单阀与顺序阀切换的实实现

单阀与顺序阀切换的实实现
单阀与顺序阀切换的实实现

单阀和顺序阀的对比

1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。

2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。调节级的变工况特性也和其余各级有很大区别。当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽

焓降的改变对机组功率的影响较小。

采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。可见,调节级的危险工况并不是在最大工况下,而是在第一只调节阀刚刚全开时。

3、单阀、顺序阀控制方式的应用

实际生产中,汽轮机在部分负荷下运行时喷嘴配汽方式比节流配汽方式的效率高,且较稳定。但在变工况下采用喷嘴配汽方式会使汽轮机高压部分的金属温度变化较大,调节级所对应的汽缸壁产生较大的热应力,从而降低了机组快速改变负荷的能力。为了发挥两种不同配汽方式的优点,我们采取了节流配汽——喷嘴配汽联合调节的方式,即第一只喷嘴和第二只喷嘴同时开启,使汽缸均匀受热。待第一、二只调节阀全开后再根据机组负荷需要依次开启其他调节阀。这样,就同时发挥了节流配汽和喷嘴配汽两者的优点。

电厂汽轮机单阀/顺序阀切换的实现

作者:

时间: 2010 年 2 月

电厂汽轮机单阀/顺序阀切换的实现

摘要:汽轮机单阀/顺序阀切换的逻辑,是电厂节能降耗的手段之一,本文主要针对汽轮机的单阀/顺序阀切换逻辑的分析、存在问题的提出、分析以及解决过程,及切换功能的实现进行全过程论述。

关键词:单阀顺序阀切换逻辑

一.概述

“十一五”规划明确要求,到2010年我国单位GDP的能耗要比“十五”末期下降20%,衡量一个发电厂经济性的好坏,就是要看它的综合指标——发电成本,即对外供1度电所需的成本费用。火力发电厂汽轮机作为能量转换的中间设备,运行方式的优化是节能降耗的主要手段,对保证机组的安全性和经济性起到关键作用。

**发电厂隶属**,电厂的主要设备是:锅炉采用**锅炉厂高温超高压一次中间再热、单汽包自然循环、****蒸汽锅炉(YG—***/13.74—M),汽轮机采用**汽轮机厂的超高压、单轴、双缸双排汽、一次中间再热、凝汽式汽轮机(N***—**.24/***/***型),发电机是**发电设备厂的WX**Z-073LLT。热控系统主网主要采用DCS集散控制方式,辅网采用PLC控制系统。汽轮机采用DEH控制方式,DEH控制系统为纯电调系统,整套系统采用北京ABB贝利控制有限公司的Symphony控制系统(软硬件由北京ABB贝利控制有限公司提供),液压部分采用常规低压透平油系统。直接由DEH通过电液转换器进行控制调节汽阀油动机,以达到控制汽机转速和负荷的目的。

**积极响应国家的节能降耗的政策,立足于本厂实际,多方面、全方位的实施全厂的节能降耗各项工作。本文重点介绍汽轮机单阀/顺序阀切换功能的实现。

所谓汽机单阀控制方式,是指根据负荷的给定值,经过汽机阀门管理程序的逻辑判断,所有高压调门开启方式相同,且各高调门的开度均一致。因控制汽阀沿汽轮机的径向对称布置,因此这种方式将使汽轮机的高压缸第一级汽室内温度的分布比较均匀,在负荷变化时汽轮机的转子和定子之间的温差最小,减少了机组的热应力,使机组可以承受较大的符合变化率。但是,从机组的运行经济上看,

由于所有控制汽门都处于非全开状态,因而主蒸汽通过控制汽门的节流损失较大,降低了机组的热效率。

顺序阀控制方式,是指根据负荷的给定值,经过汽机阀门管理程序的逻辑判断和计算,按照预先设定的开启顺序开启相应的高压调节阀,各高调门累计流量呈线性变化。这种控制方式只有一个汽阀处于半开启状态,其他的汽门处于全开或全关状态。这样就减少了汽门的节流损失,提高了汽机的热效率。但是存在进汽位置不对称,第一级汽室内的温度分布不均匀,机组的热应力较大,因此承担的符合变化率相对来说比较小。

两种控制方式各有优缺点,机组在不同的运行状态时应采用不同的控制方式。一般机组冷态启动以及机组在承担尖峰负荷时,要求采用全周进汽,即单阀控制方式;机组带部分符合运行时,可以采用部分进汽方式,即顺序阀控制方式。二、单阀/顺序阀切换的控制逻辑分析

我厂汽轮机共有四只高压调节阀,编号为GV1、GV2、GV3以及GV4。每只高调门均有一个独立的伺服控制回路。信号的传递通道为:运行人员设定目标负荷设定值及速率,这两种信号到汽机负荷控制回路,得到GVMOUT信号,即设定负荷时作对应的调门开度总的叠加值。GVMOUT信号到阀门管理回路,经过相应的逻辑计算和判断,送到DEH的I/O端子板,然后通过内部连接电缆到SVP调门卡,SVP调门卡将阀位输出指令以及LVDT(线性位移差动传感器)的反馈信号进行对比计算,得到0~10V DC指令,经过中间端子盒到电液转换器进行调节。信号的传递框图如下所示:

阀门管理的基本功能框图如下所示:

汽机的单阀/顺序阀之间的切换的允许条件反映在内部逻辑中,主要有以下几个方面:

(1)、DEH控制系统处于“AUTO”控制方式。自动控制方式是通过CRT画面操作,改变转速/负荷设定值,对DEH输出进行闭环控制

(2)、安全油压建立,汽机已复位挂闸

(3)、主油开关闭合,是指我厂发变组220KV断路器处于合闸位置。

(4)、系统不在ADS控制方式。

(5)、高压调门不在“试验”位。

(6)、中压调门不在“试验”位。

(7)、主汽门试验不在“试验”位。

(8)、单/顺阀切换状态按钮投入。内部标签名为“Transfer”,是在单阀/顺序阀切换前需要将切换状态置“1”,信号类型是一种5秒触发延时的单脉冲定时器。(9)、单/顺阀切换指令给出。内部标签名是顺序阀“SEQ INPB”,单阀“SIG INPB”。当此信号为逻辑“1”时,与“Transfer”信号进行“与”逻辑判断,得到切换指令,指令信号为3秒触发延时的单脉冲,因此,操作顺序必须是先将状态按钮置“1”状态,5秒内给出阀切换指令信号。输出到阀门管理程序中(如简图所示)。

顺序阀指令

切换状态

单阀指令

“SEQPB”或“SIGPB”信号到阀门管理程序内,还得经过二次判断,如果切换条件全部允许,则输出阀切换指令,若以上条件任一条件不满足,阀门控制则仍处于原控制方式。

然后,需要分析汽机高调门的阀门特性曲线。

GVMOUT的函数运算关系是:

高调门1的阀门特性曲线:

高调门2的阀门特性曲线:

高调门3的阀门特性曲线:

高调门4的阀门特性曲线

根据高调门的特性曲线可以看出:GV1与GV2的阀门特性一致,GV3与GV4的特性一致。并且,GV3与GV4在阀门逐渐开启的过程中的进汽流量要比其他两个高调门要高些。GV1与GV2在0%~72.28%时,曲线接近于线性关系。

在进行阀门方式切换时,为了保证机组功率及主汽压力不会发生大范围内的波动,必须保证DEH算法逻辑的合理性。以GV1为例,我厂的逻辑计算可以写成如下算法: GV1SPT=(GVMOUT`*A+GVMOUT`*B)F(GV1)

其中,GV1SPT:#1高压调节门输出指令,%;

GVMOUT:经过阀门管理程序的计算得到的总的阀门开度指令,%;

A:在单阀控制方式下指令系数,0~1;

B:在顺序阀控制方式下的指令系数,0~1;

):#1高压调节门的阀门特性函数,%。

F(

GV1

当阀位控制方式处于单阀控制方式时,A=1,B=0;当顺序阀控制方式下时,A=0,B=1;两者之间的切换时,将受到速率限制器的作用,速率设置为0.05/秒,按照以上速率计算,0和1之间的切换时间应该为20秒左右。因此,切换过程中不会引起负荷及主汽压力大范围内的波动。

按照以上所述,热工人员进行了切换演算:根据135MW时的数据,GVMOUT=95.874,GV1开度是43.15;GV2开度是43.15;GV3开度是49.25;GV4开度是49.25。假设此时将阀位控制方式切成顺序阀,切换瞬间为无扰切换。由于功能码FC8限速器的作用,高调门逐渐下降,直至内部运算值为3.42,经过阀门特性曲线的分段线性函数块,最终GV1的开度将在15%稳定住;GV2开度28%;GV3开度100%,GV4开度100%。假设此时要求负荷下降,GVMOUT开度下降至80,则F(x)=65.45,阀位控制仍在顺序阀控制方式,则会出现GV1全关,GV2开度18.8%,GV3全开,GV4全开。假设机组满负荷运行, GVMOUT=95.874,阀位管理方式为顺序阀控制,这时切换成单阀控制,则F(x)=91.307,切换瞬间,阀位值不变,为无扰切换,切换后,功能码FC8限速器的值由顺序阀时的0逐渐增加到1,速率限制为0.05/秒,这时阀位内部计算值由-1逐渐变化成0,阀位值慢慢增加至91.307,完成单阀时的阀位控制。

经过以上推算,我们得到以下结论:

1、汽机单阀/顺序阀之间的切换为无扰切换,即切换过程中不会出现阀位瞬大范围的开关现象。

2、切换后,在保证汽机实际阀位-流量特性曲线与出厂设定曲线一致的情况下,汽机调门瞬时变化幅度较小,能够稳定在一个特定的阀位值上。

3、由于阀门重叠度的设置,开启顺序应该为4-3-2-1。即:

到此,阀切换之间的软件部分已经具备条件,汽机硬件方面的问题需要热工专业及汽机专业进行确认。首先,需要检查高调门的布置方式,按照汽机厂家提供的图纸资料,汽机管路的布置走向以及调门物理位置应如下所述:

汽机管路走向及调门物理位置示意图

汽机上半缸

汽机调门侧

发电机侧

结合上图,从控制方面来讲,按照汽机的顺序阀GV4-GV3-GV2-GV1的步序,可以保证汽机对称进汽,减少对汽机各参数的影响。但是,实际的调门方式,与上图存在分歧,

100%

100%

蒸汽流量指令

GV4-3

GV2

GV1

单/顺阀切换

更改前的汽机调门布置方式

汽机上半缸

汽机调门侧

发电机侧

从上图可以看出,若按照现在的高调门布置方式进行,会造成汽机左侧全开进汽,而右侧调门开度低于40%的情况,进汽方位不对称,极易造成振动值超限等危险情况,引起跳机,对汽轮机的安全构成隐患,因此需要更改阀门的布置方式。

利用停机机会,按照厂家资料,完成了阀门布置方式的更改工作,这样,全开的两个高调门对称进汽,提高了机组的安全性。同时,由于信号传递通道的改变,热工专业重新对SVP 调门卡进行了标定,通过模拟试验的验证,保证了阀门调节的快速性和准确性。

三、单阀/顺序阀间切换功能的实现

准备工作一切就绪后,**于20**年9月23日进行了#1机组的单阀/顺序阀切换,切换过程基本为无扰切换,负荷变化幅度小于2MW 。各项经济指标有显著下降。切换过程是:

1、打开DEH 画面“DEH OVERVIEW ”;

2、单击“VLV MODE ”按钮,在弹出画面中,先将TRANSFER 信号置为“1”,然后5秒内单击“SEQV ”键完成切换动作。

3、单阀切顺阀过程中,各调门开度应相应变化;

4、整个切换过程结束后,画面显示为顺序阀状态,单阀切顺阀操作结束。

5、待机组各参数稳定后,重复以上步骤,进行顺序阀切单阀的操作。

机组在单阀、顺序阀控制方式下的参数对比:

四、阀切换时的注意事项

1、单/顺阀切换过程中应密切注意负荷、主汽压、汽包水位的变化,应尽量保持以上参数保持不变。

2、单阀切顺阀后,汽机高压缸调节级由全周进汽变为部份进汽,应注意汽机本体各缸温及机组TSI各参数(包括轴振,轴向位移等)的变化。

3、单/顺阀切换过程中,调门开度、油动机行程及DEH系统的动态变化过程应有人在就地监视,观察调门动作情况。

4、在切换过程中,不得进行任何有影响锅炉和汽轮机工况的操作。

5、汽轮机在拟进行“单阀/顺序阀”切换前,维持稳定运行时间不少于30分钟;阀位控制方式切换后,应维持运行时间30分钟。

6、借鉴其他电厂经验,负荷大于100MW,各温度测点及传感器测量处于稳定阶段时,方可进行试验。

7、参考其他电厂经验,珠江国产300MW机组在进行阀切换时,出现负荷大幅度变化,吸取经验教训,热工专业应尽量保证原阀门特性曲线与实际流量特性曲线保持一致。

参考资料:

《电厂热工自动控制与保护》王付生中国电力出版社*

第三节-顺序阀

顺序阀 学习完后的目的:掌握各种阀的工作原理及应用场合。一、目的: 是利用油液压力作为控制信号来控制多个执行元件按一定的顺序动作。 二、顺序阀的主要作用有: (1)控制多个元件的顺序动作; (2)用于保压回路; (3)防止因自重引起油缸活塞自由下落而做平衡阀用; (4)用外控顺序阀做卸荷阀,使泵卸荷; (5)用内控顺序阀作背压阀。 三、对顺序阀还有其特殊的要求: (1)为了使执行元件准确实现顺序动作,要求顺序阀的 调压精度高,偏差小; (2)为了顺序动作的准确性,要求阀关闭时内泄漏量小; (3)对于单向顺序阀,要求反向压力损失及正向 压力损失值均应较小。 四、顺序阀分类: ㈠按结构分类 ①直动式:适用于低压。 ②先导式:适用于高压。

㈡按控制压力来源分类 ①内控式:控制阀芯开启的压力油来自顺序阀进口。 ②外控式:控制阀芯开启的压力油从外控口外部引入。 ㈢按泄油方式分类 ①内泄式:弹簧腔内的油液直接从出油口泄漏。 ②外泄式:弹簧腔内的油液直接从外泄油口泄漏到油箱。 顺序阀有内控外泄、内控内泄、外控外泄、外控内泄六、工作原理: ㈠直动式顺序阀 直动式顺序阀通常为滑阀结构,其工作原理与直动式溢流阀相似,均为进油口测压,但顺序阀为减小调压弹簧刚度,还设置了断面积比阀芯小的控制活塞A。 顺序阀与溢流阀的区别还有: ■其一,出口不是溢流口,因此出口p2不接回油箱,而是与某一执行元件相连,弹簧腔泄漏油口L必须单独接回油箱; ■其二,顺序阀不是稳压阀,而是开关阀,它是一种利用压力的高低控制油路通断的“压控开关”,严格地说,顺序阀是一 个二位二通液动换向阀。

㈡先导型顺序阀 ⑴如果在直动型顺序阀的基础上,将主阀芯上腔的调压弹簧用先导调压回路代替,且将先导阀调压弹簧腔引至外泄口上,就可以构成先导式顺序阀。 ⑵这种先导式顺序阀的原理与先导式溢流阀相似,所不同的

单阀与顺序阀切换的实实现

单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。 2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。调节级的变工况特性也和其余各级有很大区别。当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽 焓降的改变对机组功率的影响较小。 采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。可见,调节级的危险工况并不是在最大工况下,而是在第一只调节阀刚刚全开时。 3、单阀、顺序阀控制方式的应用 实际生产中,汽轮机在部分负荷下运行时喷嘴配汽方式比节流配汽方式的效率高,且较稳定。但在变工况下采用喷嘴配汽方式会使汽轮机高压部分的金属温度变化较大,调节级所对应的汽缸壁产生较大的热应力,从而降低了机组快速改变负荷的能力。为了发挥两种不同配汽方式的优点,我们采取了节流配汽——喷嘴配汽联合调节的方式,即第一只喷嘴和第二只喷嘴同时开启,使汽缸均匀受热。待第一、二只调节阀全开后再根据机组负荷需要依次开启其他调节阀。这样,就同时发挥了节流配汽和喷嘴配汽两者的优点。

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。 2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当 K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。 5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。 3、换向阀的性能和特点 1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。 分析和选择三位换向阀的中位机能时,通常考虑: (1)系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。 (2)系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型) (3)换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。 (4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制 The Discussion About Turbine Sequence Valve Control (江苏太仓环保发电公司 江苏 太仓 215433)刘铁祥 摘要:介绍电厂汽轮机顺序阀门控制原理,列举工程中的实际应用经验,揭示了汽轮机阀门管理设计的科学性以及在调试和应用中需要掌握的知识点。 关键词:电厂 汽轮机DEH 阀门控制 Abstract: This paper intorduces the principle of turbine sequence valve control and lists some application experiences, interprets the scientificity of turbine valve control as well as the knowledge should be know in commission and practice. Key word: power plant; turbine DEH; valve control 1 前言 现代大、中型发电机组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。其中进汽阀门的管理显然是DEH系统的重要功能,特别是顺序阀控制其管理程序更为科学和复杂。在调试和实际应用中顺序阀控制的参数整定同样非常严谨。如果参数整定不当则单阀与顺序阀的切换扰动过大,汽轮机主要运行参数出现异常,影响机组的安全。由此顺序阀门控制的参数整定是DEH调试的一项重要内容。 2 DEH阀门管理功能 新建机组在试运期间一般采取全周进汽的单阀运行方式,使得转子和定子的温差较小,在变负荷运行时温差影响较小,有利于机组初期的磨合。另外在机组启动过程或调峰方式运行时,也同样需要采用单阀控制。但单阀运行,高压调节阀都参与开度调节,且一般高压调门开度不大,蒸汽通过调节阀门时有较大的节流损失。机组运行要求尽量减少调节阀门的节流损失,提高汽轮机的效率。通常阀门的节流损失在阀门接近全关或接近最大流量时达到最小。顺序阀门控制方式下,只有一个高压调节阀进行开度调节,其余的调门保持全开或全关,这样减少了节流损失,提高机组热效率。下图为顺序阀门控制和单阀控制的热效率比较曲线。从中能明显的看出两者之间的差异。 降低 ( 热 效 率 ) 50 60708090100(负荷百分率)

如何对汽轮机的进行单阀和顺序阀进行切换

?如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会 需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。 单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节 流损失较大。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换 后得出的。 在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一 定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以 内时,切换又自动恢复。投入调节级压力控制回路与此类似。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节

流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。

单阀顺序阀切换

单阀/顺序阀切换的目的是为了提高机组的经济性和快速性,实质是通过喷嘴的节流配汽(单阀控制)和喷嘴配汽(顺序阀控制)的无扰切换,解决变负荷过程中均匀加热与部分负荷经济性的矛盾。单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。顺序阀方式则是让调节阀按照预先设定的次序逐个开启和关闭,在一个调节阀完全开启之前,另外的调节阀保持关闭状态,蒸汽以部分进汽的形式通过调节阀和喷嘴室,节流损失大大减小,机组运行的热经济性得以明显改善,但同时对叶片存在产生冲击,容易形成部分应力区,机组负荷改变速度受到限制。因此,冷态启动或低参数下变负荷运行期间,采用单阀方式能够加快机组的热膨胀,减小热应力,延长机组寿命;额定参数下变负荷运行时,机组的热经济性是电厂运行水平的考核目标,采用顺序阀方式能有效地减小节流损失,提高汽机热效率。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。 在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。投入调节级压力控制回路与此类似。上述限制过程对运行人员的操作没有任何要求。这样,阀门切换过程中如果投入功率闭环,则功率控制精度在3%以内;如果投入调节级压力闭环,则调节级压力控制精度在1.5%以内。单阀/顺序阀切换也可以开环进行,显然,此时负荷扰动的大小与阀门特性曲线的准确性及汽机运行工况有关。 在单阀向顺序阀切换过程中或阀门已处于顺序阀方式时,如果汽机跳闸或出现任一个GV紧急状态,即实际阀位和阀定位卡的阀位指令之间偏差大于设定的限值,则强行将阀门置于单阀方式。这种情况下强制成单阀方式可以减小负荷扰动。

汽轮机高调门流量特性优化试验方案

汽轮机高调门流量特性优化 试验方案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

皖能马鞍山发电有限公司2号机组汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写 ____________ 审阅 ____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格 式文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。 4、试验方法及步骤 各高调门单个流量特性测试

电厂汽轮机单阀顺序阀切换的实现

电厂汽轮机单阀/顺序阀切换的实现 作者: 时间: 2010 年 2 月

电厂汽轮机单阀/顺序阀切换的实现 摘要:汽轮机单阀/顺序阀切换的逻辑,是电厂节能降耗的手段之一,本文主要针对汽轮机的单阀/顺序阀切换逻辑的分析、存在问题的提出、分析以及解决过程,及切换功能的实现进行全过程论述。 关键词:单阀顺序阀切换逻辑 一.概述 “十一五”规划明确要求,到2010年我国单位GDP的能耗要比“十五”末期下降20%,衡量一个发电厂经济性的好坏,就是要看它的综合指标——发电成本,即对外供1度电所需的成本费用。火力发电厂汽轮机作为能量转换的中间设备,运行方式的优化是节能降耗的主要手段,对保证机组的安全性和经济性起到关键作用。 **发电厂隶属**,电厂的主要设备是:锅炉采用**锅炉厂高温超高压一次中间再热、单汽包自然循环、****蒸汽锅炉(YG—***/13.74—M),汽轮机采用**汽轮机厂的超高压、单轴、双缸双排汽、一次中间再热、凝汽式汽轮机(N***—**.24/***/***型),发电机是**发电设备厂的WX**Z-073LLT。热控系统主网主要采用DCS集散控制方式,辅网采用PLC控制系统。汽轮机采用DEH控制方式,DEH控制系统为纯电调系统,整套系统采用北京ABB贝利控制有限公司的Symphony控制系统(软硬件由北京ABB贝利控制有限公司提供),液压部分采用常规低压透平油系统。直接由DEH通过电液转换器进行控制调节汽阀油动机,以达到控制汽机转速和负荷的目的。 **积极响应国家的节能降耗的政策,立足于本厂实际,多方面、全方位的实施全厂的节能降耗各项工作。本文重点介绍汽轮机单阀/顺序阀切换功能的实现。 所谓汽机单阀控制方式,是指根据负荷的给定值,经过汽机阀门管理程序的逻辑判断,所有高压调门开启方式相同,且各高调门的开度均一致。因控制汽阀沿汽轮机的径向对称布置,因此这种方式将使汽轮机的高压缸第一级汽室内温度的分布比较均匀,在负荷变化时汽轮机的转子和定子之间的温差最小,减少了机组的热应力,使机组可以承受较大的符合变化率。但是,从机组的运行经济上看,

减压阀的工作原理

本文为大家介绍的是减压阀的工作原理,首先介绍减压阀的定义,所谓的减压阀是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的。然后依靠控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。 下面我们通过减压阀的三个结构分别为大家介绍减压阀的工作原理。 减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可分为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。 减压阀的工作原理 一组合式减压阀的内部结构 1、组合式减压阀自动调节原理: 组合式减压阀是一种在复杂多变的工况下亦可利用水压进行自我调节的减压阀稳压阀,在进口压力和流量产生变化的时候保持出口的压力和流量稳定。其完全实现自力控制,调试简单,运行可靠。 2、组合式减压阀的双反馈切换的工作原理: 组合式减压阀的反馈系统是根据减压阀出口压力的变化信号来控制过流面积(节流锥开度)的独立系统。减压阀装备有互为备用的双反馈系统,启用A系统即停用B系统的运行模式可以达到减压阀不停机检修的目的。 3、组合式减压阀反冲排污的工作原理: 水电站的运行工况比较复杂,尤其水质的好坏直接关系到设备的安全运行。针对泥沙含量较大的水电站,除了在减压阀的过流位置采用不锈钢材质并堆焊镍基合金防磨蚀外,减压阀的反冲排污装置亦能有效地防止反馈控制系统的堵塞,使减压阀在多泥沙杂物的水质中保持良好的工况。(反冲排污系统标配为手动控制,根据水质实际情况把握反冲排污频率,或直接

顺序动作回路工作原理

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1Y A断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2Y A断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。 2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁1YA通电时,

单阀及顺序阀控制

单阀及顺序阀控制汽轮机控制原理 随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Ele ctro- Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显 汽轮机控制原理,针对单阀及顺序阀控制的特点,重点阐述了DEH 系统两个重要参数优化对机组安全与经济运行的影响,为解决同类型问题提供了参考。 随着发电机组容量的日益扩大,对机组自动化程度要求越来越高,DEH (Digital Electro-Hydraulic ControlSystem,简称DEH)系统作为控制汽轮发电机组功率的一种有效方法其技术日益成熟与完善,顺序阀控制和单阀控制作为DEH 系统控制调节汽门的基本方法,比较而言顺序阀控制方式节能效果明显,能为电厂带来更大的经济效益,所以顺序阀控制方式越来越来被电厂所采纳与使用。顺序阀控制按照设定的高压调节汽门(GovernorValve,简称GV)开启顺序,对汽轮机流量指令进行计算与分配,通过按顺序调节汽轮机阀门开度进而调节汽轮机进汽流量,最终达到精确控制机组功率的目的。 1 凸轮曲线原理 从1 看出,不管是在单阀还是顺序阀控制方式,都要对阀门开度进行凸轮曲线修正,这是因为调节汽门在开启过程中,流量与阀门开度不是完全的线性对应关系,当阀门小开度、阀前/ 阀后大压差时,调节汽门内蒸汽为临界流动,此时通过调节汽门的流量线性地正比于调节汽门的开度。随着调节汽门继续开大,虽然汽门的通流面积在增大,但汽门前后的压差减小,蒸汽流量随阀门开度增大的趋势变缓。所以,即使汽门升程继续加大,由于受汽门喉部尺寸限制,蒸汽流量增加已很小。通常认为:汽门前后的压力比p(门前)/p(门后)为0.95~0.98 时,即认为汽门已全开。因此,理想情况下,应当在调节汽门接近全开时,通过阀位传动机构非线性变换,增大调节汽门升程相对于油动机行程的变化率,以校正调节汽门接近全开时流量的非线性特性。但现在厂家已基本不用凸轮或楔形斜面传动机构进行流量校正,阀门反馈装置几乎全采用直行程的LVDT(线性差动传感器)。为解决位与流量的非线性带给调节系统的影响,通常在DEH 系统内部设置电凸轮曲线进行修正,达到改变流量指令与阀门开度关系的目的。在调汽门的升程达到电凸轮拐点后,通过改变阀位指令将阀门快开至全开位置,以补充调节汽门开启不足产生的流量不足。 2 凸轮曲线修改对协调控制的影响 国华太电2×600 MW 超临界汽轮机由上海汽轮机有限公司(STC)与西门子西屋(SWPC)联合设计制造,为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,设计共有四个高压调节汽门(分别定义为GV1、GV2、GV3、GV4),在机组投产初期DEH 系统采用单阀控制,协调控制系统(CCS,coordination control system)采用滑压运行方式,在运行过程中(尤其在变负荷阶段)发现高压调门很容易进入设定的电凸轮曲线拐点区,调门一旦进入拐点区后变化速率非常快,加之电凸轮曲线没有经过试验验证,实际流量与初始设计值差别较大,高压调门来回大范围波动造成调

4号机组单阀切至顺序阀的安全技术措施

4号机组单阀切至顺序阀的安全技术措施 编写: 审核: 批准: 开滦协鑫发电有限公司 二〇一六年六月二十日

4号机组单阀切至顺序阀的安全技术措施我厂4号机组从2015年4月30日19:45首次并网至2016年6月20日09:00,累计运行时间达到180天,计划在2016年06月21日将汽轮机的进汽方式由单阀切至顺序阀运行。 1.单阀、顺序阀规定 1)哈尔滨汽轮机厂规定机组在最初六个月的运行期间,为了提高 调节级叶片的可靠性,汽轮机应采用全周进汽,即单阀控制方 式,蒸汽通过高压调节汽门和喷嘴室,在360°全周进入调节 级动叶,调节级叶片加热均匀、温度较高,有效的改善了调节 级叶片的应力分配,使机组可以较快改变负荷,但单阀运行期 间由于所有高压调节汽门均部分开启,节流损失较大。 2)机组运行六个月后,所有控制装置已经准确投运,所有系统工 作正常时,可将汽轮机的进汽方式切换至顺序阀运行,蒸汽以 部分进汽的形式通过高压调节汽门和喷嘴室,高压调节汽门节 流损失大大减小,机组运行的热经济性明显改善,但顺序阀运 行同时会使调节级叶片处于最恶劣的工作条件下运行,容易形 成部分应力区,机组负荷改变速度受到限制,在部分负荷下, 与单阀运行相比较,调节级承受较大的机械载荷和压降。 3)我厂顺序阀运行时高压调节汽门的开启顺序为GV#1/GV#2→ GV#3→GV#4,即GV#1和GV#2同时开启,然后是GV#3,GV#4 最后开启。关闭顺序与此相反。汽轮机高压调节汽门布置见下 图:

汽机高压缸汽门布置 (由机头向发电机方向看) 2.单阀/顺序阀切换注意事项 1)单阀/顺序阀切换过程中,为尽量减少负荷扰动和对锅炉燃烧 的影响,应将机炉协调切至基本方式,投入DEH功率回路,在 功率回路投入方式下进行切换,切换过程中功率控制精度在 3%以内;单阀/顺序阀切换也可在DEH开环状态(即操作员自 动方式)下进行,但负荷扰动较大,负荷扰动的大小与阀门特 性曲线的准确性及汽机运行工况有关。 2)进行单阀/顺序阀切换操作时,应选择机组负荷在180MW~ 200MW期间进行,切换过程中保持负荷稳定、锅炉燃烧稳定。 3)单阀/顺序阀切换过程中及顺序阀运行期间,应密切监视功率、 主蒸汽压力、汽包水位、轴承振动(特别是#1、#2轴承振动)、轴承金属温度(特别是#1、#2轴承金属温度)、轴向位移、推 力轴承金属温度、胀差、调节级蒸汽压力、调节级蒸汽温度、 调节级金属温度等参数的变化情况,切换过程中就地安排专人 监视高调门动作情况,发现异常时应及时将顺序阀切回单阀运

单顺序阀切换总结报告

#1、#2机组主汽轮机汽机 单—顺阀切换总结报告 运行部 2005年3月23日 1.试验名称:汽轮机单阀控制—顺序阀控制切换

2.试验目的:验证机组在正常运行中进行单—顺阀切换的经济性 3.试验范围:1/2号机组 4.时间:#1机2005年3月3日,#2机2005年3月10日 5.试验过程 5.1顺序阀的调门开启顺序是#1和#2、#4、#5、#6、#3阀。 5.2进行切换的过程中,未出现负荷下降的情况。 5.4在由单阀控制切换至顺序阀控制时,未出现振动、轴向位移等急剧变化。 5.5在由单阀切换至顺序阀控制时,在255MW附近,#2轴承振动高0.145mm,270MW振动下降,300MW振动0.116mm。 6.实验结果 #1机组 #2机组 7.试验结论:在试验过程中,在升负荷时,#1机组在升至255MW时,#2瓦振

动过大,达至0.145mm,为检查机组经济性,继续升负荷。在变负荷时,在250-270MW顺序阀控制应快速通过不应保持,开门滑压防止振动继续增大。经济效率计算总体趋势看,顺序阀减小高压供汽阀门节流损失,汽机效率及机组煤耗有很大降低,大大降低煤消耗(具体数值详见附录五、附录六). 根据《300MW级汽轮机运行导则》关于蒸汽参数允许偏差控制汽缸温降率一般不超过1—1.5℃/h,根据大型汽轮发电机组转轴振动位移限值表规定,#1、#2机组汽机振动符合相对位移(0.12-0.165mm)、绝对位移(0.15-0.2mm)限值规定内,可以长期运行,但应加强油质监督及过滤,加强运行调整减小机组振动、降低缸体温差变化上多做工作。 单/多阀控制及节流调节/喷嘴调节,是DEH装置中的一个主要功能。所谓节流调节即把六个高压调门一同进入同步控制,在这种运行方式下,所有阀门处于节流状态,对于汽轮机运行初期,使汽轮机各部件获得均匀加热较为有利。在喷嘴调节运行时,调节汽阀按照预先设定的顺序开启,仅有一个调节汽阀处于节流状态,其余均处于全开或全关状态,这种调节发生可改善汽机的效率。 通过改变阀门控制运行方式,参照沙角A电厂300 MW机组试验结论与德州电厂滑压曲线,在变负荷下顺序阀控制与单阀控制的经济性和滑压运行的经济性分析比较,顺序阀控制方式较单阀控制方式的热耗率要低,采用多阀控制方式降低供电煤耗。 我公司投产初期一直使用单阀控制运行方式,在部分负荷下,调节级全周进汽的载荷小于在部分进汽时的载荷,同时在全周进汽的叶片温度较高,这对叶根和轮缘部位的机械载荷均匀分布有利。尽管现在大多数大型汽轮机

单顺阀切换措施

单顺阀切换技术措施 由于在较低的同一负荷下,用单阀方式运行时比用顺序阀方式运行时的第一级蒸汽温度大约高40℃~60℃。并且此温差会逐渐减小,直到“阀全开”工况时温差消失。 合理选择和使用阀门控制方式,运行人员能够在各运行阶段尽量减小第一级的温度变化,这样,使高压转子和其它零件的热应力减小。 一、单/顺阀切换前的检查: 1.热工专业认真检查机组控制系统的运行情况包括DCS主机及现场表计、接线,尤其是主机的保护系统、DEH控制系统、轴系监视系统等运行良好,无任何故障。 2.机务专业认真检查主机运行良好,尤其是主机轴系系统、主机阀门、及主机本体运行良好,无任何故障。 3.运行专业认真检查机组运行稳定,汽温、汽压、润滑油压等参数运行正常,无参数超标现象,现场机组运行稳定,无异常情况。 4.空冷系统运行正常,气象条件稳定,外界无大风、高温等恶劣天气。 二、单顺阀控制方式的选择: 1.机组在升速并网及带初始负荷暖机阶段应用单阀控制方式,以保证主机的金属加热均匀,保证机组安全运行及满足机组寿命要求。 2.汽机在最初运行的6个月内,应采用单阀方式来控制,只有检查确认所有的测点、控制装置和主机系统运行正常后,才可将机组改为顺阀控制。 3.当机组处于停机阶段,负荷低于330MW时,应采用单阀控制方式,以减少机组调节级处的应力,保证汽缸的受热均匀。 4.在机组的正常负荷变化期间,如果负荷变化率大于10MW/MIN或者负荷变化频繁,应采用单阀控制方式,以保证汽缸的受热均匀减少热应力。 5.在机组的负荷在330MW~660MW正常变化时,且主汽压力大于14MPa,机组负荷变化平缓或机组的负荷长期保持在低负荷时,机组可采用顺阀控制方式。 6.在机组停机时,如果为了保持机组的缸温在较高水平,应先切换为单阀控制方式然后再降负荷停机。 7.在机组停机时,如果为了使机组的缸温降低到一个较低水平,应先采用顺阀控制方式,当负荷小于330MW时,再切换为单阀控制方式。 三、单阀向顺阀切换的的条件: 1.机组运行稳定,不在协调方式。锅炉燃烧稳定,未投油枪助燃,汽压稳定且大于14MPa。汽温稳定为额定值。 2.DEH的功率闭环投入正常。 3.锅炉控制置于手动方式。 4.机组运行稳定,负荷保持稳定并且大于330MW且主汽压力大于14MPa。 5.DEH处于OA方式。 四、单阀向顺阀切换的操作: 1.检查机组协调切除,运行稳定。DEH投入功率闭环回路。即在“控制回路选择”画面上将“功率闭环”块投入,查其灯亮。 2.点击“阀门管理”画面上将“切顺序阀”点出,选择为顺阀方式并确认。 3.“切顺序阀”按钮变黄并闪烁。 4.阀门状态显示消失,高调阀按顺阀曲线分别开启或关闭(GV1/GV2→GV3→GV4)。 5.当阀门状态显示为“顺阀”时切换结束,“切顺序阀”按钮停止闪烁。 6.整个切换过程大约为10分钟,负荷变化应小于3%。 五、顺阀向单阀切换的条件: 1.机组运行稳定,不在协调方式。锅炉燃烧稳定,未投油枪助燃,汽压稳定且小于14MPa。

单阀与顺序阀切换的实实现

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 单阀与顺序阀切换的实实现 单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。 节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。 采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。 此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。 当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。 因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。 高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。 2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。 1/ 20

这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关) 状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

顺序阀

顺序阀 顺序阀利用油路压力来控制其他液压元件动作的先后顺序,以实现油路系统的自动控制。该阀还可作为卸荷阀和背压阀使用。 液压阀 电磁换向阀、溢流阀、单向阀、节流阀、调速阀、叠加阀、电液阀、顺序阀、手动阀、截止阀、卸荷阀、减压阀、油缸、滤网、滤清器、滤油器、液位计、冷却器、蓄能器、压力表开关、压力继电器、液压系统等系列液压元件 首先,这三种阀都是压力控制阀,他们的工作原理基本相同,都是以压力油的控制压力来使阀口启闭。 不同之处在于,溢流阀是控制系统压力的大小,在液压设备中主要起定压溢流作用和安全保护作用; 顺序阀是在具有二个以上分支回路的系统中,根据回路的压力等来控制执行元件动作顺序,可以控制液压元件的启动顺序(顺序阀压力调定低的液压元件首先卸荷,停止动作); 减压阀是将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定,避免系统中的压力过高,造成液压元件的损毁。 他们的图形符号如下:

5 减压阀、溢流阀和顺序阀的区别? 一种液压压力控制阀。在液压设备中主要起 定压溢流作用和安全保护作用。 顺序阀顺序阀是在具有二个以上分支回路的系统中,根据回路的压力等来控制执行元件动作顺序的阀。 根据控制压力来源的不同,它有内控式和外控式之分。其结构也有直动型和先导型之分 减压阀减压阀(reducing valve)是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,在进口压力不断变化的情况下,保持出口压力在设定的范围内,保护其后的生活生产器具. 顺序阀 sequence valve;priority valve

单阀、顺序阀控制方式的优劣对比

单阀和顺序阀的对比 默认分类2008-08-31 16:42:06 阅读7 评论0 字号:大中小 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。 2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。调节级的变工况特性也和其余各级有很大区别。当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽焓降的改变对机组功率的影响较小。 采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。可见,调节级的危险工况并不是在最大工况下,而是在第一只调节阀刚刚全开时。 3、单阀、顺序阀控制方式的应用 实际生产中,汽轮机在部分负荷下运行时喷嘴配汽方式比节流配汽方式的效率高,且较稳定。但在变工况下采用喷嘴配汽方式会使汽轮机高压部分的金属温度变化较大,调节级所对应的汽缸壁产生较大的热应力,从而降低了机组快速改变负荷的能力。为了发挥两种不同配汽方式的优点,我们采取了节流配汽——喷嘴配汽联合调节的方式,即第一只喷嘴和第二只喷嘴同时开启,使汽缸均匀受热。待第一、二只调节阀全开后再根据机组负荷需要依次开启其他调节阀。这样,就同时发挥了节流配汽和喷嘴配汽两者的优点。

顺序动作回路工作原理

顺序动作回路工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

顺序动作回路 顺序动作回路的作用是保证执行元件按照预定的先后次序完成各种动作。按照控制方式不同,可以分为行程控制和压力控制两种。 1.行程控制顺序动作回路 图7.32为行程阀控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。当推动手柄,使阀3左位工作,缸1的活塞右行,完成动作①;当缸1的活塞运动到终点后挡块压下行程阀4,缸2右行,完成动作②;手动换向阀C复位后,实现动作③;随着挡块的后移,阀4复位,缸2活塞退回,实现动作④。利用行程阀控制的优点是位置精度高、平稳可靠;缺点是行程和顺序不容易更改 图7. 33为行程开关控制的动作回路,在图示状态下,1, 2两油缸活塞均在左端。电磁阀1YA通电时使阀左位工作,缸I的活塞右行,完成动作①;当缸1的活塞运动到终点后触动行程开关2S,使电磁阀2YA通电换到左位,缸2的活塞右行,完成动作②;当缸2的活塞运动到终点后触动行程开关4S,电磁阀1YA断电复位,实现动作③;油缸1的活塞运动到终点后触动行程开关15,电磁阀2YA断电复位,缸2的活塞退回实现动作④。行程开关控制的顺序动作回路优点是位置精度高,调整方便,且可以更改顺序,所以应用较广,适合于工作循环经常要更改的场合。

2.压力控制顺序动作回路 利用液压系统中的工作压力变化控制各个执行元件的顺序动作是液压系统独具的控制特性。压力控制的优点是动作灵敏,安装布置比较方便;缺点是可靠性不高,位置精度低。 图7.34为顺序阀控制的动作回路。当换向阀左位接入回路且顺序阀4的调定压力大于液压缸活塞伸出最大工作压力时,顺序阀4关闭,压力油进入液压缸1的左腔,缸1的右腔经顺序阀3的单向阀回油,实现动作①;当缸1的伸出行程结束到达终点后,压力升高,压力油打开顺序阀4进人液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当换向阀右位接入回路且顺序阀3的调定压力大于液压缸活塞缩回最大供油压力时,顺序阀3关闭,压力油进入缸2的右腔,缸2的左腔经顺序阀2的单向阀回油,实现动作③;当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺序阀3进入缸1的右腔,缸I 的左腔回油,实现动作④。为了保证顺序动作的可靠性,顺序阀的压力调定值应比前一个动作的最大工作压力高出0. 8MPa-1.OMPa,以免系统中的压力波动使顺序阀出现误动作,所以这种回路只适应于油缸数目不多且阻力变化不大的场合。 图7. 35为压力继电器控制的顺序动作回路。其T作过程如下:当电磁铁 1YA通电时,换向阀5左位接入油路,压力油进入液压缸的I左腔,缸1的右腔回油,实现动作①;当液压缸1的伸出行程结束到达终点后,压力升高,继电器3发出电信号,使电磁铁3YA通电,压力油进入液压缸2的左腔,缸2的右腔回油,实现动作②;同样道理,当3YA断电、 4YA通电时,换向阀6右位接入油路,压力油进入液压缸2右腔,实现动作③;当缸2的缩回行程结束到达终

相关文档
最新文档