第二章 药物代谢动力学

第二章  药物代谢动力学
第二章  药物代谢动力学

第一节药物在体内的转运和转化的生化基础

药物在体内转运必须通过各种细胞膜。包围整个细胞外表的一层薄膜称为质膜,质膜一般称为细胞膜,真核细胞除了质膜外,还有包围各种细胞器的膜,如线粒体膜,内质网膜,溶酶体和核膜等,称为细胞内膜。质膜和细胞内膜统称为生物膜。生物膜主要由脂质与蛋白质构成的脂蛋白组成,脂质双层是生物膜的基本结构,在膜中的蛋白可作为泵、通道、转运的载体、药物和激素的受体,能量传送、抗原和结合于膜的酶等。

脂质体是由磷脂组成的具有类似生物膜结构的多层同心脂质小泡,其形成是磷脂与水接触后由它们的极性基与疏水基的作用而排列成封闭式的多层脂质双层球形结构。常用超声波法,微量注射法,逆向蒸发法等制备脂质体。用脂质体作为药物的载体可达到减少药物的毒性和抗原性,提高药物的组织特异性及有效浓度,延长药效的目的。脂质体作为药物载体的作用方式为:(1)吸附:脂质体与细胞表面形成稳定的吸附结合而释放药物;(2)融合:脂质体与天然细胞膜有类似结构,在一定条件下,可互相融合而释入细胞内;(3)吞噬:脂质体进入体内后,主要聚集在骨髓、肝和脾脏等网状内皮系统,作为异物而被吞噬;(4)抗体-抗原结合:脂质体表面与特异抗体偶联,识别相应抗原,而定向作用于靶细胞。脂质体不仅作为药物的载体,也可作为酶的载体,并且可将一些不能经胃肠吸收或易被消化道破坏的药物(如肝素、胰岛素等),制成脂质体以供口服。生物膜是高度选择性的通透屏障,可通过被动扩散、帮助扩散、主动转运、基因转位和胞饮方式转运。

药物在体内的一般过程包括药物的吸收、分布、代谢转化和排泄,药物的代谢转化又名药物的生物转化(biotransformation),是指体内正常不应有的外来有机化合物药物或毒物在体内进行的代谢转化。药物代谢转化主要在肝脏进行,在体内催化药物代谢转化的酶系称为药物代谢酶,其主要分布在肝细胞微粒体,其次是细胞可溶性部分。药物代谢转化可分为第一相反应和第二相反应(结合反应)。

第一相反应包括氧化,还原和水解反应。1.微粒体氧化酶系,存在于内质网,称为药物氧化酶系,它所催化的反应是在底物分子上加一个氧原子,因此也称为加单氧酶(monooxygenase)或羟化酶,其作用特点为:(1)特异性低,对许多药物都有作用;(2)需要

CYP450参与,CYP450属于b族细胞色素,还原型CYP450与CO结合后在450nm有一强吸收峰;⑶含有NADPHCYP450还原酶,属于黄素酶,辅基为FAD,催化NADPH与CYP450之间的电子传递;

(4)以氧分子为受氢体;(5)不被CN-所抑制,而能受SKF-525A所抑制。加单氧酶参与药物、毒物的转化及体内的代谢(维生素D3的羟化),能诱导合成。线粒体中还存在其它氧化酶系,如单胺氧化酶(monoamine oxidase,MAO)催化胺类氧化脱氨基,但芳香环上的氨基不被作用,该酶存在于活性胺类生成、贮存和释放的部位。此外,胞液中有醇脱氢酶(alcohol dehydrogenase,ADH)和醛脱氢酶(aldehyde dehydrogenase,ALDH),与辅酶NAD+催化乙醇生成酸。微粒体乙醇氧化系统(microsomal ethanol oxidizing system,MEOS)消耗NADPH+H+而催化乙醇生成乙醛。2.还原反应由醛酮还原酶催化,NADH或NADPH提供氢,催化酮基或醛基还原为醇;肝细胞的偶氮或硝基化合物还原酶(存在微粒体,需要NADH或NADPH 参与)分别使偶氮苯和硝基苯还原成胺。3.水解反应:如普鲁卡因、双香豆素醋酸乙酯、有机磷农药等在多种水解酶作用下生成水溶性增强羧酸。

第二相反应是结合反应(conjugation reaction),在药物代谢转化中很普遍,是指药物或其它初步代谢物与内源性结合剂的结合反应,使药物毒性或活性降低和极性增加而易于排出。以葡萄糖醛酸(GA)结合反应为最常见,吗啡、可待因、类固醇等在体内由微粒体中的糖醛酸转移酶催化尿苷二磷酸葡萄糖醛酸(UDP-glucuronyl transferases,UDPGA)进行反应,使其水溶性增加,易于排泄。除肝脏外,肾、肠粘膜也能进行葡萄糖醛酸结合反应。含羟基化合物或芳香族胺类的氨基可发生硫酸盐结合反应,生成硫酸酯化合物,在此结合反应中硫酸盐必须先与ATP反应生成活性硫酸供体-即3’-磷酸腺苷5’-磷酸硫酸(PAPS),GA和硫酸盐结合反应有竞争性抑制作用,但因硫酸盐来源少,易发生饱和。许多卤代化合物和环氧化合物可与GSH结合,该结合物主要从胆汁排泄,或进一步代谢,再乙酰化后生成硫醚尿酸随尿排出。乙酰结合反应是多种芳香胺的结合形式,通常磺胺乙酰化即失去抗菌活性,水溶性反而降低,在乙酰化结合反应中结合剂必先活化为乙酰CoA。许多酚、胺类药物如儿茶酚胺等可在体内进行甲基结合反应,甲基化反应中的甲基来自S-腺苷甲硫氨酸(SAM),且常发生在O、S、N原子上。另外,许多的氨基酸,如甘氨酸、半胱氨酸、丝氨酸、赖氨酸等也可作为结合剂。

第二节药物在肝脏内的代谢

一、药物在肝内的生物转化

肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。另一方面,药物的代谢过程中的产物,可以造成肝损害。药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。

(一)第一相反应

多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。其反应可概括如下:

D+A→DA

NADPH+DA+H+→DAH2+NADP-

DAH2+O2+HADPH→A+DOH+H2O+NADP-

(注:D=药物;A=CYP450)

药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是CYP450,其他有关的酶和辅酶包括:NADPHCYP450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。CYP450是一种铁卟啉蛋白,能进行氧化和还原。当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPHCYP450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH 所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。

CYP450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH 将电子转移至P450底物复合体。药物与P450结合位点与血红素分子非常接近,有利于电子的转移。药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。如此反复循环,使药物进行第一相的代谢。

P450实际上为同一家庭的多种异构型。迄今为止,人类P450的基因已发现有27种,编码多种P450。基本上分成至少4个基因族,又可进一步区分为不同亚族。其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C和阿拉伯数字1,2,3等进一步分类。按其功能,人类的P450可分成二类。CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差。GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守。此类P450在类固醇、脂肪酸和前列腺素代谢中起作用。在药物代谢中起重要作用的P450。

表2-1具有代表性药物代谢CYP1,CYP2和CYP3亚家族

P450亚族代谢的底物(药物)

CYP1A2 氧阿米替林,咖啡因,氟哌啶醇,茶碱,他克林,西咪替丁

CYP2B6 环磷酰胺

CYP2C 卡马西平,环磷酰胺,地西泮,布洛芬,奈普生,奥美拉唑,苯妥英,普奈洛尔,甲苯磺西脲

CYP2D6 异喹胍,大多数β受体拮抗剂,氧阿米替林,氯丙嗪,可待因,右美沙芬,恩卡尼,氟哌啶醇,去甲替林,维拉帕米

CYP2E 对乙酰氨基酚,乙醇,氟烷

CYP3A 胺碘酮,卡马西平,西沙必利,可卡因,皮质醇,环孢素,氨苯砜,地塞米松,地尔硫草,红霉素,丙米嗪,利多卡因,洛伐他汀,硝苯地平,

孕酮,他克莫司,他莫昔芬,睾丸酮,丙戊酸盐,维拉帕米,长春新碱,

华法令

一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外。但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物。

(二)第二相反应

药物经过第一相反应后,往往要通过结合反应,分别与极性配体如葡萄糖醛酸、硫酸、甲基、乙酰基、硫基、谷胱甘肽、甘氨酸、谷酰胺等基因结合。通过结合作用,不仅遮盖了药物分子上某些功能基因,而且还可改变其理化性质,增加其水溶性,通过胆汁或尿液排出体外。药物结合作用的相对能力也有不同,如葡萄糖醛酸结合、乙酰化和甲基化是高能力组,

甘氨酸、谷酰胺和硫酸结合为低能力组。例如,与硫酸结合通常是代谢苯环化合物的主要途径之一,但它有一定的限度,可能是可利用的“活性硫酸盐”(PAPS)含量有一定的限度。如低剂量的扑热息痛,主要是与硫酸结合,高剂量时则主要与葡萄糖醛酸结合;很大剂量时,由于结合能力耗竭,可能通过第一种途径,生成N-羟基衍生物,造成肝损害。

药物的结合反应有两种类型,第一种药物与活性基团结合(表2-2),第二种是被激活的药物与有关化合物结合(表2-3)。

表2-2第一种结合反应

结合物激活的结合物转移酶转移酶酶定位酶定位

葡萄糖醛酸尿核苷二磷酸葡萄糖

葡萄糖醛酸转移酶微粒体(光面内质网)

醛酸(UDPGA)尿核苷

二磷酸葡萄糖醛酸

(UDPGA)

硫酸转移酶胞质液

硫酸磷酸腺苷磷酰硫酸

(PAPS)

甲基S-腺苷蛋氨酸甲基转移酶胞质液

乙酰基乙酰辅酶A 乙酰基转移酶胞质液

硫基硫代硫酸硫代硫酸转移酶胞质液

表2-3第二种结合反应

芳香酸芳香酰辅酶A 甘氨酸线粒体

芳香基乙酸芳香基乙酰辅酶A 谷氨酰胞质液

芳香环化合物环氧化合物谷胱甘肽胞质液第一相的P450酶系与第二相结合作用酶系的分布、功能和可诱导性均有差别,反映了这二类生物转化和解毒作用的不同生物学意义。谷胱甘肽(GSH)在结合和解毒作用中起着十分重要的作用,它能与亲电子基、氧基作用,防止肝细胞的损害。

二、影响药物代谢的因素

(一)药物代谢的遗传多态性

由于肝脏药酶系特别是P450的遗传多态性,以致造成药物代谢的个体差异,这影响了药物的药理作用、不良反应和致癌的易感性等。对某些药代谢的缺陷者称为:弱代谢者(poor metabolizer)或PM-表型1,而强代谢者(extensive metabolizer)称为EM-表型。在第一相中的药物代谢多态性以异喹胍和乙妥英为例,分别为P450UD6和P4502C的变异。对异喹胍的羟化作用有遗传性缺陷的个体,在应用β-受体拮抗剂、三环类抗郁剂、某些膜抑制抗心律紊乱药、抗高血压药和钙离子拮抗剂等,由于药物代谢的异常,使药效增强、时间延长,容易发生不良反应。在第二相反应的药物代谢多态性,以异烟肼和磺胺二甲嘧啶为例,可区分为乙酰化快型和慢型两种,慢型乙酰化个体长期服用肼苯达嗪和普鲁卡因酰胺后可产生红斑狼疮综合征,服异烟肼后易发生周围神经病变(表2-4)。P4501A1,P4501A2是芳香碳氢化合物羟化酶,激活某些致癌原,其遗传变异与某些癌的易患性有关。

表2-4 遗传多态性与药物代谢

代谢途径药物举例人群中的频率(%)酶

C-氧化异喹胍,金雀花碱,右

旋甲吗喃,阿片类

白种人5-10 CYP4502D6

C-氧化β-肾上腺受体拮抗剂,

乙妥英,甲苯巴比士

白种人4 CYP4502C

乙酰化环已巴比土,异烟肼,

磺胺二甲嘧啶,咖啡因日本人10 N-乙酰基转移酶白种

人30-70

(二)药酶的诱导和抑制

1.酶诱导作用某些亲脂性药物或外源性物质(如农药、毒物等)可使肝内药酶的合成显著增加,从而对其它药物的代谢能力增加,称为酶的诱导。在形态学上有光面内质网增生和肥大。目前,已知至少有200多种的药物和环境中的化学物质,具有酶诱导的作用。其中,比较熟知的苯巴比妥、导眠能、眠尔通、保太松、苯妥英钠、利福平、灰黄霉素、安体点特舒通、666、DDT、3-甲基胆蒽和3,4-苯等。药酶的诱导有时可造成药物性肝损伤或化学致癌。环境中的杀虫剂、烟草燃烧和烧烤牛肉的产物等亦能诱导P450。

2.酶抑制作用有些药物通过抑制药酶,使另一药物的代谢延迟,药物的作用加强或延长,此即酶的抑制。微粒体药酶的专一性不高,多种药物可以作为同一酶系的底物,这样可能出现各种药物之间对酶结合部位的竞争。对药酶亲和力低的药物,不仅它本身的代谢速

率较慢,而且当存在另一种对药酶有高亲和力药物时,它对前者的竞争能力就较差。因此,一种药物或毒物受一种酶催化时,可以影响对其它药物的作用。已经发现保太松、双香豆素等可抑制甲磺丁脲的代谢,而增强其降血糖作用。长期服用别嘌呤醇或去甲替林,可以造成酶抑制。氯霉素可抑制甲磺丁脲、苯妥英钠、双香豆素的代谢。

(三)其他

影响药物代谢的其他有关因素有年龄(新生儿、早产儿、老年)、性别、昼夜的调节、营养状态、饥饿、妊娠和内分泌等。

以上这些因素可以解释为什么不同的个体药效和不良反应出现的差异。

三、肝脏对药物的排泄

除了药物的生物转化外,肝脏对药物代谢的第二个重要功能是将药物从胆汁排泄。一般来说,分子量大于400-500的化合物,主要直接从胆汁排泄。分子量小于300的物质进入血液,从肾脏排出。从胆汁排出的药物,大多是已经通过第一相和第二相生物转化后已形成的结合代谢物,但也有少数未经转变或仍呈活性状态的药物。肝脏对后者的排泄能力,直接影响到该药在血液内的浓度,利福平就是一个例子。经胆汁排入肠道的结合代谢产物,为高度水溶性,不易从肠道吸收,随同粪便一起排出体外。但有些代谢物,在肠壁或细菌的某些水解酶(如葡萄糖醛酸苷酶)的作用下,去掉结合物,又成为脂溶性,可以从肠黏膜吸收,进入门静脉系统,形成“肠肝循”,使药物作用的时间延长。另外,在肾功能减退时,肝脏对药物的排泄可能是一个重要的代偿手段。

四、肝脏疾病对药物代谢的影响

肝脏疾病时,除了肝脏的药酶系和结合作用的改变可以影响药物代谢外,还有其他一些重要的因素亦影响药物代谢和血浓度,包括肝脏的有效血流量,肝细胞对药物的摄取和排出,有效肝细胞的总数,门-体血液分流,胆道畅通情况,血浆蛋白浓度和药物的吸收等。

药物通过&U 2925;脏的总消除率(包括与肝组织结合、肝脏代谢及胆汁排泄的速率),可用药物进出肝脏的速率差表示:

药物消除率=Q·CA-Q·Cv,Q代表肝血流量,CA和Cv分别代表进出肝脏的血药浓度。Q·CA 表示药物进入肝脏的速率,Q·CA表示流出的速率。药物的肝脏清除速率与药物进入肝脏速率的关系,可用肝摄取率(extractionratio,ER)表示,它是指药物从门静脉(口服途径)通过肝脏消除的分数。肝摄取率可介于0-1之间。如ER为0.5,表示该药从门静脉进入肝脏后有一半被消除,其余(1-ER)通过肝脏进入大循环。最近提出肝脏消除率可更好地表明药物在肝脏的清除与进入肝脏药物浓度的关系,它指单位时间内有多少量(ml)血浆所含的药物被肝脏所清除。

肝脏清除率(C1H)=Q×ER

肝脏对各种药物的摄取率不同,对于高摄取率的药物(ER≌1.0)肝脏的内在清除率(C1in1)很高,血浆中的药物通过肝脏时几乎可全部被清除,药物的肝清除率几乎等于有效肝血流量。这类药物的清除受血流量影响大,称为流速限定性药物。肝摄取率高的药物,受血浆蛋白结合的影响较小,口服后首次通过作用非常显著。对摄取率低(ER<0.2)的药物,肝脏的内在清除率低,受到药酶和结合酶系的影响大,而受血流量的影响较小,称为能力限定性药物。这类药物受血浆蛋白结合影响较大,其首次通过作用不明显。

由此可见,肝病时药物清除的改变很复杂,与药物本身的理化特性也有关。一般来说,药物代谢和清除的影响,与肝病的严重程度成正比。急性肝炎时改变较轻而短暂,失代偿期肝硬化时则较为显著。例如在肝硬化时,保太松、氨基比林、安定、利眠宁、甲磺丁脲、氯霉素和西米替丁等的半衰期延长,肝脏的清除率降低。在慢性或严重肝病时,由于肝脏有效血流量降低,口服给药后使一些高ER药物的首次通过作用受阻,生物利用度增加,药物清除减慢,血药浓度升高,如水杨酸类、普萘洛尔(心得安)、氯丙嗪、利他林、吗啡、哌替定(度冷丁)等。在严重肝病时,由于大脑的GABA、安定和吗啡受体增多或其敏感阈值降低,即使给于正常1/2-1/3剂量也可诱发肝性脑病。

第三节药物的肝外代谢

药物进入机体后主要以两种方式消除:一种是药物直接以原型随粪便和尿液排出体外;另一种是药物在体内经代谢后,再以代谢物的形式随粪便和尿液排出体外。药物的代谢,也称为生物转化,是药物从体内消除的主要方式之一。药物在体内的生物转化主要有两个步骤:第一步代谢反应称为Ⅰ相反应,药物被氧化、还原或水解;第二步代谢反应称为Ⅱ相代谢反应,药物与一些内源性的物质(如葡萄糖醛酸、甘氨酸、硫酸等)结合或经甲基化、乙酰化后排出体外。肝脏是药物代谢的主要部位,含有许多Ⅰ相代谢和Ⅱ相代谢所需的酶。但随着生物化学和分子生物学如蛋白质分离纯化技术、免疫抗体标记及cDNA技术的发展和应用,越来越多的药物代谢酶在肝外组织和器官中被发现,如Ⅰ相反应的主要酶系CYP450及黄素单加氧酶(FMO)、过氧化酶系、环氧化物水合酶等;II相反应的葡萄糖醛酸转移酶、硫酸转移酶、乙酰转移酶、甲基转移酶、氨基酸结合酶等。同时由于对药物代谢研究的不断深入,人们发现药物的代谢不仅仅发生于肝内,有些药物如吗啡、普奈洛尔、洛西泮等可在肝外组织中代谢;有些药物如氨基比林、红霉素、环磷酰胺和阿糖胞苷等在肝内及肝外均有代谢;而有些药物的部分代谢过程仅在肝外的特定组织进行,如维生素D3的1位羟化仅于肾脏中进行。参与药物代谢的肝外组织包括血浆、皮肤、脑、肺、肾脏、肾上腺、胃肠道等,且肝外组织又因其各自的组织解剖及生理功能的不同而具有不同的代谢特点。根据国内外在肝外药物代谢酶的种类、分布及生物学作用,药物肝外代谢的主要部位和代谢特点,影响药物肝外代谢的因素等方面的有关报道进行综述。肝外代谢在某些药物的代谢中发挥了重要的作用,其作用不容忽视。

目前,在药物肝外代谢研究中,主要研究的I相代谢酶是CYP450酶,包括CYP1A1、CYP1B1、CYP2和CYP3A等。CYP1A1的主要功能是催化多环碳氢化合物的氧化代谢,参与机体对多种前致癌物和致突变物的活化过程。研究表明,CYP1A1水平是反映化学致癌作用的有效指征。CYP1B1可能对甾体激素的功能及一些甾体激素(如雌二醇、雄激素酮、睾丸激素等)毒性代谢产物的生成有着重要影响。CYV2A6或CYP2A7和CYP2E1在食管粘膜的表达可以活化亚硝胺,在食管癌发生的部位,这几种酶的表达尤为明显,可能与食管癌的发生有关。在人的皮肤中存在的酶主要是CYP2C酶,异源性表达的CYP2C18对.S-美芬妥英具有微弱的羟化代谢作用。CYP2E1的代谢底物达70多种,大部分为前致癌物和前毒物,小部分为&x0020;床药物,如茶碱和氯羟苯嗯唑等。肠道CYP3A对药物在肠道的首关消除起重要作用,同时与药物间的相互作用、药物的个体差异等有着密切的关系。而Ⅱ相代谢酶是其中的转移酶,如UGTs、GST和NAT等。UGTs位于内质网和核膜上,催化药物、类固醇等的葡萄糖醛酸化。GST 对亲电复合物,如致癌物和细胞毒性物的解毒有重要作用。酸性GST在胃肠道中的含量明显高于肝脏,这表明胃肠道在药物解毒方面起了很重要的作用。NAT可使许多含伯胺基或磺酰胺基的生理活性物或药物在体内乙酰化。脱氢酶参与机体正常生理功能的维持和某些药物及

外源性物质的生物转化。此外,当肝移植或肝功能受损而使药物的肝代谢受阻时,药物的肝外代谢作用会增强,以弥补肝代谢的不足。

一、药物肝外代谢的主要部位

(一)药物在肠道粘膜中的代谢

1.肠道中重要的药物代谢酶

肠道中的代谢酶主要分布于上皮细胞,其中位于绒毛尖端的活性最强,然后朝着腺窝方向逐渐降低,十二指肠和空肠的代谢酶活性高于回肠和结肠。人们对其中几种酶已经研究得比较清楚:

(1)CYP3A:除肝脏外,CYP3A在肠道含量最丰富,是肠道中重要的CYP450酶。其底物范围广,临床上约有60%的药物可由CYP3A代谢。肠道的CYP3A在药物的肠道首关消除中发挥了重要的作用,许多临床常用药物因其在肠道中的代谢而造成口服生物利用度偏低。

(2)葡萄糖醛酸转移酶:该酶能催化多种化合物在肠壁内与葡萄糖醛酸的结合,其活性在十二指肠最高,在结肠最低。如吗啡及黄芩甙元等可在肠道内形成葡萄糖醛酸结合物。

(3)硫酸转移酶:该酶主要催化含醇、酚及芳香胺等药物如异丙肾上腺素等形成硫酸结合物。

(4)乙酰转移酶:该酶催化某些药物与醋酸结合。抗结核药对氨基水杨酸及异烟肼是其典型底物。

(5)儿茶酚氧位甲基转移酶:该酶可使儿茶酚胺类化合物的儿茶酚氧位甲基化而失活。该酶可被Mg2+、Mn2+等金属阳离子激活,但能被巯基抑制剂所抑制。

(6)酯酶:该酶在肠粘膜中分布广泛,且具有底物特异性及种属差异,属于羧酸酯酶,能水解含酯键的药物如阿司匹林,匹氨西林等。

(7)羟化酶:该酶存在于人和动物的十二指肠绒毛上皮中。以前曾认为该酶起解毒作用,但现已查明,这种酶可使一些前体致癌物转化为活性的致癌物。

(8)β-葡萄糖醛酸苷酶:该酶在肠粘膜组织中具有相当高的活性,可使许多药物的葡萄糖醛酸结合物水解。

其他酶类还包括乙醇脱氢酶、单胺氧化酶、环氧化物水合酶等(见表2-5)

表2-5 肠中代谢的药物及其代谢酶

底物代谢酶

乙酰羟基洋地黄毒甙,普鲁卡因脱羟酶

阿司匹林,氯贝丁酯,匹氨西林酯酶

乙醇醇脱氢酶

氨基水杨酸,5-氨基水杨酸,异烟肼,磺胺类药乙酰化酶

去甲丙米嗪N-硫酸转移酶

炔雌醇CYP450,硫酸转移酶

氟西泮,非那西丁CYP450

异丙肾上腺素,扑热息痛硫酸转移酶

吗啡,睾丸素葡萄糖醛酸转移酶

奥索地平,环孢霉素CYP3A4

2.肠道代谢的特点

药物经胃肠道吸收是其进入体内的一条重要途径,但研究发现,许多药物通过肠道时即被代谢。肠道代谢的特点有:

(1)肠粘膜催化结合反应的能力远超过催化分解反应。在结合反应中,主要是硫酸结合和葡萄醛酸结合。肠粘膜药物代谢大多具有解毒性质。

(2)药物的肠代谢常常导致首关效应,使药物的生物利用度降低。

(3)肠粘膜药物代谢酶具有饱和性和可诱导性。许多肝药酶诱导剂也可诱导肠粘膜中相应酶的活性。研究发现3-甲基胆蒽和其它CYP450诱导剂对肠粘膜药酶的诱导作用明显强于CYP450的强效诱导剂苯巴比妥。这提示CYP450诱导剂可能具有一定的组织器官选择性。

(二)药物在肾中的代谢

1.肾中重要的药物代谢酶肾脏中药物的代谢酶系主要存在于肾皮质和肾髓质,肾中I 相代谢酶有P450酶系及各种单加氧酶等,但其含量或活性均较肝内低,所以药物的I相代谢在肾代谢中处于次要地位;而Ⅱ相酶,如UGTs、ST、GST和氨基酸结合酶等在肾脏中含量较高,其中,起重要作用的UGTs主要分布于肾近曲小管和血管内皮网状质。

表2-6 肾脏中代谢的药物及其代谢酶

2.肾脏代谢的特点

在肾中存在的I相代谢酶虽然很少,但也有重要作用。例如,肾脏中高浓度的β裂合酶可促使S-6-嘌呤-L-半胱氨酸转化成6-MP,这样就使其能在靶组织—肾脏中蓄积而发挥抗肿瘤和免疫抑制作用,避免了系统毒性。在肾近曲小管广泛分布的高浓度的γ-谷酰转肽酶则将前体γ-谷酰多巴转化为肾的特异性产物多巴胺。肾中的这些I相代谢酶使得某些药物在体内呈现出靶向性组织分布,可以避免药物的一些副作用。肾中I相代谢酶的含量和活性均明显低于肝脏;但Ⅱ相代谢酶的含量丰富,因此在药物的肾代谢中Ⅱ相代谢占据主导地位。

3.其它除了上述的组织和器官外,肺、脑、皮肤、血浆、胎盘、眼和脾脏等组织中也有一些代谢酶,因此药物在这些组织和器官也可进行代谢,但目前对于药物在这些组织和器官中的代谢了解甚少。

二、影响药物肝外代谢的因素

(一)种属和个体的影响同一种酶在不同动物之间和同种动物不同品系之间活性是有差异的。Litterst等研究了药物在大鼠、兔、豚鼠、仓鼠的肺和肾中的代谢,结果发现,大鼠体内的酶活性较其他动物物种低25%,其中CYP450活性和NADPH-细胞色素C还原酶活性最低。人肺中的CYP450含量和活性比大鼠体内的更低。这种不同种属造成的差异,在肝外代谢中十分普遍,因此当分析比较动物实验数据时,特别是将动物结果推论到人时必须十分慎重。此外,有些肝外药酶的活性还有显著的个体差异。Paine等即发现人小肠中的CYP1A1活性存在明显的个体差异。

(二)年龄和性别的影响

年龄对肝外代谢的影响也很普遍,其规律与大部分生理功能相一致,即婴幼儿时期酶活性低下,随发育逐步增强,至成年达到高峰,老年时再度下降。例如肺微粒体酶活性以及人和多种动物肾中UGTs活性都是如此。

众多的研究结果发现,虽然不如年龄影响那样明显和普遍,但性别对肝外代谢是有影响的。如雌性大鼠肾中组胺N-甲基转移酶的活性仅为雄性大鼠的一半,但在小鼠中则相反。而据莫启忠等报道,正常雄性大鼠肾微粒体中CYP4A2的含量也比雌性大鼠高。

(三)疾病的影响疾病

对药物的肝外代谢也有影响,例如肾功能不足时,肾中药物的甘氨酸结合反应变慢,因此,当尿毒症病人使用对氨基水杨酸时,药物的半衰期延长。目前,在一些自身免疫性疾病中已发现CYP1A2,CYP2C9,CYP2D6,CYP2E1,CYP3A,CYP11A1,CYP17,CYP21和UGT是自身免疫性抗体的靶蛋白。由于这些靶蛋白受到自身抗体的攻击,其活性受到影响,势必会影响到对药物在肝外组织中的代谢。

(四)外源性及内源性物质的影响

药物、毒物和食物等多种外源性及内源性物质对肝外代谢均会产生一定的影响,主要表现为对肝外药酶的诱导和抑制作用。如雌性大鼠饥饿72小时后,小肠中苯并芘羟化酶的活性下降为正常饮食的对照动物的7.5%;给雄性大鼠以无脂肪的饲料,则酶活性下降30%,而给予纯化的精饲料,一天之后此酶活性几乎消失。又如在饲料中加入10%鱼肝油可诱导大鼠肠道环氧化物水化酶。多环烃类可诱导大鼠肾中UDPGT的活性和皮肤中的P-450酶系。而苯巴比妥类、利福平、酮康唑、西咪替丁和致癌剂3-甲基胆蒽类以及糖皮质激素、性激素、抗生素及维生素D3等也已被发现是某些肝外药酶的诱导剂和抑制剂。一些诱导剂和抑制剂还具有组织特异性,如中药汉黄芩素能引起鼠肾内的芳烃羟化酶活性降低,却能使肺内该酶的活性增加;而在显著增加肺内的CYP1A的活性的同时,该化合物又抑制了肝、肾内UGT活性。

随着对药物代谢研究的不断深入、分子生物学和免疫化学等新技术的应用,人们可以更进一步地了解参与药物代谢的主要的肝外代谢酶及其组织分布情况,更清楚地了解药物的肝外代谢在药物代谢中发挥的作用、地位及其意义。目前,已做了大量的基于细胞水平的药物肝外代谢研究,确定了在不同类型细胞中所存在的不同的药物代谢途径。但对药物肝外代谢的研究还有待于向分子和基因水平更深层次地发展。

执业药师第二章药物代谢动力学习题

第二章药物代谢动力学 一、A 1、阿司匹林的pKa是3.5,它在pH为7.5的肠液中,约可吸收 A、1% B、0.1% C、0.01% D、10% E、99% 2、某弱酸性药物pKa=4.4,其在胃液(pH=1.4)中的解离度约为 A、0.5 B、0.1 C、0.01 D、0.001 E、0.0001 3、某弱酸性药物在pH=7.0的溶液中90%解离,其pKa值约为 A、6 B、5 C、7 D、8 E、9 4、弱酸性药物在pH=5的液体中有50%解离,其pKa值约为 A、2 B、3 C、4 D、5 E、6 5、下列关于药物主动转运的叙述错误的是 A、要消耗能量 B、可受其他化学品的干扰 C、有化学结构的特异性 D、只能顺浓度梯度转运 E、转运速度有饱和现象 6、易化扩散的特点是 A、不耗能,顺浓度差,特异性高,无竞争性抑制现象 B、不耗能,顺浓度差,特异性不高,有竞争性抑制现象 C、耗能,顺浓度差,特异性高,有竞争性抑制现象 D、不耗能,顺浓度差,特异性高,有竞争性抑制现象 E、转运速度无饱和现象 7、有关药物简单扩散的叙述错误的是 A、不消耗能量 B、需要载体 C、不受饱和限度的影响 D、受药物分子量大小、脂溶性、极性的影响 E、扩散速度与膜的性质、面积及膜两侧的浓度梯度有关 8、大多数药物通过生物膜的转运方式是 A、主动转运 B、简单扩散 C、易化扩散 D、吞噬作用 E、孔道转运 9、影响药物转运的因素不包括 A、药物的脂溶性 B、药物的解离度 C、体液的pH值 D、药酶的活性 E、药物与生物膜接触面的大小 10、药物的首过消除可能发生于 A、舌下给药后 B、吸入给药后 C、口服给药后 D、静脉注射后 E、皮下给药后 11、不影响药物分布的因素有 A、肝肠循环 B、血浆蛋白结合率 C、膜通透性 D、体液pH值 E、特殊生理屏障 12、影响药物体内分布的因素不包括 A、组织亲和力 B、局部器官血流量 C、给药途径 D、生理屏障 E、药物的脂溶性 13、药物通过血液进入组织器官的过程称 A、吸收 B、分布 C、贮存 D、再分布 E、排泄 14、下列关于药物吸收的叙述中错误的是 A、吸收是指药物从给药部位进入血液循环的过程

药物代谢动力学完全版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1.被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2.孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3.特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4.其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1.整体动物实验法

能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2.在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3.离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4.Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。 四、药物血浆蛋白结合率常用测定方法的原理及注意事项。 1.平衡透析法

第二章 药物代谢动力学

第一节药物在体内的转运和转化的生化基础 药物在体内转运必须通过各种细胞膜。包围整个细胞外表的一层薄膜称为质膜,质膜一般称为细胞膜,真核细胞除了质膜外,还有包围各种细胞器的膜,如线粒体膜,内质网膜,溶酶体和核膜等,称为细胞内膜。质膜和细胞内膜统称为生物膜。生物膜主要由脂质与蛋白质构成的脂蛋白组成,脂质双层是生物膜的基本结构,在膜中的蛋白可作为泵、通道、转运的载体、药物和激素的受体,能量传送、抗原和结合于膜的酶等。 脂质体是由磷脂组成的具有类似生物膜结构的多层同心脂质小泡,其形成是磷脂与水接触后由它们的极性基与疏水基的作用而排列成封闭式的多层脂质双层球形结构。常用超声波法,微量注射法,逆向蒸发法等制备脂质体。用脂质体作为药物的载体可达到减少药物的毒性和抗原性,提高药物的组织特异性及有效浓度,延长药效的目的。脂质体作为药物载体的作用方式为:(1)吸附:脂质体与细胞表面形成稳定的吸附结合而释放药物;(2)融合:脂质体与天然细胞膜有类似结构,在一定条件下,可互相融合而释入细胞内;(3)吞噬:脂质体进入体内后,主要聚集在骨髓、肝和脾脏等网状内皮系统,作为异物而被吞噬;(4)抗体-抗原结合:脂质体表面与特异抗体偶联,识别相应抗原,而定向作用于靶细胞。脂质体不仅作为药物的载体,也可作为酶的载体,并且可将一些不能经胃肠吸收或易被消化道破坏的药物(如肝素、胰岛素等),制成脂质体以供口服。生物膜是高度选择性的通透屏障,可通过被动扩散、帮助扩散、主动转运、基因转位和胞饮方式转运。 药物在体内的一般过程包括药物的吸收、分布、代谢转化和排泄,药物的代谢转化又名药物的生物转化(biotransformation),是指体内正常不应有的外来有机化合物药物或毒物在体内进行的代谢转化。药物代谢转化主要在肝脏进行,在体内催化药物代谢转化的酶系称为药物代谢酶,其主要分布在肝细胞微粒体,其次是细胞可溶性部分。药物代谢转化可分为第一相反应和第二相反应(结合反应)。 第一相反应包括氧化,还原和水解反应。1.微粒体氧化酶系,存在于内质网,称为药物氧化酶系,它所催化的反应是在底物分子上加一个氧原子,因此也称为加单氧酶(monooxygenase)或羟化酶,其作用特点为:(1)特异性低,对许多药物都有作用;(2)需要

第二章 临床药物代谢动力学(ch) (2)

第2章临床药物代谢动力学 第1节概述 ⒈何谓药物代谢动力学(pharmacokinetics,简称药代动力学、PK), 是应用动力学原理与数学模型,定量研究药物在生物体内吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(elimination)过程随时间变化动态规律的一门学科。 ⒉开展药物代谢动力学研究的意义: ⑴指导临床合理用药:通过研究临床用药过程中人体对于药物处置的动力学过程以及各种临床条件对体内过程的影响,计算及预测血药水平,制定最佳给药方案、剂量和给药频度,指导合理用药。 ①例如对一些安全范围比较窄的药物,进行血药浓度监测。 ②例如根据时辰药物代谢动力学研究结果,调整某些药物的给药剂量(茶碱—白天少服、氨基糖苷类抗生素—晚上少服)或设计更合理的剂型(如抗心绞痛药缓控释剂型)。 ③例如通过遗传药理学药物代谢多态性的研究指导临床合用药。 ⑵有助于新药的开发 ①药物代谢动力学研究成为生物药剂学的研究基础(如提高生物利用度研究、 缓控释剂型的研制等)。 ②通过药物在体内代谢产物和代谢机制的研究,可以发现生物活性更高、更安 全的新药(如研究氯雷他定代谢产物→活性更强的洛他定、对地西泮代谢产物的研究,得到系列活性代谢产物→多数已开发上市。) ③是新药临床试验的重要内容:如Ⅰ期临床试验中的新药临床动力学研究,是 制订新药给药方案的依据。 ⑶充实基础药理学理论,深化人们对药物作用的认识 本章将着重介绍药物代谢动力学的基本概念、基本原理,主要药动学参数及其意义。 第2节药物的体内过程

前已述,药物代谢动力学是定量研究药物在生物体内吸收、分布、代谢和排泄规律的一门学科。一般地,药物要产生药效或毒性,必须先经吸收进入血液,然后随血流分布到组织中,部分药物还在肝脏等组织中发生代谢,药物及其代谢物经胆汁、肾脏等途径排泄出体外。药物在体内自始至终都处于动态变化之中。(一)吸收(absorption) ⒈概念:吸收是指药物未经化学变化从给药部位进入血液循环的过程。通常用吸收速度和程度来表示,如生物利用度。 影响药物吸收的因素有药物制剂因素(如药物理化性质(如粒径大小、溶解度和药物的晶型等)、处方中赋型剂的性质与种类、制备工艺、药物的剂型以及处方中相关药物的性质等)和生理病理因素(病人的生理特点如胃肠pH、胃肠活动性、肝功能及肝肠血流灌注情况、胃肠结构和肠道菌丛状况、年龄、性别、遗传因素及病人饮食特点等) ⒉药物在不同部位的吸收: ⑴药物在胃肠道中的吸收及影响因素: 口服给药是常用的给药方式,也是最安全、方便和经济的方式。因消化道各部位组织结构以及相应的pH值不同,对药物的吸收能力与吸收速度也是不同的。药物的吸收通常与吸收表面积、血流速率、药物与吸收表面接触时间长短以及药物浓度有关。大多数药物在胃肠中吸收是被动扩散的,因此脂溶性的、非离子型药物易吸收。 影响因素 ①药物和剂型: 口服药物制剂,药物经过释放、溶解和跨膜转运三过程。药物制剂的释放速率和在胃肠中的溶解速率影响药物吸收速率和程度。不同的制剂因药物释放速率和溶解速率不同,吸收速率不同。如果药物的释放速率和溶解速率大于跨膜转运速率,则药物的跨膜转运速率是吸收的限速因素。如果药物的释放速率和溶解速率慢,释放速率和溶解速率是药物吸收的限制因素。如灰黄霉素在胃肠道溶液中很难溶解。当固体给药时,由于没有足够的时间溶解,因而吸收不完全。延长胃肠排空时间,可增加该类药的吸收。

第二章 药物代谢动力学

一.名词解释 1.first past elimination:口服药物在胃肠道或被肝脏代谢,而导致进入体循环的量减少 2.hepato-enteral circulation:经过胆汁或部分经胆汁排泄的药物,在肠道中重新吸收,进门静脉进入肝脏重新进 入体循环 3.half-life:药物在体内消除一般所需要的时间 4.bioavailiability:血管外给药,药物从吸收到进入体循环的速度和程度 5.apparent volume of distribution:体内药量与血浆药物浓度的比值,反应药物的分布与组织的结合程度 6.steady state plasma concentration:药物的吸收速度与消除速度达到动态平衡的浓度,血药浓度不在随给药次数的 增加而增加 7.total body clearance:单位时间内多少体积血浆中药物从体内被清除 8.hepatic microsomal enzyme:大多数药物在肝脏进行生物转化,因肝细胞内存在有微粒体混合功能酶系统,而该系统能促进多种药物发生转化 9.absorption:药物从给药部位进入血液循环的过程 10.distribution:药物入血后,随血液循环到达各组织器官的过程 11.metabolism:药物在体内发生生物转化 12.excretion:药物排出体外的过程 13.first order kinetic:恒比消除,体内药物按瞬时血药浓度以恒定的百分比消除 14.zero order kinetic:恒定消除,单位时间内药物按恒定的量进行消除 15.loding dose:首次给药时血药浓度达到稳态,为负荷剂量 二.问答题 1.药物的跨膜转运的方式有哪些?主动转运和被动转运各有什么特点?在药物转运的方式中那种方式是最常见的1.药物的跨膜跨膜转运包括: 脂溶扩散:药物最常见,最重要的跨膜形式(取决于脂溶性和浓度梯度) ①简单扩散水溶扩散:分子量小的水溶性物质或非极性物质(尿素) 特点:①不消耗能量②无饱和现象③无竞争性抑制④顺浓度梯度⑤不需要载体 被动转运 ②易化扩散:顺浓度梯度,不消耗能量,但需要载体,因此有饱和性和竞争性抑制(氨基酸,Na)主动转运:药物从低浓度一侧向高浓度一侧转运①需要载体②逆浓度梯度③消耗能量④有饱和性和竞争性抑制膜动转运:极少数药物通过膜的运动促进大分子物质转运①胞饮②胞吐 2.什么是一级和零级动力学方程?各有什么特点?为什么会发生零级动力学 ①一级动力学:药物在某部位或某房室的转运速度和该部位的药物浓度的1次方成正比 特点:1)单位时间转运速率不变,药物转运成指数衰减;2)清除率,速率常数,分布容积,半衰期恒定,不因剂量而改变;3)AUC与所给剂量成正比 ②零级动力学:药物在某部位或某房室的转运速度和该部位的药物浓度的0次放成正比 特点:1)药物衡量转运2)清除率,速率常数,分布容积,半衰期不恒定3)AUC与给药剂量不成正比,非线性动力学 3.什么是酶诱导剂和酶抑制剂?分别会产生那些影响 ①酶诱导剂:药物提高肝脏线粒体代谢药物酶活性,增加代谢速度 1)减弱药效:加速自身或其他物质代谢(同时服用苯巴比妥和华法林,华法林的代谢加快) 2)增加药效:某些在体内活化起效的药物,活化速度加快 ②酶抑制剂:药物抑制肝脏线粒体药物代谢酶活性,减慢药物代谢 1)增加药效:体内代谢酶被抑制,药物被代谢的速度降低,药效↑(服用酮康唑,导致特非那定代谢减慢)

执业医师考试药理学第二章药物代谢动力学复习题和答案

第二章药物代谢动力学 一、最佳选择题 1、决定药物每天用药次数的主要因素是 A、吸收快慢 B、作用强弱 C、体分布速度 D、体转化速度 E、体消除速度 2、药时曲线下面积代表 A、药物血浆半衰期 B、药物的分布容积 C、药物吸收速度 D、药物排泄量 E、生物利用度 3、需要维持药物有效血浓度时,正确的恒定给药间隔时间是 A、每4h给药一次 B、每6h给药一次 C、每8h给药一次 D、每12h给药一次 E、每隔一个半衰期给药一次 4、以近似血浆半衰期的时间间隔给药,为迅速达到稳态血浓度,可以首次剂量 A、增加半倍 B、增加1倍 C、增加2倍 D、增加3倍 E、增加4倍 5、某药的半衰期是7h,如果按每次0.3g,一天给药3次,达到稳态血药浓度所需时间是 A、5~10h B、10~16h C、17~23h D、24~28h E、28~36h 6、按一级动力学消除的药物,按一定时间间隔连续给予一定剂量,达到稳态血药浓度时间长短决定于 A、剂量大小 B、给药次数 C、吸收速率常数 D、表观分布容积 E、消除速率常数 7、恒量恒速给药最后形成的血药浓度为 A、有效血浓度 B、稳态血药浓度 C、峰浓度 D、阈浓度 E、中毒浓度 8、药物吸收到达血浆稳态浓度时意味着 A、药物作用最强 B、药物吸收过程已完成 C、药物消除过程正开始 D、药物的吸收速度与消除速率达到平衡 E、药物在体分布达到平衡 9、按一级动力学消除的药物有关稳态血药浓度的描述中错误的是 A、增加剂量能升高稳态血药浓度 B、剂量大小可影响稳态血药浓度到达时间 C、首次剂量加倍,按原间隔给药可迅速达稳态血药浓度 D、定时恒量给药必须经4~6个半衰期才可达稳态血药浓度 E、定时恒量给药达稳态血药浓度的时间与清除率有关

相关文档
最新文档