zr

2. 半圆聚焦β磁谱仪

β源射出的高速β例子经过准直后垂直射入一均匀磁场中, 粒子因受到与运动方向垂直的洛仑兹力作用而做圆周运动。 粒子做圆周运动的方程为:

B e dt

dp

?-=ν 而将这个微分式逆推, 可以得到粒子运动的动量表达式:

eB x eBR p ??=

=21

R 为粒子运动的轨道半径。

这样, 有放射源射出的不同动量的β粒子, 经过磁场后, 其出射位置各不相同。 因此在不同的地方探测到β粒子的动量, 再由探测器测得该处电子的动能, 便可以将同一状态下电子的动量和动能进行比较。

3. 真空室

真空室的作用是为了出去空气对β粒子运动的影响。 但实验中由于密封真空室的塑料薄膜存在, 会致使电子穿过是动能严重损失, 因而需要进行动能修正。 实验中仅对粒子进行一次动能修正。

4. NaI 探测器

NaI 探测器主要由NaI 闪烁晶体和光电倍增管以及相应的电子线路构成。 当射线进入闪烁体时, 在某一点产生次级电子, 随后这个电子在光电倍增管的级联放大作用下产生大量的电子, 这些电子会在阳极负载上建立起电信号, 并由电路将电信号传输到电子学仪器中去。

5. 高压电源、 线性放大器、 多道脉冲幅度分析器

高压电源和线性放大器为探头提供其工作时所需的高压和低压电源; 并将接受探头传输过来的包含入射粒子能量信息的电脉冲信号放大; 将放大信号传输给脉冲分析器。

单道脉冲幅度分析器时分析射线能谱的一种仪器。 其功能是将线性脉冲放大器输出的脉冲按幅度分类。 在实验中实际测量能谱时, 我们保持道宽ΔV 不变, 逐点增加V 值, 这样就可以绘出整个谱形。 而道位数值就与射线的动能成线性关系, 如果找到这种线性关系, 那么就可以用道位数来替代计算射线粒子的动能。

多道脉冲幅度分析器的特点是能够同时对不同幅度的脉冲进行计数, 一次测量同时得到整个能谱曲线。

6. γ放射源及定标

单能电子的能量与峰道位数成线性关系: E=a*CH+b

实验中可以利用γ光子与NaI 晶体相互作用所产生的一个反散射峰与三个光电峰来分别测出其峰道位数, 并应用最小二乘法确定系数a 和b , 成为能量定标。

下页图所示为定标源137Cs 和60

Co 的能谱图

实验目的:

1. 通过对快速电子动量和动能的测量, 验证动量和动能的相对论关系。

2. 了解半圆平面聚焦β磁谱仪的工作原理。

实验原理简述:

经典力学反映了牛顿的绝对时空观: 认为时间和空间是两个独立的观念, 彼此之间没有联系, 即认为一切力学规律在伽利略变化下是不变的。

而爱因斯坦在1905年提出了狭义相对论, 并据此推导出从一个惯性系到另一个惯性系的变换方程, 即“洛伦兹变换”。

洛伦兹变换下, 静止质量为m0, 速度为v 的物体, 其狭义相对论动量p 为:

ννβ

m m p =?-=

2

01

同样, 相对论能量为

2mc E =

而相对论能量和静止能量之差, 即为该物体的相对论动能E k

???

? ??--=-=11122

02

02

βc m c m mc Ek 而狭义相对论的动量和能量的关系是:

20222E p c E =-

由以上关系式可以退出, 动能与动量的关系为:

2042

0220c m c m p c E E Ek -+=-=

而在实验中, 由于m 0c 2

=0.511MeV , 则上式可以表达为:

)(511.0511.0222MeV p c Ek -+=

实验内容:

1. 闪烁能谱仪的的能量定标

2. β粒子动能及动量的测量

实验步骤简述: 1. 准备

1.1 检查仪器线路连接是否正确。 开启总电源, 开启计算机

1.2 放大盒前面板上的HV 钮反时针旋到最小, 开启放大盒电源, 慢慢顺时针旋动HV 钮, 按放大盒面板上的HV 值加高压。 稳定15min 。

1.3 取来放射源60Co 、 137Cs 、 90Sr 各一枚, 不得打开放射源。 1.4 打开并安放好放射源60Co , 移动探测器, 对准放射源。 1.5 熟悉计算机软件的使用

1.6 进入采集状态, 观察测得的60Co 的1.33MeV 峰的道位数是否在一个比较合适的位置。 否则通过调整加到探测器上的高压和放大参数使之合适; 然后停止计数, 推出采集状态。

2. 能量定标

2.1 正式进入采集状态, 待采集时间到达预设值后, 停止计数。 对能谱进行数据分析, 记录下1.17MeV 和1.33MeV 两个光电峰的道位数。

2.2 移开探测器, 关上60Co 。 打开并安放好137Cs , 探测器对准放射源, 采集计数。 操作方法和之前相同, 不过Cs 源的记录值为0.184MeV 反射峰和0.662MeV 光电峰的道位数, 关闭Cs 源。

3. 测量电子的动能和动量

3.1 打开机械泵, 抽真空。 机械泵正常工作2~3min 以后即可停止工作。 3.2 选定多个探测器位置。 并使探测器对准真空室的开放处 3.3 打开并安放好β源, 记录放射源的位置坐标x0。

3.4 移动探测器, 分别按选定的探测器位置逐个测量单能电子能峰, 记录峰的道位数CHi 和相应的位置坐标xi 。

3.5 全部数据测量完毕后, 取出并关闭放射源。

4. 结束实验

4.1 关闭计算机。

4.2 慢慢旋转放大盒前面板上的HV 钮至逆时针最小。 电压降为零后, 关闭放大盒电源。 4.3 将全部放射源放回库房, 关闭总电源。

4.4 充分吸收后, 结束本次试验, 经教师同意后, 可以离开实验室。

注意事项:

1. 严禁将放射源对准人体, 尤其是眼部

2. 闪烁探测器上的高压电源、 前置电源、 信号线绝对不可以接错; 实验室老师已经接好, 不要再动。

4. 严禁探测器在工作状态下见光,以免光电倍增管烧坏;通有高压的情况下禁止拆卸仪器。

5. 在打开β源开始测量之前,盖上有机玻璃罩,装置的有机玻璃罩打开之前应当关闭β源

6. 使用β源的过程中要防止强烈震动,以免损坏其密封薄膜。

7. 移动真空盒时,应格外小心,以防损坏其密封膜。

8. 做完实验后,及时关闭所有的放射源,并放置于固定的位置,及时用水冲洗双手;严禁将放射源带出实验室。

原始数据、数据处理及误差计算:

1. 数据记录

电子的动能及动量

垂直匀强磁场强度B=624GS

2. 数据处理

2.1 能量定标过程

根据Co60和Cs137的已知能量值E和测得的道位数CH0,并使用最小二乘法拟合的形式可以得到一个一次函数,即表达了在实验中所使用的检测仪读出的道位数和入射粒子能量的关系。

这里使用MATLAB的polyfit函数来进行拟合,返回E和CH的关系

将x变量CH和y变量E输入成以后,执行如下代码

f=polyfit(x,y,1); //*这里的1表示xy之间为1次多项式关系,f为待求的函数关系*//

b=polyval(f,x);

plot(x,y,'*',x,b)

得到如下的拟合直线:

返还的运算结果如下:

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.002178 (0.001878, 0.002478)

p2 = 0.006632 (-0.1233, 0.1366)

2.2 求电子动能

根据2.1中得到的定标函数E=0.002178*CH+0.006632,可以对之后测量的不同出射半径的电子动能进行计算

结果如下表

2.3 电子穿过220μm铝膜时的动能修正

线性插值的思路:用书中2-2-2表所给的数据进行线性拟合,得出一个E2和E1之间的函数关系,再用该函数关系来处理上一步中所得到的电子接收动能的铝膜修正

同能量定标的方法类似,以E2为x变量,E1为y变量,输入如下代码

f=polyfit(x,y,1);

b=polyval(f,x);

plot(x,y,'*',x,b)

得到如下的拟合曲线:

并返还这样的结果:

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.9907 (0.9871, 0.9943)

p2 = 0.1005 (0.09625, 0.1048)

说明经过铝膜修正前后的两个动能值之间的关系为E1 =0.9907*E2 + 0.1005

2.4 电子穿过有机塑料薄膜时的动能修正

方法同上,先用表2-1的数据进行拟合得到一个函数关系式,然后再利用这个关系式对上表中的E1i进行修正处理

以E1i为x变量,Ek为y变量,代码如下:

f=polyfit(x,y,1);

b=polyval(f,x);

plot(x,y,'*',x,b)

得到拟合后的函数图像为:

并返还这样的结果:

Linear model Poly1:

f(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.9949 (0.9891, 1.001)

p2 = 0.01417 (0.00748, 0.02086)

可以得到动能E1i和最终动能Ek之间的关系为Ek=0.9949*E1i+0.01417

用这个关系函数对经过一次铝膜修正以后的动能值进行二次修正,得到的结果如下表所示:

2.5 计算电子动量的实验值

根据半圆偏转真空盒的物理模型,有关系式p=eBR成立

又已知B=624GS,R值为实验中所测得

*表中的E表示科学计数法中的*10,后面的数字表示指数值

2.6 利用能量值Ek 计算相对论动量值pc1

已知相对论关系中给出了电子动能Ek 和动能能量pc 之间的关系为)(511.0511.02

22MeV p c Ek -+=

经过转换, 得到pc 2=(Ek+0.511MeV )2-0.5112

2.7 利用经典关系计算动量值pc2

已知p=mv , Ek=mv 2

/2, 电子的运动速度近似可认为是光速c , 因而可以得到关系式p=c*(2*E*m)^0.5 用上面这个简短的计算式, 就可以通过Ek 来计算经典力学上的电子动量pc , 结果如下表所示:

由表中数据可以看到, 以相对论计算的结果pc1作为理论值, 实验计算的结果pc 和它符合的比较好, 误差均保持在小数点后第二位; 而实验值和经典力学的计算值就相差的比较大了, 误差甚至出现在了个位。 说明电子的运动模型是符合相对论的, 在这里经典力学模型不再适用。

2.8 电子动能与实验动量、 相对论动量以及经典力学动量的关系曲线

适用MATLAB 的作图函数, 将上面计算的结果输入其中, 可以得到如右的曲线:

2.9 速度的计算及实验误差的比较分析

根据基本的动量相对论公式

ννβ

m m p =?-=

2

01

可以得到速度与动量的关系

表达式为v=1/[(0.511)^2/(pc)^2+1]^0.5 * c

利用上面的公式就可以计算电子的速度,分别取8种不同动能中最大和最小的作为高能与低能粒子

已知两种电子的动能分别为低能电子0.7956MeV和高能电子2.4336MeV

它们对应各自的速度分别为252419495.4ms-1(0.8413)和293597407.7ms-1(0.9786c)

由上面的速度计算结果可以看出,两种粒子的速度都已近非常接近光速,此时相对论是适用的,因此适用相对论推算出来的动量值与实验值较相符;而经典力学变的不再适用,并且可以从计算结果中看出,经典力学的计算值普遍偏离实验值较大,并且电子的速度越接近光速,能量越大时,经典力学的计算结果越不准确。

思考题,实验感想,疑问与建议:

1. γ射线穿透铝膜时,为什么不需要进行能量损失修正?

因为γ射线是电磁波,没有实际的粒子,而铝膜对γ射线几乎没有吸收,不存在能量上的损失,因而不需要进行修正。

2. 为什么用γ射线定标后的闪烁探测器可以直接用来测量β粒子?

因为闪烁探测器的原理建立在闪烁晶体对外来能量的反应机理上,而对能量的载体究竟是电磁波还是某种粒子并不区分,因而可以用γ射线定标后直接用来测量β粒子。

3. 在非真空条件下空气摩擦能量损失修正

空气中运行的能量损失取决于粒子飞行的距离,假定出射距离是Δx,则电子的飞行距离是L=πΔx,又已知单位飞行距离的能量损失为dE/dx=2.1981MeV/cm,则能量修正ΔE与出射距离Δx之间的关系为:

ΔE=2.1981*Δx(MeV)

原始记录及图表粘贴处:(见附页)

数字电子时钟实验报告材料

华大计科学院 数字逻辑课程设计说明书 题目:多功能数字钟 专业:计算机科学与技术 班级:网络工程1班 姓名:刘群 学号: 1125111023 完成日期:2013-9

一、设计题目与要求 设计题目:多功能数字钟 设计要求: 1.准确计时,以数字形式显示时、分、秒的时间。 2.小时的计时可以为“12翻1”或“23翻0”的形式。 3.可以进行时、分、秒时间的校正。 二、设计原理及其框图 1.数字钟的构成 数字钟实际上是一个对标准频率 1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路。图 1 所示为数字钟的一般构成框图。 图1 数字电子时钟方案框图

⑴多谐振荡器电路 多谐振荡器电路给数字钟提供一个频率1Hz 的信号,可保证数字钟的走时准确及稳定。 ⑵时间计数器电路 时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成。其中秒个位和秒十位计数器、分个位和分十位计数器为60 进制计数器。而根据设计要求,时个位和时十位计数器为24 进制计数器。 ⑶译码驱动电路 译码驱动电路将计数器输出的8421BCD 码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。 ⑷数码管 数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管。本设计提供的为LED数码管。 2.数字钟的工作原理 ⑴多谐振荡器电路 555 定时器与电阻R1、R2,电容C1、C2 构成一个多谐振荡器,利用电容的充放电来调节输出V0,产生矩形脉冲波作为时钟信号,因为是数字钟,所以应选择的电阻电容值使频率为1HZ。 ⑵时间计数单元 六片74LS90 芯片构成计数电路,按时间进制从右到左构成从低位向高位的进位电路,并通过译码显示。在六位LED 七段显示起上显示

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

相对论的验证

用-β粒子验证相对论动量—能量关系 学号:0810130956 姓名:刘荣沛 实验日期:2010.9.14 指导老师:王引书 摘 要 本实验中我们通过测算9038Sr -9039Y 源衰变产生的β-粒子的动能和动量来比较经典理论和相对论的异同,从而验证相对论的正确性。β-粒子的能量我们利用能谱仪及多道分析器进行测定,在测定之前还需要利用137Cs 和60Co 对多道分析器进行定标,确定粒子能量和微机多道数之间的关系(E a bn =+),从而可以算出不同道数的对应β-粒子的能量。β-粒子的动量我们通过磁谱仪测出。 关键词 β-粒子 相对论 能量 动量 一、引言 爱因斯坦狭义相对论揭示了高速运动物体的运动规律,创立了全新的时空观,给出了质量对速度的依赖关系、能量与质量的普遍联系等一系列重要结果。狭义相对论已应用于近代物理各个领域,原子核物理和粒子物理更是离不开狭义相对论。本实验的目的是通过同时测量速度接近光速的β-粒子的动量和动能,证明牛顿力学只适用于低速运动的物体,当物体的运动速度接近光速时,必须使用相对论力学,同时学习带电粒子特别是β-粒子与物质的相互作用,学习β磁谱仪和β闪烁谱仪的测量原理和使用以及其他核物理的试验方法和技术。 二、原理 1、牛顿力学动量与动能之间的关系 牛顿的经典力学总结了低速物体的运动规律,也反映了牛顿的绝对时空观。在不同的惯性参考系中观察同一物体的一切运动学量(坐标、速度)都可以用伽利略变换而相互联系,而在任何惯性参照系中其动力学量(加速度、质量)都相同,一切力学规律(牛顿定律、守恒定律)的表达式在所有的惯性系中都相同。这就是伽利略力学相对性原理:一切力学规律在伽利略变换下是不变的。 在牛顿力学中,任何物体的质量0m 都是一个常量。当其以速度v 运动时,其动量和动能的值p 和k E 分别用下列两式表示 0p m v = (1) 201 2 k E m v = (2) 所以动量和动能的关系为

数字电子钟实验报告

咸阳师范学院物理与电子工程学院 课程设计报告 题目: 班级: 姓名: 学号: 指导教师: 成绩: 完成日期:年月

目录 第一章概述 3 第二章数字电子钟的电路原理 4 第三章电路调试与制作11 第四章总结与体会12 第五章附录13

第一章概述 数字钟是采用数字电路实现对.时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运运超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。 虽然市场上已有现成的数字集成电路芯片出售,价格便宜,使用方便,这里所制作的数字电子可以随意设置时,分的输出,是数字电子中具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。 课程设计目的 (1)加强对电子制作的认识,充分掌握和理解设计个部分的工作原理、设计过程、选择芯片器件、电路的焊接与调试等多项知识。 (2)把理论知识与实践相结合,充分发挥个人与团队协作能力,并在实践中锻炼。 (3)提高利用已学知识分析和解决问题的能力。 (4)提高实践动手能力。

第二章数字电子钟的电路原理 数字电子钟的设计与制作主要包括:数码显示电路、计数器与校时电路、时基电路和闹铃报时电路四个部分。 1.数码显示电路 译码和数码显示电路是将数字钟的计时状态直观清晰地反映出来。显示器件选用FTTL-655SB双阴极显示屏组。在计数电路输出信号的驱动下,显示出清晰的数字符号。 2.计数器电路 LM8560是一种大规模时钟集成电路它与双阴极显示屏组可以制成数字钟钟控电路。 3.校时电路 数字钟电路由于秒信号的精确性和稳定性不可能做到完全准确无误,时基电路的误差会累积;又因外部环境对电路的影响,设计产品会产生走时误差的现象。所以,电路中就应该有校准时间功能的电路。通过手动调节按键,达到校准的目的。 4.定时报警电路 当调好定时间后并按下开关K1(白色键),显示屏右下方有红点指示,到定时时间有驱动信号经R3使VT1工作,即可定时报警输出。 芯片资料 LM8560是一种大规模时钟集成电路它与双阴极显示屏组可以制成数字钟钟控电路。作为时钟,它准确醒目;作为控制开关,它动作无误;在1小时59分钟或59分钟内,能任意暂停,使用十分方便。 仔细观察从0-9的每个数字并比较图1所示的笔段。内部电路参看图2, LM8560各脚功能,参看图3。

相对论验证实验中的结果解释和能谱图分析

相对论验证实验中的结果解释和能谱图分析 摘要:文章首先通过简单介绍作者在相对论验证实验中得到的结果,针对实验计算机一步给出的数据结果和图形结果进行解释,然后针对β- 粒子能谱图的两个峰值的数据进行峰值来源的分析,最后针对峰值随探测器位置变化的现象进行浅析,得出分析结论。 关键词:相对论验证实验,结果解释,能谱图变化分析 正文: 实验原理介绍: 电荷为e,速度为v的电子在磁感应强度为B的磁场中运动时,运动方程为: B V e dt V m d r r r ×?=)( ……(1) 电子在垂直于均匀磁场的平面中运动时,上式化为: mV 2/R=eVB → P=mV=eBR ……(2) P 为电子动量,R 为电子运动轨道的曲率半径。基于(2)式P 和BR 的关系,在磁谱仪中常以BR 值表示电子的动量,对应不同的B 值和R 值可以对应不同的电子动量,可见β磁谱仪是一个可进行动量分析的仪器。 实验的基本思想是以高速电子即β-粒子作为实验对象,验证其动能与动量符合相对论关系式, 从而验证爱因斯坦相对论的基本理论及其推论的正确性。 经典力学中的动能与动量的关系式为E k =p 2c 2/2m 0c 2 ……(3),而在相对论下推得的动能与动量的关系式为E k =E - E 0=(P 2c 2 + m 02c 4)1/2 - m 0c 2 ……(4)。只需通过实验测出高速电子的动量与动能,并依此作出E k -Pc 图,将其与经典力学下的E k -Pc 图进行比较,从而得出实验的结论 。 实验装置: (1)真空、非真空半圆聚焦B磁谱仪; (2) β放射源90Sr—90Y (强度≈ 1毫居里) , 定 标用γ放射源137Cs和60Co (强度≈ 2微居 里) ; (3) 200um Al窗NaI(Tl)闪烁探头; (4) 数据处理计算软件,计算机; (5) 高压电源、放大器、多道脉冲幅度分析器。 实验结果: (1) 能量定标: 表一 能量定标数据 E/MeV 0.184 0.662 1.17 1.33 CH 87 314 557 630

数字电子钟课程设计实验报告

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计任务书2016/2017 学年第一学期 学生姓名:张涛学号: 李子鹏学号: 课程设计题目:数字电子钟的设计 起迄日期:2017年1月4日~2017年7月10日 课程设计地点:科学楼 指导教师:姚爱琴 2017年月日 课程设计任务书

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计开题报告2016/2017 学年第一学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号:

指导教师:姚爱琴 2017 年 1 月 6 日 中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计说明书2016/2017 学年第二学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号: 指导教师:姚爱琴 2017 年月日

目录 1 引言 (6) 2 数字电子钟设计方案 (6) 2.1 数字计时器的设计思想 (6) 2.2数字电路设计及元器件参数选择 (6) 2.2.2 时、分、秒计数器 (7) 2.2.3 计数显示电路 (8) 2.2.5 整点报时电路 (10) 2.2.6 总体电路 (10) 2.3 安装与调试 (11) 2.3.1 数字电子钟PCB图 (11) 3 设计单元原理说明 (11) 3.1 555定时器原理 (12) 3.2 计数器原理 (12) 3.3 译码和数码显示电路原理 (12) 3.4 校时电路原理 (12) 4 心得与体会 (12) 1 引言 数字钟是一种用数字电子技术实现时,分,秒计时的装置,具有较高的准确性和直观性等各方面的优势,而得到广泛的应用。此次设计数字电子钟是为了了解数字钟的原理,在设计数字电子钟的过程中,用数字电子技术的理论和制作实践相结合,进一步加深数字电子技术课程知识的理解和应用,同时学会使用Multisim电子设计软件。 2数字电子钟设计方案 2.1 数字计时器的设计思想 要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。而脉冲源产生的脉冲信号地频率较高,因此,需要进行分频,使得高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1Hz)。经过分频器输出的秒脉冲信号到计数器中进行计数。由于计时的规律是:60秒=1分,60分=1小时,24小时=1天,就需要分别设计60进制,24进制计数器,并发出驱动信号。各计数器输出信号经译码器、驱动器到数字显示器,是“时”、“分”、“秒”得以数字显示出来。 值得注意的是:任何记时装置都有误差,因此应考虑校准时间电路。校时电路一般

验证相对论关系实验报告

验证相对论关系实验报告 Prepared on 22 November 2020

验证快速电子的动量与动能的相对论关系实验报告 摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。 关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器。 引言: 经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。β-的速度几近光速,可以为我们研究高速世界所利用。本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。 实验方案: 一、实验内容 1测量快速电子的动量。 2测量快速电子的动能。 3验证快速电子的动量与动能之间的关系符合相对论效应。 二、实验原理 经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。 19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。在此

电子时钟实验报告_电子时钟

电子时钟实验报告 一、实验目的 学习8051定时器时间计时处理、按键扫描及LED数码管显示的设计方法。二、设计任务及要求 利用实验平台上4个LED数码管,设计带有闹铃功能的数字时钟,要求:1.在4位数码管上显示当前时间,显示格式为“时时分分”; 2.由LED闪动做秒显示; 3.利用按键可对时间及闹玲进行设置,并可显示闹玲时间。当闹玲时间到蜂鸣器发出音乐,按停止键使可使闹玲声停止。 三、工作原理及设计思路 利用单片机定时器完成计时功能,定时器0计时中断程序每隔5ms中断一次并当作一个计数,每中断一次计数加1,当计数200次时,则表示1s到了,秒变量加1,同理再判断是否1min钟到了,再判断是否1h到了。为了将时间在LED数码管上显示,可采用静态显示法和动态显示法,由于静态显示法需要数据锁存器等较多硬件,可采用动态显示法实现LED显示。 闹铃声由交流蜂鸣器产生,电路如右图,当P1.7输出不同频率的方波,蜂鸣器便会发出不同的声音。 四、电路设计及描述 (1)硬件连接部分: 在ZKS-03单片机综合实验仪上有四位共阳LED数码管,其标号分别为LED1~LED4。为了节省MCU的I/O口,采用串行接口方式,它仅占用系统2个I/O 口,即P1.0口和P1.1口,一个用作数据线SDA,另一个用作时钟信号线CLK,

它们都通过跳线选择器JP1相连。 由于采用共阳LED数码管,它的阴极分别通过限流电阻R20~R27连接到控制KD_0~KD_Q7。这样控制8个发光二极管,就需要8个I/O口。但由于单片机的I/O口资源是有限的,因此常采用实验电路所示的串并转换电路来扩充系统资源。串并转换电路其实质是一个串入并处的移位寄存器,串行数据再同步移位脉冲CLK的作用下经串行数据线SDA把数据移位到KD_0~KD_Q7端,这样仅需2根线就可以分别控制8个发光二极管的亮灭。而P0口只能作地址/数据总线,P2口只能作地址总线高8位,P3.0、P3.1作为串行输入、输出接口,实验仪上单片机可用作I/O的口仅有:P1.0--P1.7,8位;P3.2、P3.3、P3.4、P3.5,4位。其中:P1.0用作数据线SDA,P1.1用作时钟信号CLK,所以P1.0和P1.1应该接对应跳线的A位,即跳线的中间和下面相连。P1.3、P1.4、P1.5和P1.6是四个数码管的位扫描线,其中P1.6对应数码管W1,显示小时高位;P1.5对应数码管W2,显示小时低位;P1.4对应数码管W3,显示分钟高位;P1.3对应数码管W4,显示分钟低位。P1.7连接蜂鸣器电路,输出不同频率的方波,使其发出不同的声音。P1.2用来控制秒的闪烁显示。故,P1.2也应该接对应跳线的A位。 其显示电路如下图所示: P3.2、P3.3、P3.4、P3.5分别连接单刀双掷开关S1、S2、S3、S4,从而输入高低电平。将S2S1定义为功能模式选择开关;S3定义为分钟数调整开关;S4定义为小时数调整开关。 当S2S1=00时,显示当前时间,不进行任何操作。 当S2S1=01时,显示当前时间,同时可进行时钟调整,若S3=1,分钟数持续加1,若S4=1,小时数持续加1。

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

数字时钟设计实验报告

数字时钟设计实验报告

电子课程设计题目:数字时钟

数字时钟设计实验报告一、设计要求: 设计一个24小时制的数字时钟。 要求:计时、显示精度到秒;有校时功能。采用中小规模集成电路设计。 发挥:增加闹钟功能。 二、设计方案: 由秒时钟信号发生器、计时电路和校时电路构成电路。 秒时钟信号发生器可由振荡器和分频器构成。 计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。 三、电路框图:

图一 数字时钟电路框图 四、电路原理图: (一)秒脉冲信号发生器 秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。由振荡器与分频器组合产生秒脉冲信号。 ? 振荡器: 通常用555定时器与RC 构成的多谐振荡器,经过调整输出1000Hz 脉冲。 ? 分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能 扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz 标准秒脉冲。其电路图如下: 图二 秒脉冲信号发生器 译译译时计 分计秒计 校 时 电 路 秒信号发生器

(二)秒、分、时计时器电路设计 秒、分计数器为60进制计数器,小时计数器为24进制计数器。 ?60进制——秒计数器 秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。其电路图如下: 图三60进制--秒计数电路 ?60进制——分计数电路 分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。当计数到59时清零并重新开始计数。秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加1,利用十进制计数器CD40110设计10进制计数器显示秒的个位。个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给时的个位。其电路图如下:

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系 实验报告 摘要: 实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。 关键字: 动量动能相对论β磁谱仪闪烁探测器定标 引言: 动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。 19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。 基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。 正文: 1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。 本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

电子时钟实验报告_电子时钟

电子时钟实验报告

一、实验目的 学习8051定时器时间计时处理、按键扫描及LED数码管显示的设计方法。 二、设计任务及要求 利用实验平台上4个LED数码管,设计带有闹铃功能的数字时钟,要求: 1.在4位数码管上显示当前时间,显示格式为“时时分分”; 2.由LED闪动做秒显示; 3.利用按键可对时间及闹玲进行设置,并可显示闹玲时间。当闹玲时间到蜂鸣器发出音乐,按停止键使可使闹玲声停止。 三、工作原理及设计思路 利用单片机定时器完成计时功能,定时器0计时中断程序每隔5ms中断一次并当作一个计数,每中断一次计数加1,当计数200次时,则表示1s到了,秒变量加1,同理再判断是否1min钟到了,再判断是否1h到了。为了将时间在LED数码管上显示,可采用静态显示法和动态显示法,由于静态显示法需要数据锁存器等较多硬件,可采用动态显示法实现LED显示。 闹铃声由交流蜂鸣器产生,电路如右图,当P1.7输出不同频率的方波,蜂鸣器便会发出不同的声音。 四、电路设计及描述 (1) 硬件连接部分: 在ZKS-03单片机综合实验仪上有四位共阳LED数码管,其标号分别为LED1~LED4。 为了节省MCU的I/O口,采用串行接口方式,它仅占用系统2个I/O口,即P1.0口和P1.1口,一个用作数据线SDA,另一个用作时钟信号线CLK,它们都通过跳线选择器JP1相连。 由于采用共阳LED数码管,它的阴极分别通过限流电阻R20~R27连接到控制KD_0~KD_Q7。这样控制8个发光二极管,就需要8个I/O口。但由于单片机的I/O口资源是有限的,因此常采用实验电路所示的串并转换电路来扩充系统资源。串并转换电路其实质是一个串入并处的移位寄存器,串行数据再同步移位脉冲CLK的作用下经串行数据线SDA把数据移位到KD_0~KD_Q7端,这样仅需2根线就可以分别控制8个

旋光效应实验报告

旋光效应 摘要:通过旋光仪利用光的偏振特性来测量旋光物质对振动转过角度来测量了溶液的溶度。并分析各因素对此实验的影响。 关键词:三分视场;旋光角;溶度 中图分类号O432 文献标识码A 一. 引言 1911年,阿喇果(D. F. JArago)发现,当线偏振光通过某些透明物质时,它的振动面将会绕光的传播方向转过一定的角度。这种现象就叫旋光效应,光的振动面转过的角度称为旋光度,使光的振动面产生旋转的物质叫做旋光物质(进一步地,迎着光的传播方向看,使光的振动面顺时针转动的物质叫右旋物质,反之则为左旋物质)。常见的旋光物质有:石英、朱砂、酒石酸、食糖溶液、松节油等。利用旋光仪可以测定这些物质的比重、纯度或浓度。 二. 实验原理及内容 2.1 实验原理 溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。当其它条件均固定时,旋光度与溶液浓度C呈线性关系。如果已知待测物质浓度C和液

柱长度,只要测出旋光度就可以计算出旋光率。如果已知液柱长度为固定值,可依次改变溶液的浓度C,就可测得相应旋光度。并作旋光度与浓度的关系直线,从直线斜率、长度及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性溶液的旋光度,确定溶液的浓度C。 对于晶体一类的旋光物质,旋光度Q与光所透过的晶体厚度成正比;若为溶液,则正比于溶液在玻璃管中的长度L和溶液的浓度C:Q=αCL. (1) 式中的比例系数α称为旋光率,其含义为当L=10cm, c=1g/cm3时光振动方向转过的角度(对糖溶液而言,α与入射光波长λ及温度T 有关,对某些物质还与物质的浓度有关)。实验采用钠灯作为光源,实验过程中通常温度变化很小,可以忽略。玻璃管长度L已知,转角Q需要测量出来,这样,根据已知浓度C即可算旋光率α,再根据已知的α即可测定未知糖溶液浓度C。 2.2 实验仪器

多功能数字电子钟实验报告

一、设计题目 多功能数字电子钟 二、设计目的 1、掌握数字电路中计数、分频、译码、显示及时钟脉冲振荡器等组合逻辑电路与时序逻辑电路的综合应用。 2、掌握多功能数字钟电路设计方法、装调技术及数字钟的扩展应用。 三、设计内容及要求 1、基本要求 a)准确计时,以数字形式显示时、分、秒的时间; b)小时以24进制,分和秒为60进制; c)具有校时电路 2、设计数字钟的整体电路并画出电路图 3、组装、调试单元电路及整体电路 四、设计过程 1、查阅资料,了解数字钟电路的基本原理并画出原理框图 数字钟电路系统主要由主体电路和扩展电路两大部分组成,其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。振荡器、分频器、计时电路、译码显示电路与校时电路五大部分组成数字钟的整体电路。其中计时电路即为时间的计时,校时电路主要是在时间不准确时调节时间到准确的时间点上。系统组成原理框图如下图1.1所示。 图1.1 数字电子钟原理框图

由以上的原理图可知,本电路主要由振荡器和分频器产生1HZ(即1秒)的秒脉冲,用秒脉冲驱动计数器开始计时。因为每分钟60秒,每小时60分钟,所以应该有24进制的“时计数器”、60进制的“分计数器”、60进制的“秒计数器”。当“秒计数器”计数到59后,下一个脉冲到达时“分计数器”就进1,“分计数器”计数到59后,再来一个脉冲“时计数器”就进1。把秒计数器的输出进行译码、显示时钟秒。分计数器的输出经译码、显示时钟分。时计数器的输出经译码、显示时钟时。例如,当计时到20:59:59时,再来一个脉冲后,就会显示21:00:00。 60进制计数器 其中,“秒”和“分”的计数器都是60进制计数器,由一级十进制计数器和一级六进制计数器级联组成。十进制计数器的复位方法我们平常已经熟悉了(即用74LS90组成:其中R0(1)=R0(2)=R1(1)=R1(2)=0),6进制计数器的复位方法是:当CP输入端输入第六个脉冲时,它的四个触发器输出的状态为“0110”,这时QbQc均为高电平“1”。将它们相“与”(用两级“与非”门,保证复位信号为高电平)后,送到计数器的清除端Cr,使计数器复“0”,从而实现60进制计数。原理图见图1.2。 图1.2 60进制计数器 24进制计数器 24进制计数器由两级十进制计数器级联、“与非门”和“非门”共同组成。原理为:当“时”计数器个位输入端CP脉冲到来第十个触发脉冲时,“时”的个位计数器复“0”,并向“时”的十位进位,在第24个触发脉冲到来时,“时”的个位计数器的四级触发器状态为“0100”,而“时”的十位计数器的状态为“0010”,这时“时”的个位计数器的Qc和“时”的十位计数器的Qb输出为“1”,把它们相“与”经两级反相器反相后,送到“时”计数器的清除端Cr,使计数器复“0”。使计数器复“0”。从而实现了24进制计数。原理图如图1.3所示。 图1.3 24进制计数器

VHDL电子钟实验报告

期末大作业课程设计实验报告设计题目:基于VHDL电子钟的设计

目录 一、概述 (3) 1.1目的 (3) 1.2课程设计的要求和功能 (3) 二、总结 (3) 2.1课程设计进行过程及步骤 (3) 2.2所遇到的问题,如何解决问题 (15) 2.3体会收获以及建议 (15) 3.4参考资料(书,网络资料) (15) 三、教师评语 (16) 四、成绩 (16)

一、概述 1.1目的 1. 基于CPLD系统模块板,设计一个电子钟。来熟悉CPLD的工作原理以及 对VHDL的使用。 2. 通过设计出一个电子钟具有校时功能,来巩固分频,键盘扫描,计数,动 态扫描等知识内容。 1.2课程设计的要求和功能 设计一个电子钟,能进行正常的时分秒计时功能,分别有六个数码管显示24小时,60分钟,60秒的计数器显示。 利用实验箱系统上的按键实现“校时”、“校分”功能: (1)按下“SA”键时,计时器快速递增,按24小时循环,进行时校正; (2)按下“SB”键时,计分器快速递增,按60分循环,进行分校正 (3)按下“SC”键时,秒清零,进行秒校正; 二、总结 2.1课程设计进行及步骤 1.设计提示 系统框图见下

2.系统结构设计描述(1)系统顶层文件 1.顶层原理图见下

2.各个模块的解释 (1)五个输入量clk50MHz,SA,SB,SC,reset: 其中clk50MHz为总体系统提供时钟,并且经过分频来分别对电子 钟模块提供时钟,产生一秒一秒的进位信号,对显示模块的计数器 提供时钟实现显示模块的扫描功能,对按键去抖动提供时钟,实现 键盘扫描的功能。SA,SB,SC用来控制按键,实现按键控制,SA是 实现“时”加一,SB是实现“分”加一,SC是实现“秒”清零。 Reset是来控制按键功能的使能。 (2)按键功能模块 三个输入chos ,date0,date1的功能是:chos接受来自按键的信号, 若按键按下,则将date0的内容,也就是通过按键产生的脉冲来控 制电子钟进行加一,若按键没有按下,则将“秒”分频信号接入电 子钟的clk计数输入端,通过时钟脉冲来控制电子钟。 (3)电子钟计数模块 有5个输入ci,nreset,load,clk,d[7..0],作用分别是ci是使能端,直 接接高电位,nreset是复位,load和d[7..0]是用来置数的,clk提供 计数时钟,也就是一秒一个脉冲。 输出端有三个,co是进位功能,只有“秒”和“分”模块有效, qh[3..0],ql[3..0]是分位的数字输出端,一个是十位,一个是个位。

第十九章 狭义相对论基础(带答案)

狭义相对论基础 学 号 姓 名 一.选择题: 1.(本题3分)4359 (1). 对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对于该惯性系作匀速直线运动的其它惯生系中的观察者来说,它们是否同时发生? (2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题的正确答案是: [A] (A)(1)同时, (2)不同时; (B)(1)不同时, (2) 同时; (C )(1)同时, (2) 同时; (D )(1)不同时, (2) 不同时; 2.(本题3分)4352 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的靶子发射一颗相对于火箭的速度为v 2的子弹,在火箭上测得子弹从射出到击中靶的时间间隔是: [B] (A ) 2 1v v L + (B ) 2 v L (C ) 2 1v v L - (D ) 2 11) /(1c v v L - 3.(本题3分)4351 宇宙飞船相对于地面以速度v 作匀速直线运动,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过?t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 [A ] (A )t c ?? (B) t v ?? (C) 2 )/(1c v t c -??? (D) 2 ) /(1c v t c -?? 4.(本题3分)5355 边长为a 的正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X 、Y 轴平行,今有惯性系K ˊ以0.8c (c 为真空中光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K '系测得薄板的面积为: [ B ] (A )a 2 (B )0.6a 2 (C )0.8a 2 (D )a 2 /0.6 5.(本题3分)4356 一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是: [C] (A )(1/2)c (B )(3/5)c (C )(4/5)c (A )(9/10)c 6.(本题3分)5614

磁光效应实验报告讲解

磁光效应实验报告 班级:光信息31 姓名:张圳 学号:21210905023 同组:白燕,陈媛,高睿孺

近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。所以掌握磁光效应的原理和实验方法非常重要。 一.实验目的 1.掌握磁光效应的物理意义,掌握磁光调制度的概念。 2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。 3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。二.实验原理 1. 磁光效应 当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ(9-1) = vlB 式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。如

用于光纤通讯系统中的磁光隔离器等。 2.在磁场作用下介质的旋光作用 从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。 图3 法拉第效应的唯象解释 如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后: d n R R λπ ?2= , d n L L λ π?2= (2) 式中λ 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图3(a)所示两个旋转方向不同的圆偏振光E R 和E L ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质

单片机电子时钟实验报告

课程设计报告 设计题目: 电子时钟设计 指导教师: 姓名: 学号: 班级: 专业: 日期: 2012-1-5 目录

摘要 (3) 第一章系统设计要求 (4) 1.1基本功能 (4) 1.2扩展功能 (4) 第二章硬件总体设计方案 (4) 2.1系统功能实现总体设计思路 (4) 2.2各部分功能实现 (6) 2.3系统工作原理 (6) 2.4时钟各功能分析及图解 (6) 2.4.1电路各功能图解分析 (7) 2.4.2电路功能使用说明 (10) 第三章软件总体设计方案 (1) 控制电路的C语言源程序 (10) 第四章课程设计结果分析 (19) 第五章总结 (20) 参考文献 (21) 单片机电子时钟

摘要:单片机即单片微型计算机。(Single-Chip Microcomputer ),是集 CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。他体积小,成本低,功能强,广泛应用于工业自动化上和智能产品。时钟,自从它被发明的那天起,就成为了人类的好朋友,但随着时间的推移,科学技术的不断发展,时钟的应用越来越广范,人们对时间计量的精度要求也越来越高。怎样让时钟更好的为人民服务,怎样让我们的老朋友再次焕发青春呢?这就要求我们不断设计出新型的时钟,来不断满足人们的日常生活需要。然而市场上的时钟便宜的比较笨重,简单实用的又比较昂贵。那么,有没有一款既简单实用价格又便宜的时钟呢? 我们课程设计小组设想:可不可以利用单片机功能集成化高,价格又便宜的特点设计一款结构既简单,价格又便宜的单片机电子时钟呢? 基于这种情况,我们课程设计小组成员多方查阅资料,反复论证设计出了这款既简单实用,又价格便宜的——单片机电子时钟。 关键词:单片机时钟计时

相关文档
最新文档