简单的制备纳米氧化锌的制备方法

简单的制备纳米氧化锌的制备方法
简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~.

一、试剂与仪器

主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂.

仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱.

二、试验方法

以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途

三、不同乙醇浓度对粒径地影响

并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途

氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途

五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广.

固相合成氧化锌

一、试剂与前驱物地准备

七水硫酸锌、无水草酸纳均为分析纯;

准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备

由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途

液相沉淀制备氧化锌

一、单组分锌氨溶液地制备

取于烧杯中,搅拌下缓慢加入氨水(以生成()计过量一倍),强烈搅拌下分次加入(),继续搅拌,离心沉淀,并用号砂心漏斗过滤.资料个人收集整理,勿做商业用途

二、纳米氧化锌前驱体地制备

将以上滤液转入圆底烧瓶中,接上回流冷凝管,置于集热式磁力搅拌器上加热除氨,当值降至时,()沉淀析出,用地氨水溶液洗涤沉淀至用离子检测不出离子为止,将沉淀抽滤,℃干燥.资料个人收集整理,勿做商业用途

三、纳米氧化锌地制备

将干燥处理后放入()沉淀送入℃马弗炉中煅烧,得到纯白色纳米氧化锌粉体.

直接沉淀法制备氧化锌

本实验是先将()·配制成适当浓度地水溶液,在一定温度和充分搅拌地条件下滴加适量沉淀剂·,待反应完全后经过滤沉淀,得到()经干燥,煅烧后制地纳米氧化锌.资料个人收集整理,勿做商业用途

、反应物配比

以地()·:·地配比,在其它条件下分别进行实验,结果显示,配比为时收率较高,股为最佳配比.资料个人收集整理,勿做商业用途

、反应温度:最佳反应温度为40℃

直接沉淀法制备纳米材料

直接沉淀法地原理是在包含种或多种离子地可溶性盐溶液中加入沉淀剂后,于一定条件下生成沉淀剂后从溶液中析出,将阴离子除去,沉淀经热分解值得纳米.资料个人收集整理,勿做商业用途

以氯化锌为原料,直接沉淀法制备纳米粒子;研究了制备过程中浓度、焙烧温度等条件对纳米晶体粒径地影响,并对其机理进行了分析.实验结果表明,较小地反应浓度可以获得较小地晶体粒径;在其他反应条件相同地情况下,制备地纳米粒子,其晶粒尺寸随着焙烧温度地增加,晶粒逐渐增大,与体相粒子相比,纳米粒子在紫外区光吸收能力显著增强,为地应用开辟了更为广阔地前景.资料个人收集整理,勿做商业用途

一、反应机理

以氯化锌为原料、氢氧化钠为沉淀剂制备纳米地反应方程式:()↓ 资料个人收集整理,勿做商业用途

热处理:() () ↑

二、工艺流程

三、原料及仪器

氯化锌、氢氧化钠、去离子水、无水乙醇 四、制备方法 ()前驱物地制备

取浓度分别为、 、 和 地锌盐地溶液,在磁力搅拌地条件下迅速加入等摩尔地氢氧化钠溶液( ),并强烈搅拌,生成物用离心机进行离心,并用去离子水和无水乙醇进行洗涤,放入℃地烘箱中进行干燥,得到前驱物.资料个人收集整理,勿做商业用途()纳米地制备

将制得地前驱物分别为℃、℃、℃和℃和条件下进行焙烧,得到了纳米粒子.资料个人收集整理,勿做商业用途尿素沉淀法制备氧化锌

现将分析纯地尿素用二次去离子水溶解在烧杯中得到一澄清溶液,再补加适量地二次去离子水,达到所需地体积,实验中,尿素与硝酸锌地摩尔浓度比为,然后在℃℃下加热溶液进行反应,由于水溶液在℃以上地反应在密闭容器中进行,溶液在加热地过程中会发生如下反应,首先尿素在提高地温度下开始缓慢水解:资料个人收集整理,勿做商业用途()→↑`·

水解产物与硝酸锌反应生成碱式碳酸锌沉淀, →()↓

沉淀经过滤、洗涤,在-℃下真空干燥箱中干燥左右,干燥后地沉淀置于马弗炉中,在℃下煅烧得到氧化锌产品.资料个人收集整理,勿做商业用途()→ ↑

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

氧化锡的制备工艺

SnO2具有更宽的带隙和更高的激子束缚能,SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得

到纳米尺度的无机材料超细颗粒。 3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电

氧化锌粉体的制备方法

1.纳米氧化锌的性质 1.1表面效应 表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能 1.2体积效应 当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。 2.纳米氧化锌的制备技术 制备纳米氧化锌的方法主要是物理法和化学法。其中,化学法是常用的方法。 2.1物理法 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立 式振动磨制备纳米粉体 ,得到了α-Al 2O 3 ,ZnO、MgSiO 3 等超微粉 ,最细粒度达 到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2.2化学法 化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR) 2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵 ,排放物对环境有污染 ,有待改善。

不同基底下生长氧化锌纳米线

不同基底下生长氧化锌纳米线研究 首先在FTO玻璃基底上用水热法制备氧化锌纳米线,发现在配备种子层的基础上0.7437克硝酸锌和0.35克六次甲基四胺在九十五摄氏度的温度下反应三个小时制得的氧化锌纳米线最好。然后以重金属金为基底用水热法制备氧化锌纳米线,以金为催化剂0.7437克硝酸锌和0.35克六次甲基四胺分别在70摄氏度,80摄氏度,90摄氏度反应七个小时,发现在七十摄氏度的条件下氧化锌纳米线排列最为整齐,结果最好。不同基底相对比发现以FTO为基底制备氧化锌纳米线,氧化锌纳米线排列紧密且长径比较大,但是倾斜严重,适合染料敏化太阳能电池等科技的研究。以重金属金为基底制备氧化锌纳米线,氧化锌纳米线排列宽松,但倾斜较小,长径比较小,个体较大。适合于研究单独一根氧化锌纳米线。 关键词:FTO基底,金基底,不同基底制备氧化锌纳米线的特点 最近人们对于碳纳米管的发现引起了制备其它一维纳米材料的极大兴趣。一维纳米结构氧化物具有独特的光学,电学性能。各种氧化物纳米线的制备和性能研究已成为当今的热点。氧化锌是重要的II – VI族直接带隙宽禁带半导体氧化物,具有较大的禁带宽度(3.2eV),激子结合能(60meV)高,能在室温及更高温度产生近紫外的短波激子发光。其中特别是具有较大长径比的氧化锌纳米线所表现出的奇特光学与电学性能,使其在低压和短波长光电子器件方面具有潜在的应用价值,例如透明导电材料,发光二极管,气敏传感器和荧光器件等。一维氧化锌纳米线是一种性能优异的新型功能材料,应用开发前景十分广阔。其制备方法多种多样,制备技术也日趋完善,它在传统材料、微电子、医药等领域的应用日益广泛和重要,对这些领域将会带来革命性的改变,也会影响到人们的日常生活。可以预见,随着氧化锌纳米线的制备方法、生长机理、结构表征等研究的不断深入,其应用研究将会有一个快速发展的阶段。 1.1纳米材料 1.1.1纳米材料简介 纳米材料是在纳米尺度空间内研究电子、原子和分子的内在运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。它的最终目标是人类能够按照自己的意愿直接操纵单个原子,制造具有特定功能的产品。 1.1.2纳米材料四大效应 体积效应 当纳米粒子尺寸比电子的德布罗意波更小时,内压、磁性、化学活性、热阻、光吸收、催化性及熔点等与普通粒子相比发生了很大的变化,周期性边界条件将被破坏。纳米粒子以下几个方面的应用均基于它的体积效应。例如,利用等离子共振频移随颗粒尺寸变化的性质,

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

关于氧化锡的制备方法

SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得 到纳米尺度的无机材料超细颗粒。

3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电 使气体电离产生高温等离子体,使原料熔化和蒸发,蒸气遇

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告 学院:资源加工与生物工程学院 班级:无机0801 姓名:魏军参 学号:0305080723 组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究 前言 SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。 以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。 在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。 水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。 本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。 文献综述 1.1 半导体纳米粉体 半导体定义 电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

纳米氧化锌的制备综述

纳米氧化锌的制备综述 应091-2

纳米氧化锌的制备综述 前言: 纳米氧化锌粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。 关键词: 纳米氧化锌制备生产生活应用 一:纳米氧化锌的制备主要有物理法和化学法,其中以化学法为主。 1 物理法: 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立式振动磨制备纳米粉体,得到了α-Al2O3,ZnO、MgSiO3等超微粉,最细粒度达到0.1μm此法虽然工艺简单,但却具有能耗大,产品纯度低,粒度分布不均匀,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm的粉体,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变,使材料的尺寸细化到纳米量级。这种独

特的方法最初是由Islamgaliev等人于1994年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来,物理法制备纳米氧化锌存在着耗能大,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2 化学法 化学法具有成本低,设备简单,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于20世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR)2为原料,在有机介质中对其进行水解、缩聚反应,使溶液经溶胶化得到凝胶,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低400—500℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵,排放物对环境有污染,有待改善。 水解反应: Zn(OR)2+ 2H2O→Zn(OH)2+2ROH 缩聚反应:Zn(OH)2→ZnO+ H2O 2.2醇盐水解法 醇盐水解法是利用金属醇盐在水中快速水解,形成氢氧化物沉淀,沉淀再经水洗、干燥、煅烧而得到纳米粉体的方法。该法突出的优点是反应条件温和,操作简单。缺点是反应中易形成不均匀成核,且原料成

氧化锡基纳米材料的制备及应用

氧化锡基纳米材料的制备及应用 应化081(10082072)张明辉 摘要:纳米氧化锡因其独特的性质,在诸多领域中都具有广阔的应用前景,如导电填料,气敏传感器、催化剂、变阻器、陶瓷、透明导电氧化物薄膜和隔热涂料等,是一种极具发展潜力的新型导电材料。本文按照固相法、液相法、气相法综述了目前常见的纳米二氧化锡合成方法,比较了各种方法的优缺点,并简要介绍了其表征。 关键词:纳米材料,氧化锡,制备方法 1 研究背景 纳米材料是指在三维空间中至少有一维处于纳米尺寸范围(1-100nm),或者以它们作为基本单元构成的材料。按纳米材料的几何特征,人们常将其分为零维纳米材料(如纳米团簇、纳米微粒、人造原子)、一维纳米材料(如纳米碳管、纳米纤维、纳米同轴电缆)、二维纳米材料(纳米薄膜)和纳米晶体等。纳米材料尺寸小,比表面积大,具有量子尺寸效应,表面效应和宏观量子隧道效应,因此在光、热、电、声、磁等物理性质以及其他宏观性质方面都发生了显著地变化。所以人们试图通过纳米材料的运用来改善材料的性能。 SnO2是一种重要的宽禁带n型半导体材料,带宽范围为3.6eV-4.0eV。SnO2是重要的电子材料、陶瓷材料和化工材料。在电工、电子材料工业中,SnO2及其掺杂物可用于导电材料、荧光灯、电极材料、敏感材料、热反射镜、光电子器件和薄膜电阻器等领域。在陶瓷工业,SnO2用作釉料及陶瓷的乳浊剂,由于其难溶于玻璃及釉料中,还可用做颜料的载体;在化学工业中,主要是作为催化剂和化工原料。SnO2是目前最常见的气敏半导体材料,它对许多可燃性气体都有相当高的灵敏度。利用SnO2制成的透明导电材料可应用在液晶显示、光探测器、太阳能电池、保护涂层等技术领域[1-3]。正是由于SnO2纳米材料的广泛的应用背景,所以,纳米SnO2的制备技术已成为人们研究的热点之一。 2 文献综述 2.1 固相法合成SnO2纳米材料 固体原材料经过高温或球磨,获得纳米材料的过程称为固相法。采用固相法制备纳米材料,常用的方法有高能机械球磨法等。

直接沉淀法制备纳米ZnO实验(论文)

沉淀法制备纳米ZnO与表征实验 ---以氯化锌为原料 系别:应用化学系 班级:1004班 :凯强 学号:2010080401 指导教师:唐玉朋

直接沉淀法制备纳米氧化锌实验 作者:凯强摘要:以氯化锌为原料, 直接沉淀法制备ZnO纳米粒子; 研究了制备过程中Zn离子浓度、焙烧温度等条件对ZnO纳米晶体粒径的影响, 并对其机理进行了分析。实验结果表明, 较小的反应浓度可以获得较小的晶体粒径; 在其它反应条件相同的情况下, 制备的纳米ZnO粒子, 其晶粒尺寸随着焙烧温度的增加, 晶粒逐渐增大, 为ZnO的应用开辟了更为广阔的前景。 关键词: 纳米氧化锌,直接沉淀法, 制备,表征。 引言 纳米氧化锌(粒子直径在1-100nm)是近年来已发现的一种高新技术材料,是一种新型的高功能精细无机材料,由于其具有量子尺寸效应,小尺寸效应、表面效应和宏观量子隧道效应[1],因而纳米ZnO产生了其体相材料所不具备的这些效应、展现了许多特殊的性质,由于其粒子的尺寸小,比表面积大,使其在化学,光学,生物和电学等方面表现出许多独特优异的物理和化学性能。与普通氧化锌相比,具有优良的光活性,电活性,烧结活性和催化活性,如无毒和非迁移性,荧光性,压电性,吸收和散射紫外线能力。 这一新的物质状态,赋予氧化锌这一古老产品在催化、滤光、光吸收、医药、磁介质、电等方面有着广阔的应用前景。如制造气体传感器,荧光体。紫外线屏蔽材料,变阻器,图像记录材料,压电材料,压敏电阻,磁性材料,高效催化剂和塑料薄膜等[2]。利用氧化锌的电阻变化,可制成气体报警器,吸湿离子传导温度计;利用纳米氧化锌的紫外屏蔽能力,可制成紫外线过滤器,化妆品;以氧

ZnO纳米线纳米片及其应用

ZnO 纳米结构及其应用 ZnO 是一种II-VI 族宽带隙的半导体材料,相对分子质量为81.37,密度为5.67g/cm 3。ZnO 为纤锌矿的六方晶体结构,晶格点阵常数为a=0.32nm ,c=0.52nm 。直接禁带宽度E g =3.37eV ,激子结合能E b =60meV 。 ZnO 纳米结构很多,有纳米线(棒),纳米片,纳米带,纳米环等。以一维纳米线(棒)最为常见。 ZnO 纳米线(棒)[1][1]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P . D. Yang, Nat. Mater., 4, 455–9 (2005). [2]Zhihong Jing;Jinhua Zhan. Adv. Mater. 2008, 20, 4547–4551 [3]J.G. Wen et al. / Chemical Physics Letters 372 (2003) 717–722 ZnO 纳米片 [2]ZnO 纳米带[3]

ZnO 纳米线的应用 ?光电探测器 ?发光二极管 ?场效应晶体管 ?染料敏化太阳能电池(DSSC)?纳米电动机

光电探测器 光电探测器是指能把光辐射能量转换为一种便于测量的物理量的器件。主要性能参数: a.响应度:单位入射光功率与所产生的平均光电流比,单位为A/W。 S =I ph /P opt b.光开关比(on/off ratio): on-off ratio=(I light -I dark )/I dark 其中,I light 和I dark 分别为光照射时产生的电流和无光照射时的电流(暗电流) c.恢复时间(recovery time):撤掉光源时,电流降到暗电流所用的时间。 几种ZnO纳米线基光电探测器及其性能参数: 1.ZnO纳米线担载Au颗粒型[1]: on/off ratio:5×106,recovery time:10 s(λ=350 nm, Power density=1.3 mW/cm2) 2.ZnO 纳米线两端与金属形成肖特基势垒型[2]: on/off ratio:4×105, sensitivity:2.6×103A/W,recovery time:0.28 s(365 nm UV light with intensity 7.6 mW/cm2) 3.graphene/ZnO NW/graphene结构型[3]: on/off ratio:8×102, recovery time:0.5 s(325 nm UV laser with a power density of 100μW/μm2 and at a bias of 2V) [1]Liu et al.,J. Phys. Chem. C 2010, 114, 19835–19839 [2]Cheng et al.,Appl. Phys. Lett. 99, 203105 (2011) [3]Fu et al.,Appl. Phys. Lett. 100, 223114 (2012)

相关文档
最新文档