LD侧面泵浦全固态激光倍频和声光调Q实验

LD侧面泵浦全固态激光倍频和声光调Q实验
LD侧面泵浦全固态激光倍频和声光调Q实验

实验名称:LD侧面泵浦全固态激光倍频和声光调Q实验

实验目的

1、掌握LD侧面泵浦全固态激光器的基本原理和调试方法。

2、掌握声光调Q的基本原理及输出特性。

3、掌握激光倍频原理及影响倍频的基本因素。

实验原理

1、激光产生的条件

①数反转分布一般情况下介质中的粒子数在能级上呈N1

g1 > N2

g2

样分布状态,即较低能量的-个能级的粒子数大于具有较高能量的一个能级的粒了数。要产生激光,激光介质能级粒子数分布必须处于反

转分布N1

g1 < N2

g2

,称这种状态的物质为激活物质。

②减少振荡模式数激光器是通过光学谐振腔来达到减少振荡模式数的。

③起振条件—阈值条件若激光器由反射率分別是R1、R2的两面镜子和长度为L的激活材料构成。设g为在反转的激光材料中单位长度的增益系数,a为单位长度的吸收损耗系数。则每次通过激光材料,其强度变化为exp(g-a)2L。阈值条件为R1R2exp(g-a)2L=1。

④增益饱和效应—稳定振荡条件当入射光强度足够弱时增益系数与光强无关,是一个常量;当入射光强大到一定的程度,增益系数将随光强的增大而减小,产生增益饱和效应。

2、调Q技术

声光调Q是利用光的衍射效应实现调Q的。利用光的衍射现象,光

束偏离,达到声光调Q的目的。一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。在激光器的光学谐振腔中,放入一个声光调制器,当有超声波作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。

实验内容

1、测量连续Nd3+:YAG激光器电流和功率的关系曲线

2、测量连续倍频Nd3+:YAG激光器电流和功率的关系曲线

3、测量准连续声光调Q Nd3+:YAG激光器单脉冲能量

4、测量准连续声光调Q倍频Nd3+:YAG激光器频率为5KHz、11KHz、35KHz时激光输出功率随电流的变化曲线

数据记录及处理

1、连续Nd3+:YAG激光器电流和功率的关系曲线

2、连续倍频Nd3+:YAG激光器电流和功率的关系曲线

3、准连续声光调Q Nd3+:YAG激光器单脉冲能量

4、准连续声光调Q倍频5KHz时激光输出功率随电流的变化曲线

5、准连续声光调Q倍频11KHz时激光输出功率随电流的变化曲线

6、准连续声光调Q倍频35KHz时激光输出功率随电流的变化曲线

电光调制实验实验报告

电光调制实验实验报告 【实验目的】 1、掌握晶体电光调制的原理和实验方法 2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数 3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象 【实验仪器】 铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器 【实验内容及步骤】 一、调整光路系统 1、调节三角导轨底角螺丝,使其稳定于调节台上。在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。 2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中

心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。 3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。光强调到最大,此时晶体偏压为零。这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。如图四所示 4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。如图五所示图四图五 6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。如图六所示 7、改变晶体所加偏压极性,锥光图旋转90度。如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。 二、依据晶体的透过率曲线(即T-V曲线),选择工作点。测出半波电压,算出电光系数,并和理论值比较。我们用两种测量方法: 1、极值法晶体上只加直流电压,不加交流信号,并把直流偏压从小到大逐渐改变时,示波器上可看到输出光强出现极小值和极大值。

固体激光倍频、调Q实验

声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。 【实验目的】 (1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法; (3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。【实验原理】 【实验原理】 声光调Q倍频连续YAG激光器的工作原理 (1)声光调Q基本原理:

图1 声光调制器工作原理 声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。如图1所示。光栅公式如下式 (1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形

实验八 脉冲式灯泵浦YAG激光器被动调Q实验

实验八脉冲式灯泵浦YAG激光器被动调Q实验 实验目的 (1)掌握被动调Q Y AG激光器的工作原理与调试方法。 (2)测量脉冲与连续泵浦Y AG激光器的静态输出特性。 (3)分析被动调Q率被动调Q Y AG激光器的动态输出特性。 (4)在被动调Q理论分析的基础上,通过实验研究,针对相应的运转条件和应用需求,设计被动调Q Y AG激光器的光学参数。 实验原理 1.固体Nd:Y AG激光器的工作原理。 (1)Nd:Y AG晶体的性质 Nd3+:YAG是以三阶钕(Nd3+)离子部分取代Y3Al45O12晶体中Y3+离子的激光工作物质,称为掺钕钇铝石榴石(简称Nd3+:YAG)。它以Nd3+离子作为激活粒子。图8-1给出了Nd3+:YAG晶体中Nd3+离子的与激光产生过程有关的能级图。处于基态4I9/2的钕离子吸收光泵发射的相应波长的光子能量后跃迁到4I5/2,2H9/2和4F7/2,4S3/2能级(吸收带的中心波长是810nm和750nm,带宽为30nm),然后几乎全部通过无辐射跃迁迅速降落到4F3/2能级。4F3/2能级是一个寿命为0.23ms的亚稳态能级。处于4F3/2能级的Nd3+离子可以向多个较低能级跃迁并产生辐射,其中几率最大的是4F3/2至4I11/2的跃迁(波长

为1064nm)。 图8-1 Nd3+:YAG激光的激发机理 (2)静态运转特性分析 (a)脉冲运转→驰豫振荡(尖峰效应)暂态过程。 (b)连续运转→阈值条件(增益饱和)稳态过程。 按“激光原理与技术”中有关章节的分析,结合实验得出:仅仅依靠增加泵浦能量与功率,不能获得窄脉宽,高峰值功率的激光脉冲的结论。 2.Cr:YAG饱和吸收被动调Q原理 自饱和被动式调Q激光器由于器件结构简单,对激光器无电磁干扰,应用十分广泛,但由于通常的染料调Q介质,导热率极低,使其应用范围受到局限,只能用于低重复率的脉冲调Q激光器中。近年来,由于激光晶体技术的进步,我国已生产出可用于高重复率调Q的多掺Y AG晶片,制成了被动式的Q开关器件,兼备声光和染料调Q的长处,在激光医疗、激光打标和非线性光学等领域获得广泛的应用。 在Y AG晶体内,除了Nd+3之外,某些分凝系数较大的金属氧化物也能以原子或离子的形式长入晶体之中,这些异价离子将在其近邻产生具有反号电荷的离子空位或点阵空位,当一个自由电子或空穴被俘获时,就形成了吸收光的色心(Color Center)。多掺杂的YAG晶片在0.9-1.2μm波长范围内有很强的吸收,可将该晶片置于Nd:Y AG激光谐振腔内,其透过率将随腔中振荡激光(1.06μm波长)的强度变化而变化,并改变着谐振腔的Q值,因此起着被动式的Q开关作用,使激光器产生巨脉冲。 多掺杂的Y AG晶片是一种非线性吸收介质,在强光作用下由于吸收饱和而对激光

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

电光调制实验实验报告

广东第二师范学院学生实验报告 院(系)名称物理系班 别11物理 本四B 姓名 专业名称物理教育学号 实验课程名称近代物理实验(2) 实验项目名称电光调制实验 实验时间2014年12月 18日实验地点物理楼五楼 实验成绩指导老师签名 内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验 结果与分析、实验心得 【实验目的】 1. 掌握晶体电光调制的原理和实验方法 2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数 3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象 【实验仪器】 铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器 【实验内容及步骤】 一、调整光路系统 1. 调节三角导轨底角螺丝,使其稳定于调节台上。在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基 本处于一条直线,即使光束通过小孔。 放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主 截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。 2. 将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看 光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。 3. 拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。光强调到 最大,此时晶体偏压为零。这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗十字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。如图四所示 4. 旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

课程设计实验报告 北邮

课程设计实验报告 -----物联网实验 学院:电子工程学院班级:2011211204 指导老师:赵同刚

一.物联网概念 物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“The Internet of things”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网的基础上延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。 二.物联网作用 现有成熟的主要应用包括: —检测、捕捉和识别人脸,感知人的身份; —分析运动目标(人和物)的行为,防范周界入侵; —感知人的流动,用于客流统计和分析、娱乐场所等公共场合逗留人数预警; —感知人或者物的消失、出现,用于财产保全、可疑遗留物识别等; —感知和捕捉运动中的车牌,用于非法占用公交车道的车辆车牌捕捉; —感知人群聚集状态、驾驶疲劳状态、烟雾现象等各类信息。 三.物联网无线传感(ZigBee)感知系统 ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。ZigBee在整个协议栈中处于网络层的位置,其下是由IEEE 802.15.4规范实现PHY(物理层)和MAC(媒体访问控制层),对上ZigBee提供了应用层接口。 ZigBee可以组成星形、网状、树形的网络拓扑,可用于无线传感器网络(WSN)的组网以及其他无线应用。ZigBee工作于2.4 GHz的免执照频段,可以容纳高达65 000个节点。这些节点的功耗很低,单靠2节5号电池就可以维持工作6~24个月。除此之外,它还具有很高的可靠性和安全性。这些优点使基于ZigBee的WSN广泛应用于工业控制、消费性电子设备、汽车自动化、家庭和楼宇自动化、医用设备控制等。 ZigBee的基础是IEEE802.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEE802.15.4(ZigBee)技术标准。ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC

Nd:YAG激光器倍频特性 实验报告

Nd:YAG 激光倍频特性 实验目的:1. 了解二次非线性光学效应 2. 了解二倍频晶体中相位匹配 实验原理: 当强光与物质作用后,表征光学的许多参量如折射率、吸收系数、散射截面等不再是常数,而是一个与入射光有关的变量,相应也出现了在线性光学中观察不到的许多新的光学现象,非线性光学的产生与研究大大加深了我们对光与物质相互作用本质的认识,同时也具有极其重要的实用价值。 1. 光学倍频 光学倍频又称二次谐波,指在非线性介质中传播频率为ν的激光,其中一部分能量转换到频率为2ν的光波中去,使在介质中传播的有频率为ν和2ν两种光波。 从量化概念来说,这相当于两个光子在非线性介质内发生湮灭,并产生倍频光子的现象。在倍频过程中满足能量守恒何动量守恒定律。 2. 二次谐波的效率 由基波的能量(功率)转换成二次谐波的能量(功率)的比值,反映了介质的二次谐波效率,为: ωωηI I 2= 常用二次谐波非线性材料有KDP 倍频晶体和KTP 倍频晶体等。KTP 晶体性能优于KDP 晶体,非线性系数是后者的15倍,光损伤阈值也高(大于400mW/cm 2)。 3. 相位匹配 相位匹配物理实质是:基频光在晶体中沿途各点激发的倍频光,在出射面产生干涉,只有相位匹配时才可干涉增强,达到好的倍频效率。相位匹配要求基频光和倍频光在晶体中的传播速度相等,即折射率相等,对于双折射晶体,基频光在晶体面上的入射则需要一定的角度相位匹配。实验中,KTP 晶体是加工好的,只需垂直晶体面入射即可满足相位匹配条件。 实验装置 1. He-Ne 激光器 2. 小孔光阑 3. 1064nm 全反凹面镜M 1 4. Cr 4+ :YAG 调Q 晶体 5. Nd:YAG 振荡棒 6. 输出镜M 2 7. Nd:YAG 放大棒 8. 平板玻璃 9. 能量计 10. KTP 晶体 图1 实验光路示意图 本实验采用与“Nd:YAG 激光器调Q 激光束放大特性”相同的实验装置,倍频晶体放置于放大级输出端后方。 实验过程 实验中要特别注意眼睛不可直视Y AG 输出激光以及He-Ne 激光,并小心精密操作设备。 1、倍频激光输出调节 (1)按照与前一实验相同步骤调整Nd:Y AG 激光器,放置调Q 晶体,放大级工作开启。 (2)在Nd:Y AG 放大棒后加入KTP 晶体,轻轻转动KTP 角度,使KTP 输出由一弱散斑汇聚成一耀眼亮点,即达到晶体最佳匹配效果。倍频后输出激光为1064nm 和532nm 两

倍频激光原理

倍频激光器的原理 激光 激光是受激辐射光的简称,其原理是: 当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。受激辐射产生的光就叫做激光。 激光器 要使受激辐射起主要作用而产生激光,必须满足三个前提条件: 1.有提供放大作用的增益介质作为激光工作物质,(Y AG激光器采用掺钕离子的钇铝石榴 石制成的晶体棒)。 2.有外界激励能源,使介质上下能级产生粒子数反转分布。(Y AG激光器,采用氪灯或氙 灯或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到YAG晶体上)。 3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜, 一块全反镜构成,激光由半反镜输出)。 谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。 因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。 YAG激光器 YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(Y AG),即简称YAG激光器。 泵浦源 泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。 YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。 不同的激光有不同的泵浦源。 倍频绿激光 YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光

外腔He-Ne激光器的调试及参数测量

半外腔He-Ne 激光器的调试及参数测量 1. 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被受激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,它标志了激光技术的诞生 按工作物质的类型不同,激光器可以分成四大类:固体激光器、气体激光器、液体激光器和半导体激光器。He-Ne 激光器是继红宝石激光器后出现的第二种激光器,也是目前使用最为广泛的激光器之一。因此有必要通过实验对He-Ne 激光器作全面的了解。 2. 实验目的 1) 了解He-Ne 激光器的构造。 2) 观察并测量He-Ne 激光器的功率、发散角、横模式等性能参数。 3) 调整谐振腔一端的反射镜,观察谐振腔改变后He-Ne 激光器性能参数的变化。 3. 基本原理 3.1 He-Ne 激光器结构 He-Ne 激光器由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成,如下图 He-Ne 激光器激励系统采用开关电路的直流电源,体积小,重量轻,可靠性高,并装有散热风机,可长时间运行。 激光管的布氏窗与输出镜、全反镜之间用模具成型的耐老化的硅胶套封接。避免了因灰尘、潮气污染布氏窗、输出镜、全反镜而造成的激光输出功率下降。输出镜、全反射调节采用差动螺丝,粗调调节范围大,可锁定。细调调节范围小,调节时不易出差错。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。激光器外壳接地,手碰激光器外壳无静电感应的刺痛感。 放电毛细管内充的氦氖混合气体的压强比约为7:1,总压强在100Pa 至400Pa 。放电管两端贴有用水晶片制成的布儒斯特窗。窗口平面的法线与放电管轴向间的夹角也恰好等于水晶的布儒斯特角,约56°。安装布儒斯特窗口可以使激光器输出的激光为在纸面内振动的偏振光,沿该方向振动的偏振光通过布儒斯特窗时不会反射,因此有利于减少损耗,提高输出功率。 3.2 He-Ne 激光器谐振腔与激光横模 光学谐振腔的两个反射镜构成腔的边界,他对腔内的激光场产生约束作用,使激光场的分布以及振荡频率都只能存在一系列分离的本征状态,每一个本征态称为一种激光模式。激光模式有两类:一类称为纵模,它是指可能存在于腔内得每一种驻波场,用模序数q 描述沿腔轴线的激光场的节点数。另一类是横模,指可能存在于腔内的每一种横向场分布,用模序数m 和n 描述。如果谐振腔由两面方形孔径的反射镜组成,则m 和n 分别表示沿镜面直角坐标系的水平和竖直坐标轴的激光场节线数。如果谐振腔由两面圆形孔径反射镜组成,则m 和n 分别表示沿镜面极坐标系的角向和径向的激光场节线数。因此每一个激光模式可以用三个独立的模序数表示,记成n m q TEM ,,。单独表示横模时可记成n m TEM ,。如00TEM 表示基

激光测距实验报告(精)

一、激光测距简介: 激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点: ①激光有小的光束发散角,即所谓的方向性好或准直性好。 ②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。 ③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。 若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。 世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。 激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。 由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。 激光测距仪-分类: 一维激光测距仪 用于距离测量、定位; 二维激光测距仪(Scanning Laser Range finder) 用于轮廓测量,定位、区域监控等领域; 三维激光测距仪(3D Laser Range finder) 用于三维轮廓测量,三维空间定位等领域。 激光测距-方法 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。

激光谐振腔与倍频实验

激光谐振腔与倍频实验 A13组03光信息陆林轩033012017 实验时间:2006-4-25 [实验目的和内容] 1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。 2、掌握腔外倍频技术,并了解倍频技术的意义。 绿色光的输出情况。 3、观察倍频晶体0.53m [实验基本原理] 1、激光谐振腔 光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。 图1 激光谐振腔示意图 (1)组成: 光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。 (2)工作原理: 谐振腔中包含了能实现粒子数反转的激光工作物质。它们受到激励后,许多原子将跃迁到激发态。但经过激发态寿命时间后又自发跃迁到低能态,放出光子。其中,偏离轴向的光子会很快逸出腔外。只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。这些光子成为引起受激发射的外界光场。促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。 (3)种类:

图2 谐振腔的种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。 如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔(满足120.1g g <<) ,否则称为不稳定腔(满足12121..g g g g <<或0)。上述列举的谐振腔都属稳定腔。 (4)本实验中的激光谐振腔: 本实验采用的是外腔式钕玻璃激光器。外腔式激光器的两个反射镜是放在激光棒的外侧,长度可调,频率可变,在激光棒的两侧按一定的角度贴有布儒斯特窗片。由于布儒斯特窗对P 偏振分量具有100%的透过率,从而输出线偏光。 2、激光倍频 (1)非线性光学基础 极化强度矢量和入射长的关系为: (1)(2)2(3)3P E E E χχχ=+++ (1) (1)χ,(2)χ ,(3)χ,……分别是线性极化率,二阶非线性极化率,三阶非线性极化率……,且每加一次极化,χ值减小七八个数量级。在入射光场比较小的时候,(2) χ ,(3) χ 等极小, P 与E 成线性关系。当入射光场较强时,体现出非线性。只有在具有非中心对称的晶体中才 可以观测到二阶非线性效应。二阶效应可用于实现倍频、和频、差频和参量震荡过程。其中二倍频技术是最基本,利用最广泛的一种技术。本实验就是要观测倍频技术。 (2)相位匹配及实现方法 除了要光强比较大还要实现相位匹配,才可以获得好的倍频效果。由倍频转换率公式:

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

激光倍频实验报告

篇一:激光谐振腔与倍频实验 激光谐振腔与倍频实验 a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容] 1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。 2、掌握腔外倍频技术,并了解倍频技术的意义。 3、观察倍频晶体0.53?m绿色光的输出情况。[实验基本原理] 1、激光谐振腔 光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。 图1 激光谐振腔示意图 (1)组成: 光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。两块反射镜之间的距离为腔长。其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。 (2)工作原理: 谐振腔中包含了能实现粒子数反转的激光工作物质。它们受到激励后,许多原子将跃迁到激发态。但经过激发态寿命时间后又自发跃迁到低能态,放出光子。其中,偏离轴向的光子会很快逸出腔外。只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。这些光子成为引起受激发射的外界光场。促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。 (3)种类:图2 谐振腔的种类 按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,称为共心腔。 如果光束在腔内传播任意长时间而不会逸出腔外,则称该腔为稳定腔(满足,否则称为不稳定腔(满足1?g1.g2或0?g1.g2)。上述列举的谐振腔都属0?g1.g2?1) 稳定腔。 (4)本实验中的激光谐振腔: 本实验采用的是外腔式钕玻璃激光器。外腔式激光器的两个反射镜是放在激光棒的外侧,长度可调,频率可变,在激光棒的两侧按一定的角度贴有布儒斯特窗片。由于布儒斯特窗对p 偏振分量具有100%的透过率,从而输出线偏光。 2、激光倍频 (1)非线性光学基础 极化强度矢量和入射长的关系为: p??(1)e??(2)e2??(3)e3??(1) ……分别是线性极化率,二阶非线性极化率,三阶非线性极化率……,?(2) ,?(1),?(3),且每加一次极化,?值减小七八个数量级。在入射光场比较小的时候,?

光速测量实验报告

光速测量实验报告 实验目的: 1. 了解和掌握光调制的基本原理和技术 2. 学习和使用示波器测量同频正弦方波信号相位差的方法 3. 测量光在空气中的速度 实验仪器: 激光器、信号发生器、光接收器、示波器、反射镜等 实验原理 相位φ=κ*d ,其中φ为相位差,κ为波数,d 为光程差。实验采用平面镜改变光程差d,实验中可以通过测量平面镜之间的距离来确定光程差d 。信号发生器为直流方波输出,则激光器发出激光脉冲。激光接收器收到激光信号后输出基频信号,且输出的信号为一正弦波,前后移动平面反射镜的距离,并测出移动的距离进而测出光程差Δd,由于光程差的改变,则信号反射光的信号的相位发生变化,由示波器上可以确定时间t1和t2,计算出时间差Δt=∣t1-t2∣,所以光速c=Δd/Δt 。下面是测量图: 1. 预习实验的内容,了解实验的目的,理解实验的原理,思考应当怎样把实验 做好,实验过程中都要做什么,同时,复习一下示波器一些基本的使用和各个按键的功能。为实验做好准备工作。 2. 实验前,认真读完实验仪器的操作说明,了解实验仪器的基本结构,以及实 验仪器各部分在实验中的功能和作用,分析实验中应该怎样正确的使用仪器,进入实验状态。 3. 在对实验分析的基础上,正确的连接线,把实验仪器连接摆放好 4. 调试实验仪器,由于如果反射镜离的太远,不利于实验中对实验仪器的调试, 因此,在调试仪器阶段应当使反射镜离激光器近。同时,反射镜,激光器,信号接收器应该保持在同一水平面上。由信号发生器发出一矩形方波,作用在激光器上使激光器发出光脉冲,由反射镜反射的信号由接收器转换成正弦波,把正弦波与方波同时输入示波器,由于方波是很稳定的不随反射镜位置的变化,把触发信号选择成方波。 5. 选择合适的反射镜位置作为基点,然后移动反射镜的位置,测量实验数据Δd 和Δt ,处理实验数据,可以用线性来求。 示波器 信号发生器 激光接收器 激光器 平面反射镜 Δd

氦氖激光器的调试实验

氦氖激光器调试实验 一、实验目的 1、了解He-Ne 激光器的工作原理和基本结构; 2、掌握外腔式He-Ne 激光器的F-P 腔调节技术; 3、分析放电电流对激光输出功率的影响。 二、实验仪器 外腔式He-Ne 激光器、准直光源,光学导轨,激光功率计,光阑,腔镜。 三、实验原理 一、激光原理概述 1 普通光源的发光——受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等的发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。在没有外界作用时会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h -=ν 2受激辐射和光的放大 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量h υ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频率(能量)相同,而且发射方向、偏振方向以及光波的相位都完全一样。于是,入射一个光子,就会出射两个完全相同的光子。这意味着原来光信号被放大,这种在受激过程中产生并被放大的光,就是激 E 2 E 2 E 1 ν h (a) 自发辐射 E 2 E 2 E 1 ν h (b) 受激吸收 νh E 2 E 2 E 1 νh ν h νh ν h (c) 受激发射 高能态原子 低能态原子 双能级原子中的三种跃迁

电子碰 撞 激 发 波数 1 3390nm 632.8nm 1150nm 自发辐射 管壁效应驰豫 3P (525p p ) 1S (523p s ) 2S (5 24p s ) 共振转移 共振转移 电子碰撞激发 Ne 10S He 17 1 6 15 14 13 12 11 3S (525p s ) 2P (523p p ) 光。 3 粒子数反转 一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处在高能级的原子数目比处在低能级的还多时,受激辐射跃迁才能超过受激吸收,而占优势。由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在高能级的数目比低能级上的多,这种情况,称为粒子数反转。但在热平衡条件下,原子几乎都处于最低能级(基态)。因此,如何从技术上实现粒子数反转则是产生激光的必要条件。 4 激光器的结构 激光器一般包 括三个部分:激光工作介质;激励源; 谐振腔 二 He-Ne 气 体激光器工作原 理: 气体激光器的种 类很多,He-Ne 气体 激光器是目前应用最广泛的气体激光器。由于它的发散角小、单色性和方向性极好、稳定性高,故 在准直、计量、全息、 检测、导向、信息处 理、医疗等技术中得到了广泛的应用。但He-Ne 气体激光器的输出功率较小, He-Ne 气体激光器的输出功率只有 1 100mW ,最常用的25cm 的激光管,放电电流为5mA,高压为1500V ,输出功率为1.5mW ,效率仅为0.02%。制作He-Ne 气体激光器时,为了在有限的腔长内,尽可能获得较大的功率输出,要选择最佳的放电条件。所谓最佳放电条件是指一定管径和管长的He-Ne 气体激光器在适当的总气压、气体配比和放电电流下运转,以获得最大功率的激光输出。 四、 实验内容与步骤: 1、将准直光阑放在准直用的氦氖激光器和半外腔氦氖激光器之间,取掉其

激光测距实验报告

激光脉冲测距实验 1.实验目的 通过学习激光脉冲测距的工作原理;了解激光脉冲测距系统的组成;搭建室内模拟激光脉冲测距系统进行正确测距,为今后的工程设计奠定理论基础和工程实践基础。 2.实验原理 激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。 在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为 R=/2 (2-1) 式中c为光速。真空中的光速是一个精确的物理常数 C1=299792458 m/s 光纤中的平均折射率n为 n=1.000275266 故光纤中的光速为 C=299710000 可见,激光测距的任务就是准确地测定时间间隔t。当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的 ⊿R=C⊿t/2 (2-2) 实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。设这段时间内脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为 R=1/2cmT=cm/f=1.6m (2-3) 相应的测距精度为 ⊿R =1/2Ct=c/(2f) (2-4) 可见,脉冲激光测距机的测距精度由晶振的频率决定。常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。晶振的频率愈高,测距精度就愈高, 但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。 对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成

相关文档
最新文档