地铁隧道收敛变形监测

地铁隧道收敛变形监测
地铁隧道收敛变形监测

隧道周边收敛量测

一、实验目的

1. 了解微地震监测技术目的。

2. 了解速度传感器及加速度传感器的工作原理。

3. 了解数据采集的基本原理。

4. 掌握微地震监测软件的使用方法。

二、以煤科学研究总院的数显收敛计为例说明

1. 性能

量测基线长度:0. 5 m ?10 m 及0. 5 m ?15 m ;

最小读数:0.01 mm;

量测精度:0.06 mm;

数显值稳定度:24h不大于0.01 mm。

2?仪器构造及工作原理

2.1主要结构

微地震监测系统主要由(1 )三分量加速度传感器、(2)三分量速度传感器、(3)电缆、

(4)链接传感器26芯插头线、⑸HZ-MS12通道微地震监测仪、⑹USB2.0电缆、(7)电源转换器、(8)干电池及电池盒、(9)断线钳、(10)十字螺丝刀、(11)万用表、(12)XP操

作系统电脑一台、(13)榔头等组成,见图 9.1 o

4 t 7 ?

图9.1 收敛计结构与工作示意图

2.2基本工作原理

数据采集是微地震监测的基础,对硬件设备要求较高。由于微地震的特性所致,必须用

高采样率、宽频带、连续记录、宽动态范围(96dB)进行微地震信号采集。应用时,数据

采集系统置于被监控的设备处,通过传感器对设备的电压或者电流信号进行采样、保持,

并送入检测仪中变成数字信号,然后将该信号送到FIFO中。

3.使用方法

1)首先在测点处牢固的埋设预埋件;预埋件长度根据需要加工,连接件与预埋件的连接,应使销钉孔方向铅直。

2)检查予埋测点有无损坏、松动并将测点灰尘擦净。

3)打开收敛计钢尺摇把,拉出尺头挂钩

放入测点孔内,将收敛计拉至另一测点,并将尺架挂钩挂入测点孔内,选择合适的尺孔,将尺孔销插入与联尺架固定。

4)调整调节螺母,仔细观察,使塑料窗口上的刻线对在张力窗口内标尺上的两条白线之间(每次应一致)。

5)记下钢尺在联尺架端时的基线长度与数显读数。为提高量测精度,每次基线应重复测

三次取平均值。当三次读数极差大于 0.05mm 时,应重新测试。

6)测试过程中,若数显读数已超过 25mm ,则应将钢尺收拢(换尺孔) 25mm 重新测试,两组平均值相减,即为两尺孔的实际间距,以消除钢尺冲孔距离不精确造成的测量误差。

7)记录数据、时间、温度、尺孔位置和测点编号。

8)一条基线测完后,应及时逆时针转动调节螺母,摘下收敛计,打开尺卡收拢钢带尺,为下一次使用作好准备。

4.数据的记录与修正

记录数据有三项内容,包括数显读数;钢卷尺使用长度及测点附近气温。一般情况下读数取三次平均值,三次读数的偏差应小于0.05mm。

基线两点间收敛值S 按下式计算:

S (D0 L0 )(D n L n)

式中:D0-首次数显读数,( mm);

L0 -首次钢尺长度,(mm);

D n -第 n 次数显读数,(mm);

L n —第n次钢尺长度,(mr)

如第 n 次测量与首次测量的环境温度相差较大时,要进行温度修正。公式如下:

L n' L n(T n T0)L n

式中:L n'—温度修正后钢尺长度,(mr);

—钢尺材料的线膨胀系数,取 1.17 X 10 6 C;

T n —第n次量测环境温度,(C );

T o —首次测量环境温度,(C);

钢尺温度修正后收敛值S' 按下式计算:

S' Do Lo Dn Ln'

基线缩短,S或S'为正值,反之为负。

5.注意事项

1)调节螺母逆时针转动最大范围,千万注意不得露出螺纹。

2)数显电路本身具有自动断电功能,以提高电池使用寿命。当显示值固定不变 7 分钟后,显示屏自动断电。转动调节螺母,数值自动出现。

3)收敛计使用读数时应特别注意百分表的小针指数,以免造成较大的过失误差。收敛计使用一段时间后应进行对零校正,检验数显读数是否为零值,如有偏差可打开塑料盖,进行修正,反之可继续使用。

4)使用过程中,应尽量避免泥水浸入收敛计及钢尺,并正确使用收敛计各转动部件,保证钢尺平直,不得扭曲。

5)测温用的水银温度计应使用分度值为0.1 C的,不得用分度值大于该值的其它温度

计。

6)钢卷尺摇把不得逆时针方向摇动,逆时针摇动易损坏。

7)仪器较长时间不用时,给钢卷尺涂缝纫机油防锈,应将仪器入在干燥处保存。

、实验步骤

1?了解仪器的结构,分析两种不同型号收敛计结构差异。

2 ?测二基准点间距离,读三次数,取平均值,并做记录。现场记录见表9 — 1。

3.测三个断面的数值,分别按(5 C、15C、25C )三个温度计算收敛值。

四、实验报告要求

1 .讨论误差分析方法和提高精度的措施。

2 ?整理实验数据,得出结论。

五、思考题

1. 简述收敛仪构造。

2. 说明计算三线{△形}量测的方法。如何计算拱顶相对下沉值。

表9-1 隧道现场监控量测报告单

项目名称:合同号:

承包单位:

监理单位:编号:

运营期间的地铁隧道结构变形安全监测技术研究

运营期间的地铁隧道结构变形安全监测技术研究 发表时间:2017-05-14T13:31:08.110Z 来源:《建筑学研究前沿》2017年1月下作者:王鹏 [导读] 随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线。 广州市吉华勘测股份有限公司 510260 摘要:随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线,其投资大、难度高、施工期长、环境复杂等。同时地铁沿线高强度的物业开发、市政工程建设对地铁结构和运营安全带来一定的隐患,城市轨道交通结构的安全保护工作日益严峻,一但出现城市轨道交通安全事件,将严重影响城市轨道交通的正常运营。因此,在外界施工影响下,对运营期间的地铁实施必要的变形安全监测至关重要。 关键词:地铁,测量机器人,自动化监测。 1 地铁监测的意义和目的 地铁结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。而地铁旁边的施工正是引起外部荷载变化的主要原因,地铁结构变形和沉降超过允许值,将会对地铁的运营安全造成影响。通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全。 地铁监测的主要目的如下:1)通过对测量数据的分析、掌握隧道和围岩稳定性的变化规律,修改和确认设计及施工参数;2)通过监控量测了解施工方法的科学性和合理性,以便及时调整施工方法,保证施工安全及隧道的安全;3)了解隧道结构的变形情况,实现信息化施工,将监测结果反馈设计,为改进设计施工提供信息指导,提供可靠施工工艺,为以后类似的施工提供技术储备。 2.监测实施 因地铁隧道的特殊性,对于地铁运营期的监测,需采用自动化监测手段,即采用测量机器人和自动监测系统软件建立隧道结构变形自动监测系统。在外部施工期间自动测量地铁隧道结构顶板、侧墙及道床在三维—X、Y、Z方向(其中:X、Y为水平方向,Z为垂直方向)的变形值。 2.1监测点与基准点布置 参考工程设计、实际情况及有关规定,确定地铁受外界项目施工影响的范围,监测断面可按5~20m间距布设,每断面布设一般情况下六个监测点。在隧道两端不受建设项目施工影响的隧道远处各设置3个基准点。 2.2自动监测系统 自动监测系统主要由监测设备、参考系、变形体和控制设备构成。监测设备由测量机器人、自动化监测系统软件和监测控制房组成;控制设备由工控机及远程控制电脑组成。 1)自动化监测网络系统的硬件部分包括高精度自动全站仪、目标棱镜、信号通信设备与供电装置、计算机及网络设备等部分组成(如图1)。 图1数据采集系统图 2)系统软件包括动态基准实时测量软件和变形点监测软件两大部分。动态基准实时测量软件功能上主要有以下特点:根据距离及棱镜布设情况自动进行大小视场的切换;依据布设的网形站与站之间的观测关系,对测站点的观测方向可分组设置,可适合任意控制网形,不局限于导线网;采用局域网技术进行数据的通信,并具有网络断开的自动判断功能;为满足各种测量等级和运营环境的需要,具有各项测量限差、时间延迟、重试次数、坐标修正的设置功能;考虑到地铁内局部范围内气象一致性,在平差计算中,采用加尺度参数解算,避免了气象参数的测定,提高控制网测量的精度。 3)变形点监测软件包括各分控机上的监测软件和主控机上的数据库管理软件两部分。分控机上的监测软件用来控制测量机器人按要求的观测时间、测量限差、观测的点组进行测量,并将测量的结果写入主控机上的管理数据库中。 2.3自动监测系统工作流程 首先建立计算机和测量机器人的通信,然后对测量机器人进行初始化,此外进行测站及控制限差的设置,所有设置完毕后进行学习测量,设置点组和定时器,根据点位的重要性以及监测频率将相同的观测点纳入同一点组,最后进行自动观测。一周期观测完毕后软件便对原始观测数据进行差分处理,得到各变形点的三维坐标、变形量及变形曲线图,设置软件还可以将数据通过手机网络发送至指定的邮箱。 3地铁隧道自动化监测的技术难点 地铁隧道是狭长形的空间环境,同时列车一般以平均5分钟左右的间隔在隧道中高速运行。地铁环境的这些特点及保证地铁正常运营等因素的制约,使得自动变形监测系统在地铁变形监测中的应用,遇到比其它工程中更多的技术问题,因此自动变形监测手段有着常规测量无法比拟的优越性。自动监测系统系统可以在无人值守的情况下,全天24小时连续地自动监测,实时进行数据处理、数据分析、报表输

地铁、隧道施工监测方案

施工监测方案 第一节监测方案设计和测点布设原则 18.1.1 监测组织机构 18.1.2 设计原则 1、本工程项目监测方案以安全检测为目的,根据不同的工程项目如(明挖、暗挖、盾构)确定监护对象(建筑物、管线、隧道等),针对监测对象安全稳定的主要指标进行方案设计。 2、本工程项目监测点的布置能够全面地反映监测对象的工作状态。 3、采用先进的仪器、设备和监测技术,如计算机技术、遥测技术等。 4、各监测项目能相互校验,以利数值计算,故障分析和状态研究。 5、方案在满足监测性能和精度的前提下,可适当降低检测频率,减少检测元件,以节约监测费用。 18.1.3 测点布设原则 1、观测点类型和数量的确定应结合工程性质、地质条件、设计要求、施工特点等因素综合考虑。 2、为验证设计数据而设的测点布置在设计中最不利位置和断面,为结合施工而设的测点布置在相同工况下的最先施工部位,其目的是及时反馈信息、指导施工。 3、表面变形测点的位置既要考虑反映监测对象的变形特征,又要便于来用仪器进行观察,还要有利于测点的保护。 4、除埋测点不能影响和妨碍结构的正常受力,不能削弱结构的变形刚度和强度。 5、在实施多项内容测试时,各类测点的布置在时间和空间上应有机结合,力求使一监测部位能同时反映不同的物理变化量,找出内在的联系和变化规律。 6、深层测点应在施工前30 天布置好,以便监测工作开始时,监测元件进入稳定的工作状态。 7、测点在施工过程中遭到破坏时,应尽快在原来位置或尽量靠近原来位置补设测点,保证该点观测数据的连续性。 18.1.4 主要监测仪器

在本标中,若我局中标将采用由中国地震局第一地形变监测中心研制的“隧道形变自动化监测系统”用于本标监测控制。 该自动化监测系统是对整个被监测区域进行多点同时快速扫描式测量,测试的频率可根据实际情况来设定,因此所取得的每一瞬时观测值更真实、更可靠的反映当时被测目标的变形状态。 1、BOY—1 型臂式倾斜仪 该仪器具有传感器体积小,安装简单灵活,既能分散单个观测,又能多臂组合成隧道变形监测系统。该仪器可用来监测隧道纵向倾斜(沉降)、环缝变形错位及隧道收敛变形等。 主要技术指标 灵敏度:0.005mm—0.01mm(1—2 角秒) 测量范围:±5°或±10°(臂的最大倾斜度) 采数频率:自由选择 平均日漂移:小于0.05mm/d 测量精度(单臂):±0.017mm 适宜环境温度:0°—45℃ 适宜环境湿度:90% 电源:AC200V 50HZ 0.15W DC±9V 20Ma 2、激光水平位移监测仪 利用激光发散小,能量高的特性,使用激光束做为位移监测的参照系(基准线),用装有硅光电池的光电转换板对激光聚焦中心进行自动跟踪,光电转换板与一个精密位移传感器相连,这样就可以测量出接收端相对激光束的水平位移变化量。 主要技术指标 灵敏度:0.05mm 测量动态范围:50mm 采数速度、频率:2 分钟以上自由选择 日漂移:小于0.05mm/d 测站精度:0.1mm 非线性误差:小于2% 电源:AC220V 50HZ 3、数据采集及处理软件 为了使监测仪采集的数据使用电脑来分析处理,采用相应的软件和建立数据库。本次处理软件是在windows 下进行数据处理和操作,使用微软公司开发的Visual Basic 6.0 软件,Visual Basic 6.0 可以支持使用多种数据库,Access 是Visual Basic 6.0 的内部数据库,其操作方便,安全性强,因此选择Access 作为数据处理的数据库。 计算机接口采用DC1054A/D 转换器和DC1070A/D 转换器,前者用于激光位移仪,后者用于臂式倾斜仪。 本次采用的软件主要有下述几方面的功能: A、实时采集数据并同时显示各监测目标点的观测数据和连续变化的图形; B、对观测数据储存和各种形式的输出; C、打印数据报表和绘制输出观测图形(全部数据、小时值、日均值、五日均值、月均值); D、对监测到各项目各组数据(任意时间区段)进行精度计算统计和分析; E、对观测数据进行相关的数学处理: (1)滑动滤波(圆滑观测曲线); (2)低通滤波(去掉高频躁声);

地下工程电缆隧道监测方案1

电缆隧道施工监测方案 1.工程概况 本工程为220KV莫双1、2#线下地工程电缆隧道,隧道基本沿新建成的云锦路南北走向。 本工程在盾构隧道两端分别设置盾构到达井、盾构始发井。盾构基坑周边管线密集,道路交通繁忙,盾构始发井位于空地,距离道路较远,目前仅有一条在建的污水管。结合周边环境及地质资料,考虑到施工工期紧的因素,基坑围护结构采用SMW 桩(型钢水泥土搅拌墙)。 盾构隧道线路沿云锦路走向,从万达26#地块地下室及规划的云锦路下穿隧道之间以R=500m半径曲线穿过,曲线长度87.9695m,两端的直线段长度分别为29.336m、731.6945m,盾构隧道总长度849m。 隧道纵坡设计为单面坡形式,盾构始发井井深10.244m,隧道向北分别以1%和0.2%的坡度下坡,坡长分别为200.6 m和648.4m。盾构到达井井深14.747m,隧道最小覆土4.5m;隧道在变坡点设置半径R=5000m竖曲线。该线路隧道距离D800铸铁管最小净距离2.0m,距离D1200铸铁最小净距离2.4m。 2.工程地质及水文地质条件 (1)工程地质条件 拟建场地位于南京河西地区。地貌单元属长江漫滩,场地地层呈二元结构,上部以淤泥质粉质粘土为主,下部以粉土、粉细砂为主。隧道地质条件差,地层分层见表1-2。 隧道主要穿过②-2b4、②-3b3-4淤泥质粉质粘土地层。其中②-2b4淤泥质粉质粘土为隧道穿过的主要地层,有明显河湖相沉积特征,具有高含水量、高压缩性、高灵敏度、低强度,易产生土体流动、开挖面不稳等现象。 (2)水文地质条件 根据地质勘探资料,结合区域地质条件,长江漫滩沉积物呈二元结构,上部主要以淤泥质粉质粘土为主,下部以砂性土为主,赋存于粘性土中的地下水类型属孔隙潜水,赋存于下部粉土、砂性土中的地下水具一定的承压性。 地下水主要补给来源为大气降水及生产、生活用水的入渗。深部承压含水层中地下水与长江及秦淮河均有一定的水力联系。

地铁隧道变形监测中的三维激光扫描技术研究

地铁隧道变形监测中的三维激光扫描技术研究 发表时间:2018-11-14T17:16:54.063Z 来源:《建筑学研究前沿》2018年第20期作者:黄鑫 [导读] 有效减轻了监测的劳动强度、缩短了监测作业时间,并且获得了更加准确、全面的检测数据,大大提高了检测的质量。本论文以地铁隧道变形检测中的三维激光扫描技术为研究切入点,对其进行了详细的研究和论述。 黄鑫 广州云胜工程勘测技术有限公司广东广州 510000 摘要:在地铁隧道施工建设完成之后,做好地铁隧道变形监测尤为重要,是保证地铁工程施工质量,确保地铁安全运营的重要条件。在地铁隧道变形监测中技术中,充分融入三维激光扫描技术,有效减轻了监测的劳动强度、缩短了监测作业时间,并且获得了更加准确、全面的检测数据,大大提高了检测的质量。本论文以地铁隧道变形检测中的三维激光扫描技术为研究切入点,对其进行了详细的研究和论述。 关键词:地铁隧道;变形监测;三维激光;扫描技术 地铁隧道在施工建设完成之后,受到土地扰动、周边工程施工、建构物负载等因素的影响,在具体施工中会出现纵向、横向变形,严重影响了地铁隧道的安全运行。这就要在具体的施工中,加强地铁隧道变形监测工作。传统的检测具有明显的缺点,如:工作效率低下、数据不全、自动化程度低,而将三维激光扫描术引入到地铁隧道变形监测过程中,有效地弥补了传统监测的不足。 1.地铁隧道变形检测相关概述 随着城市化进程的加快,城市人口增加、机动车辆增加。各大城市都面临着较为严重的交通压力。为了有效的缓解城市交通压力,各大城市都加强了地铁隧道的建设。但是在地铁隧道建设完成之后,受到复杂地质地理因素的影响,原本设计的地铁线路可能会出现多种结构改变,如:沉降、弯曲、扭曲变形、开裂等,在一定范围内的结构变形,并不会对地铁隧道的发展产生重要的影响,一旦地铁隧道出现严重的结构变形,就会导致地铁隧道出现结构与道床剥离、地铁轨道设备几何形位改变等。 除此之外,地铁隧道建设完成后,在运营过程中,还会受到地面和周边建筑物负载、隧道周边工程施工、隧道工程结构施工、地铁列车运行过程中所产生的振动等因素的影响,也在一定程度上加强了地铁隧道的变形。 因此,对于新建的地铁隧道线路,必须要加强变形监测,根据监测结果充分了解其平面位移、竖向位移情况,以有效保障地铁隧道的运营安全[1]。同时,变形监测数据,还可以为以后的地铁隧道设计,提供一定的借鉴和依据。 2.三维激光扫描技术以及特点 2.1三维激光扫描技术 三维激光扫描技术主要是指在地铁隧道变形监测过程中,利用激光扫描装置进行自动、系统、快速的扫描,并将所获得相应数据进行整理分析,以获得对象的表面三维坐标。这种三维激光扫描技术是一种高科技的测绘技术,集成了多种高新技术的测绘仪器,并在具体监测过程中,采用非接触式的高速激光测量方式。 三维激光扫描技术在地铁隧道变形监测中的具体应用,应包括以下四个步骤: 步骤一:在地铁隧道内部建立一个监测基准网,并形成一个闭合的观测系统。通常,地铁隧道内部基准网往往在铺轨施工期间完成,并采用地铁的基本控制网进行建立。 步骤二:根据地铁隧道的实际情况,在每隔一定的距离上,可采用CPⅢ控制点埋设的方式,设置一个激光反馈观测点。通常,激光反馈观测点往往选择在增加横断面上,这样便于激光反馈点的收集。之后,根据激光反馈点所的到的数据进行分析,从而根据分析结果得出地铁隧道的变形程度。 步骤三:以地铁隧道和你建立的检测基准网为基础,采用三维激光扫描仪,对激光反馈光测点进行扫描,从而得到整个地铁隧道线路的三维激光扫描数据。 步骤四:将三维激光反馈点所得到的数据进行综合整理,并据此建立三维模型,进行综合检测。在这一过程中,对于大量的数据分析,要保证数据的完整真实,不能在分析过程中,随意更改[2]。 2.2三维激光扫描技术特点 具体来说,三维激光扫描技术在地铁隧道变形检测中的应用,具有一定的优势: 第一、效率高。 三维激光扫描技术在监测的过程中,所用的时间仅仅为传统监测时间的几十分之一,能够在短时间内完成高质量的监测。尤其是对于地形结构复杂的区域内部来说,三维激光扫描技术监测优势尤为明显。 第二、三维可视化 三维激光扫描技术在监测中,可以快速获取地铁隧道内部精确信息,充分反映其本身特点,并在此基础上,实现了地铁隧道内部表面的三维可视化。 第三、安全稳定,精度均匀 与传统的监测方法相比较,三维激光技术在应用中由于扫描仪自动识别,大大降低了监测过程中人为因素所造成的误差,在一定程度上提高了观测的精准度。另外,在监测过程中,由于三维激光获取数据密度较大,精度分布较为均匀,所谓在此基础上构建出的三维立体模型,具有较强的完整性和连贯性。 第四、数据监测更加全面 三维激光扫描技术在应用中,可以对隧道内部各个区域的沉降、结构变形、收敛情况进行详细、直观的了解,使得数据监测更加全面。 3.三维激光扫描技术的具体应用 3.1制定监测方案 制定科学的检测方案,是实施三维激光扫描技术监测的第一步。在制定监测方案的过程中,不仅要根据地铁隧道的实际情况,还要对

地铁隧道及车站监控量测方案

地铁隧道及车站监控量测方案 1施工监测目的 将监控量测作为一道工序纳入到施工组织设计中去。其主要目的为: ⑴了解暗挖隧道和明开车站的支护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。 ⑵为修改工程设计方案提供依据。 ⑶保证施工影响范围内建筑物、地下管线的正常使用,为合理确定保护措施提供依据。 ⑷验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 ⑸积累资料,以提高地下工程的设计和施工水平。 2监控量测设计原则 ⑴可靠性原则 可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到:第一,系统需要采用可靠的仪器。第二,应在监测期间保护好测点。 ⑵多层次监测原则 多层次监测原则的具体含义有四点: ①在监测对象上以位移为主,兼顾其它监测项目; ②在监测方法上以仪器监测为主,并辅以巡检的方法; ③在监测仪器选择上以机测仪器为主,辅以电测仪器; ④考虑分别在地表、及临近建筑物与地下管线上布点以形成具有一定测点覆盖率的监测网。 ⑶重点监测关键区的原则 在具有不同地质条件和水文地质条件、周围建筑物及地下管线段,其稳定的标准是不同的。稳定性差的地段应重点进行监测,以保证建筑物及地下管线的安全。 ⑷方便实用原则 为减少监测与施工之间的干扰,监测系统的安装和测量应尽量做到方便实用。 ⑸经济合理原则 系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。 3监测项目

3.1监测项目分类 本工程的施工监测项目分为A类和B类。 ⑴A类监测项目: 包括地质及支护观察、周边位移、拱顶下沉、地表沉降、地下水位等项目,属必测项目,施工时严格按照有关规范设计要求进行监测。 ⑵B类监测项目: 包括土体水平位移、土体垂直位移、围岩压力、钢架应力,属于选测项目,根据设计要求,施工的实际要求和地层情况选择有实际意义的监测项目进行监测,以保证结构施工满足设计要求。 各种观测数据相互印证,确保监测结果的可靠性,为确保周围建筑物的安全,合理确定施工参数提供依据,达到反馈指导施工的目的。 3.2区间隧道监测项目 区间隧道标准断面监测项目如下表所示。 区间隧道标准断面监测项目表

地铁运营自动化监测调研报告

地铁运营自动化监测技术国内外研究现状调研报告 上海地矿工程勘察有限公司 二O一O年十一月

目录 第一章前言 (1) 第二章国内外监测技术研究现状 (1) 2.1 全站仪自动量测系统 (2) 2.1.1 系统的构成 (2) 2.1.2 TCA自动化全站仪 (2) 2.1.3 Leica标准精密测距棱镜 (3) 2.1.4 计算机 (4) 2.1.5 其他设备 (4) 2.1.6 实时监控软件 (4) 2.1.7 后方处理软件 (4) 2.1.8 观测方法 (5) 2.1.9误差来源 (5) 2.1.10误差来源 (5) 2.2 静力水准仪系统 (6) 2.2.1 系统组成 (6) 2.2.2 静力水准仪的结构 (6) 2.2.3 静力水准仪的测量原理 (7) 2.2.2 RJ型电容式静力水准仪主要技术指标 (8) 2.2.3 静力水准仪的安装及调试 (9) 2.2.4 静力水准仪的观测和运行维护 (10) 2.2.5静力水准仪漏液及蒸发后所得数据的处理 (10) 第三章自动化监测项目的必要性与可行性分析 (11) 3.1 项目必要性分析 (11) 3.1 重大工程运营安全已成为社会稳定的重要因素之一 (11) 3.2 随着轨道交通不断建设和投入使用,地质环境变化及自身结构变形对其安全运营影响日益显现 (11) 3.2 重大工程安全运营对环境要求不断提高,需及时地掌握影响其安全运营的变形情况 (13) 3.2 目前国内监测市场的方法体系相对落后、不够系统,有待提高 (14) 3.2 项目可行性分析 (14) 3.2.1政府和社会的高度重视 (14) 3.2.2国内外相关技术的飞速发展提供了技术可行性 (14) 第四章结束语 (15)

青岛地铁监测方案

测点布设原则及要求 3.1 监测点埋设 1)建(构)筑物沉降、倾斜监测 建筑物沉降监测采用水准测量,测点埋设形式按《建筑变形测量规范》JGJ8-2007要求形式埋设;对重要建(构)筑物倾斜监测采用平面测量,在建(构)筑物上下分别埋设水平位移测点。 2)地下管线沉降及差异沉降监测 地下管线沉降采用水准测量的方法,对有管沟的观测管沟结构顶沉降,有窨井的可直接在管顶或沟顶制作沉降标识。其它管线监测点的可用地表沉降测点替代。 3)道路、地表沉降监测 道路、地表沉降采用水准测量,对于路面、地表观测点的埋设可采用标准方法和浅层设点的方法。 4)地下水位监测 依据地下水分层情况设置一组地下水位观测孔,观测孔制作工艺包括:钻探成孔、下管、填砾封填、洗井、检查止水效果,最后封加孔盖。 5)爆破震速监测 传感器与埋件必须牢固固定在测点处,留出少量螺栓,以和传感器拧紧为原则,不要使传感器离测量面太远,以防止产生相对运动,影响测量精度。 6)桩(坡/墙)顶水平位移监测 桩(坡/墙)顶水平位移监测采用测水平小角度法或极坐标法,测点设置于围护结构桩顶或边坡坡顶,埋设强制对中装置。 7)桩顶沉降监测 桩顶沉降监测采用水准测量。 8)围护结构桩体水平位移监测

桩体水平位移采用测斜仪测量,测斜管绑扎在桩钢筋笼上随其一起下放到孔槽内,并将其浇筑在混凝土中。 9)支撑轴力监测 支撑轴力监测采用轴力计或钢筋计,对于钢支撑埋设于端头部位,钢筋砼支撑埋设于中部。 10)锚杆轴力监测 施工锚杆钻孔并注浆,并在墙体受力面之间增设钢垫板,将测力计套在锚杆外,放在钢垫板和工程锚具之间,然后进行张拉,最后将读数电缆引出、保护。 11)拱顶下沉 矿山法隧道初支拱顶下沉测点在拱顶布设,测点标志采用焊接的挂钩标志。 12)净空收敛 矿山法隧道初支净空收敛测点在腰部布设,测点标志采用焊接的挂钩标志。 13)采用钻孔方式埋设地表及管线测点前,应详细探明地下有无其他管线,保证施工安全。 14)水准沉降和水平位移基准点设于变形影响区(50m)外,每测区不少于3个,以便相互校核。 15)格栅钢架监测是在拱顶、拱腰或拱脚、边墙及仰拱等部位,在格栅内外侧主筋处埋设钢筋计进行监测,最好与拱顶下沉、净空收敛布置在相同断面处,以便结构的相互校核。 16)监测过程中,应注意协同施工单位加强对测点的保护。3.2 监测布点基本要求 1)同点监测原则:监测方案制定时同时考虑第三方监测及施工监测的要求,第三方监测项目、测点应包含在施工监测范围内。 2)优先布置、重点布置原则:监测点优先布置重点风险工程、

地铁车站深基坑施工中的变形监测研究

地铁车站深基坑施工中的变形监测研究 在深基坑施工过程中,对基坑支护结构、基坑周围的土体和相邻的构筑物进行综合、系统的监测,保证施工质量和安全,避免发生事故造成更大损失,从而保证工程项目整体目标的实现。 标签:地铁车站;深基坑;变形监测 1、前言 在基坑开挖及地铁隧道施工的过程中。内外的土体将由原来静止土压力向被动和主动土压力状态转变,应力状态的改变引起基坑承受荷载并导致施工结构和土体的变形,基坑及地铁隧道结构的内力和变形中的任一量值超过容许的范围,将造成结构的失稳破坏或对周围环境尤其是对四周建筑物和地下管线造成不利的影响。因此,通过监测了解各施工阶段地层与支护结构的动态变化,把握施工过程中结构所处的安全状态。 2、地铁基坑工程监测的内容和基本要求 2.1监测的内容 基坑开挖与支护的监测项目,可根据具体情况,采用以下部分或全部内容:基坑围护桩(墙)的水平变位,包括围护桩(墙)顶部的水平位移和围护桩(墙)的测斜;支护结构支撑轴力或锚杆拉力;各立柱桩的隆起沉降量和水平位移;基坑回弹;围护桩(墙)的内力;基坑内外侧的孔隙水压力及水土压力;基坑内外侧土体地层的分层沉降和土体测斜;基坑周围建筑物(构筑物)的沉降和倾斜,地下管线的沉降和水平位移;基坑外侧地下水位。 在实际工程中,监测项目的选择应根据工程情况(如基坑开挖深度)及周围环境而定,如工程规模较大,基坑开挖深度较深,尤其时处在闹市中心,周围环境保护要求较高时,上述项目均需监测;中、小型工程,开挖深度不是太深,则可选择几个项目进行监测。 2.2监测的基本要求 (1)监测数据必须时可靠的。数据的可靠性由监测仪器的精度、可靠性以及观测人员的素质来保证。(2)观测必须是及时的。因为基坑开挖是一个动态的施工过程,只有保证及时观测才能有利于发现隐患,及时采取措施。(3)观测的项目,应按照工程具体情况预先设定预警值,预警值应包括变形值、内力值及其变化速率。当观测发现超过预警值的异常情况,要立即考虑采取应急补救措施。(4)每个工程的基坑支护监测,应该有完整的观测记录,形象的图表、曲线和观测报告。

最新(地铁隧道)XXXX站-XXXX站区间监测方案教案资料

XX市及轨道交通XX号线 监控量测方案 编制: 审核: 批准: XX集团XX项目部 年月

目录 一、监测方案编制依据 (2) 二、工程概况 (2) 三、监测的目的和意义 (3) 四、信息化施工组织 (3) 五、施工监测设计 (4) 5.1、地表沉降监测 (4) 5.2、地表建筑物(构造物)沉降、位移、倾斜、裂缝监测 (6) 5.3、管线变形监测 (8) 5.4、隧道内管片沉降、收敛监测 (9) 5.5、东风渠、七里河交叉口过河监测 (9) 六、警戒值的确定及监测频率 (9) 七、人员设置及仪器配备 (10) 八、监测质量保证 (11) 九、监测成果报告 (11)

XX市及轨道交通XX号线体育中心站~博学路站隧道工程 监控量测方案 一、监测方案编制依据 1、XX市轨道交通XX号线XX标段设计图纸; 2、《地铁工程监控量测技术规程》DBI 1/490-2007 5、《地铁设计规范》GB50157-2003 6、《地下铁道、轻轨交通工程测量规范》GB50308-1999 7、《地下铁道工程施工及验收规范》GB50299-2003 8、《工程测量规范》(GB50026-2007) 9、《建筑基坑工程监测技术规范》GB50497-2009 10、《XX市轨道交通工程监控量测管理办法》; 二、工程概况 本工程为XX市轨道交通XX线一期工程土建施工第XX标段,包括一个车站(XX站)和两个区间段,区间段即XX站——XX站盾构区间段,XX站——XX段区间段(其间包括盾构区间、明挖区间)。 第XX合同段全长XXXX米,其中XXXX站长XXXX米,盾构区间长XXXX米,盾构段双线总长XXXX米,明挖区间长XXXX米。 XXXX站——XXXX站盾构区间段起止里程为,西起左线CK32+487.74(右CK32+487.74),东至CK34+698.25(CK34+698.25);XXXX站——车辆出入线段区间段,西起RCK0+056.152东至RCK2+962.0 ;XXXX站的起止里程为CK34+698.25至RCK0+056.152 。 其中XXXX站至XXXX区间工程区间长度约为XXXX米,联络通道三处,其中中间联络通道带有通风井。三处联络通道离始发井距离分别约为:490米、1309米、1869米。 线路平面包含两段圆曲线,曲率半径分别为350米和450米。竖曲线由21.4‰-2‰等坡度组成的V字型。 隧道盾构施工选用德国Herrenknecht公司生产的复合盾构机作为隧道掘进设备。该设

地铁隧道收敛变形监测

隧道周边收敛量测 一、实验目的 1. 了解微地震监测技术目的。 2. 了解速度传感器及加速度传感器的工作原理。 3. 了解数据采集的基本原理。 4. 掌握微地震监测软件的使用方法。 二、以煤科学研究总院的数显收敛计为例说明 1. 性能 量测基线长度:0. 5 m ?10 m 及0. 5 m ?15 m ; 最小读数:0.01 mm; 量测精度:0.06 mm; 数显值稳定度:24h不大于0.01 mm。 2?仪器构造及工作原理 2.1主要结构 微地震监测系统主要由(1 )三分量加速度传感器、(2)三分量速度传感器、(3)电缆、 (4)链接传感器26芯插头线、⑸HZ-MS12通道微地震监测仪、⑹USB2.0电缆、(7)电源转换器、(8)干电池及电池盒、(9)断线钳、(10)十字螺丝刀、(11)万用表、(12)XP操 作系统电脑一台、(13)榔头等组成,见图 9.1 o 4 t 7 ? 图9.1 收敛计结构与工作示意图 2.2基本工作原理 数据采集是微地震监测的基础,对硬件设备要求较高。由于微地震的特性所致,必须用 高采样率、宽频带、连续记录、宽动态范围(96dB)进行微地震信号采集。应用时,数据 采集系统置于被监控的设备处,通过传感器对设备的电压或者电流信号进行采样、保持, 并送入检测仪中变成数字信号,然后将该信号送到FIFO中。 3.使用方法 1)首先在测点处牢固的埋设预埋件;预埋件长度根据需要加工,连接件与预埋件的连接,应使销钉孔方向铅直。 2)检查予埋测点有无损坏、松动并将测点灰尘擦净。 3)打开收敛计钢尺摇把,拉出尺头挂钩

放入测点孔内,将收敛计拉至另一测点,并将尺架挂钩挂入测点孔内,选择合适的尺孔,将尺孔销插入与联尺架固定。

深圳地铁5号线民五区间盾构隧道监测方案

深圳地铁5号线(环中线)工程 民治~五和盾构区间隧道 施工监测方案 编制: 审核: 审查: 中铁西南科学研究院有限公司 深圳地铁5号线BT项目土建工程施工监测项目部 二○○九年一月十日

目录 一、编制依据........................................................................................................... - 1 - 二、工程概况........................................................................................................... - 1 - 三、监测方案说明................................................................................................... - 2 - 四、质量保证、成果及时性保证、安全保证措施............................................. - 11 - 五、民五盾构区间建(构)筑物专项监测方案................................................. - 13 - 六、附图............................................................................................................... - 16 -

地铁隧道结构变形监测控制网及其数据处理

地铁隧道结构变形监测控制网及其数据处理 发表时间:2017-10-30T09:25:06.667Z 来源:《基层建设》2017年第20期作者:汪英宏王守横 [导读] 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。 上海市机械施工集团有限公司大连地铁216标段项目经理部辽宁大连 116037 摘要:地铁隧道结构复杂,在长期使用过程中会受到各种因素的影响,因此,做好变形监测非常重要。本文将进行分析,以供参考。关键词:地铁隧道;变形监测;原因;措施 1.前言 对于地铁隧道结构变形的监测,不能采用传统的变形监测控制网布设方法,在施工过程中根据施工要求对工艺参数进行控制,为保证结果的准确度,必须进行基准点的稳定性检验。 2.地铁隧道变形原因 2.1轨道结构变形 地铁隧道变形包括轨道结构变形和隧道结构变形两种形式。其中轨道结构变形的主要原因是列车荷载长期对轨道产生反复作用,使轨道发生几何偏差进而影响轨道的平整性和顺畅性。除列车荷载作用外,隧道周边建设施工的卸载、负荷、加载也会引起道床的不均匀沉降。这种沉降同样会影响轨道的平整度及顺畅。对于铁路来说,地铁运行车辆重量较轻、速度低,轨道和车辆行走部分的变形一般不会引起地铁事故,但轨道变形造成的不平顺可能会导致列车发生不正常振动。这会降低列车运行的稳定性,减少用户的舒适度,更重要的是会加快轨道结构部件的损坏速度,从而间接影响列车的行车安全。 2.2隧道结构变形 地铁隧道结构变形发生在施工阶段和运营阶段,在施工阶段,地铁暗挖隧道工程是在岩土体内部进行的。在开挖过程中对地下岩土的扰动是不可避免的,这就破坏了地下岩土体原有的平衡条件。隧道开挖时地层初期受到的影响较小,发生的也是微型形变,随着开挖的不断深入,变形会极剧增大然后又趋于缓慢。因此,在隧道开挖过程中应对隧道的拱顶下沉量和地表的下沉量进行监测,以便于对隧道结构的稳定性和开挖工程的安全性提供分析依据。地铁隧道开挖引起的地层变形是一个漫长而缓慢的过程,无论是浅埋暗挖法还是盾构法在工程完工投入使用后都会不同程度的发生整体下沉的现象,尤其是工程处于软土层中时下沉现象更加明显。 3.地铁隧道变形监测技术 3.1传统监测技术 传统监测技术是利用水准测量仪的检测功能对隧道结构的变形情况进行监测,主要对隧道变形区域的断面进行监测。该法在实际使用过程中存在一系列不足: 首先,该法无法使用先进的远程测量技术。在监测过程中不得不打断监测区内的列车运行。 其次,地铁隧道内可视性差,空间受到限制,运行环境复杂,给监测的安全性和监测质量造成了不利影响。 最后,监测点数量受限,若设置监测点过多,不仅会增大工作量还会延长监测周期的长度,无法准确的反映出变形的真实情况;若设置监测点过少,无法根据有限的数据得到较为精准的变形趋势,这对后期的隧道结构的变形负荷分析是极为不利的。传统的监测技术已经无法适应现代社会的需求新型的监测技术急需被研发使用。 3.2高程监测控制网 在地铁进行跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测。 3.2.1跨河水准测量跨河水准观测采用威特 N3 及配套的铟瓦水准尺,施测前仪器 i 角检校为+1.2s。跨河水准测量严格按《国家一、二等水准测量规范》要求选定与布设场地,使仪器及标尺点构成平行四边形。作业方法、视线距水面的高度、时间段数、测回数、组数及仪器检查等按规范要求执行。按二等跨河水准观测精度施测 8个测回,高差中数中误差为±1.48mm。 3.2.2 测量机器人三角高程法测量采用徕卡 TCA2003 机器人完成,在 b1、b2 设置仪器,对向观测 12 个测回,测回间隔 5min。每测回量取 2 次仪高和棱镜高,量取至毫米。高差中数中误差为±1.00mm。 3.2.3 GPS 高程测量b1、b2大地四边形进行 GPS 联测,GPS 网解算的 b1、b2大地高的高差为-0.3403。 3.2.4 三种方法的成果比较高程监测控制网采用跨河水准测量、测量机器人三角高程法测量、GPS 测高三种方法进行施测结果进行对比。 4.基于组合后验方差检验法的灵敏度 4.1灵敏度的概念及其目的 通常情况下对基准点的稳定性进行判断是在测量结束后的内业处理过程中,删除一些不稳定的点带来人力物力和时间的浪费,在当今世界寻求的应是高效节能的方法,若是在观测现场测量人员或者测量机器人根据观测数据能感知到基准点的不稳定性,就可以给外业监测提供指导,提前对基准点进行筛选,甚至给基准网的布设提供意见,使得地铁隧道结构变形监测网和后期数据处理得到优化。 然而对同一个点的多次观测结果存在差异可能是误差影响也可能是基准点不稳定引起,要是知道到底出现多大的变动时可以认为是基准点发生了移动,那进行现场监测时就能对基准点的稳定性进行判断,不需要等到进行完内业处理才能得到答案。当观测值出现一定程度变化的时候,这种方法就能够有效的检测出结果。 4.2组合后验方差检验法灵敏度的探测 为模拟基准点的变动,对观测数据进行人为的改动。从众多基准点中任意选取3个,分别对方位角、天顶距和距离三个观测量进行测试,当角度偏差大于3秒小于6秒时对该点的稳定性应持怀疑态度,而大于6秒时该点稳定性就一定不可靠,当距离的测量偏差大于5mm时该点的稳定性同样不可靠。计算所得的组合后验方差检验法的灵敏度在实际工程实例中可以作为重要的比较参考值,通过比较监测数值间的差值,实现监测现场简单、快速判定基准点的稳定性。 5.隧道变形监控的系统建立 5.1系统数据库结构 变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。因此,合理的数据库结构不仅是数据库设计的

地铁工程施工监测方案

地铁工程施工监测方案 监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验. 根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。 1.监测组织与程序 建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。 2. 监测项目 地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。 将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。 将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。 测点布置、监测手段与监测频率 现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。 3.监测方案及相应措施

1)地面沉降 (1)监测方法:主要监测基坑开挖引起的地表变形情况。监测方法是在地表埋设测点,用水准仪进行下沉的量测。根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。 (2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。 (3)量测频率:见监测项目汇总表 (4)量测精度:±1mm (5)相应对策:当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。 2)基坑开挖引起的地下管线变形监测。 (1)监测方法:本车站施工范围内及周围地下管线较多,根据招标文件,针对每一根管线,提出初步的保护措施,管线分布及保护方案详见管线布置示意图。本次监测主要针对基坑周边的管线及受保护的管线,监测管线的水平的和沉降。 施工监测项目表

地铁盾构隧道工程收敛观测应用研究

地矿测绘2008,24(2):23—24 S岍eyiIlg蛐dM印pilIg0fQdogy锄dMiner8lm:鲫鹏∞ ?23? CN53一1124/TDISSN1007—9394 地铁盾构隧道工程收敛观测应用研究+ 杨丽,李玉宝 (东南大学北极测绘研究院,江苏南京210008) 摘要:大力发展地下铁路建设是解决城市交通问题的方向,盾构法是开挖和建造地铁隧道的先进技术,收敛监测是盾构隧道工程建造安全监测的有效方法。基于此,对盾构工程的主要特点以及安全观测方法进行分析,最后结合实例,对收敛观测的应用和精度问题进行了探讨。 关键词:地铁;盾构;隧道;收敛仪;收敛监测 中图分类号:P258;u45文献标识码:B文章编号:1007—9394(2008)02—0023一02 ResearchontheApplicationofConVergentObserVationon SubwayShield-DriVerTunneling YANG“.UYu?bao (眈班饥I缸砒旷s忧叫昭口以胁即i昭,SD眦k∞t叻妇瑙咖,№,咖蟛肋,舻“210008,铂i加) Abst瑚嚯=t:Itisthedirectionthatconstmctingsubwayoncitiesistosolvetlleproblemoftra佑c.ShieldingmethodisadV肌cedtechnologyonsubwayw汕shield?drivertunneling;conveEgencemonitoringisgoodmethodonshield一曲ver tunneIing.Basedonthis,tllemaincharacteristicands小observationmethodoftunnelshieIden百neering areanalyzed. Theapplicationandp弛cisionofconVergentobservationmethodarestudiedcombinedwiththeactualex砌ple.Keywo“Is:subway;tunnelshield;tunnel;conVergentmeter;conVe玛entmonitoring O引言 当今城市的交通问题是制约城市发展的瓶颈。国内外城市建设的经验证明,大力发展地下铁路建设是解决城市尤其是大城市发展的有效措施之一。地铁建设可根据实际的工程地质等情况采用不同的建造方法,其中盾构法就是适应于软土工程地质开挖地下隧道的先进方法。在盾构工程的实施过程中,代替现场衬砌隧道内壁的预制管片安装结构的稳定性、也就是建成隧道的稳定性,是判断工程质量和安全的重要的指标。隧道径向变化或者说直径的变化的测量工作,称为收敛观测或收敛监测。这种变化是点对点的相对变化。 本文结合南京地铁二号线某标段盾构工程的实例,对收敛观测的应用和精度等问题进行了探讨。 l盾构工程的主要特点 盾构法是相对于矿山法适应于软土地质和无岩层地质工程条件的地下工程的开挖方法。盾构方法的实施主要依靠盾构机来实现。盾构机的主要部件由切刀、车身、控制系统、动力系统、通风系统、压力系统、矿渣排除系统、材料运输系统、管片安装系统等组成。 当盾构机在待开挖隧道的一端安装开始进发,在控制系统内就事先输入整条隧道起点、终点、缓和曲线、圆曲线、混合曲线的主点的三维坐标,在盾构机以后的有效的通视范围内固定自 ?收稿日期:2008—02一18动跟踪坐标扫描全站仪,全站仪的测站位置三维坐标精确测定并由机器记忆。全站仪实时地将坐标传输到工作面上的控制系统,以自动地调节切刀的方向和车身的姿态,使盾构机严格地沿着设计的隧道的中轴线前进。在挖掘过程中,排出渣土都自动地集中到排渣出口装或待装运输车。当挖掘到一段距离后,就应及时安装预制的管片。 就南京地铁二号线来说,管片由6片预制立体块组成,相邻各块由锚杆连接,各块之间并由粘有橡胶皮的凹凸(相当于卯榫)槽密合,6管片组成一个内径为5m的圆环。再由压力系统调节管片和周围土体之间的压力。从宏观上看隧道就像是在水中的一个圆筒的瓶子,中间的形成通道。在建设过程中,各管片之问以及隧道整体和周围土体之间的力学平衡和稳定是至关重要的。 由于工程地质和水文情况的复杂性,盾构法开挖隧道的安全监测需提供地表上、下及周围空间建筑工程的几何特征信息,结合测量、地理、岩土、建筑、力学、自动化等专门的知识来分析、判断、解释、预测工程的现状和发展。 2盾构工程的安全监测方法 针对盾构工程的特点,关于如何进行安全监测、更合理地捕捉变形信息,圈内人士都做了大量的工作,曾采用了很多的方法,如:全站仪测量几何圆度、激光扫描法测量剖面、加之拱顶或拱地底沉降观测以及地面沉降等。但除了拱顶或拱地底沉降观 万方数据

相关文档
最新文档