纳米氧化锌制备方法研究进展_汤敏

纳米氧化锌制备方法研究进展_汤敏
纳米氧化锌制备方法研究进展_汤敏

第25卷第3期重庆工商大学学报(自然科学版)2008年6月Vo.l25 No.3J C hongq i ng Technol Bus i ness Un i v.(Nat Sci Ed)Jun.2008

文章编号:1672-058X(2008)03-0288-06

纳米氧化锌制备方法研究进展

汤 敏,傅 敏*,胡泽善

(重庆工商大学环境与生物工程学院重庆400067)

摘 要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、化学气相法的基本原理、影响因素、产物粒径大小,操

作过程等进行了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研究方向是生

产具有新性能、粒径更小、大小均一、形貌均可调控、生产成本低廉的纳米氧化锌。

关键词:纳米氧化锌;制备;特点

中图分类号:O63 文献标识码:A

纳米氧化锌是一种白色粉末,是一种新型的高功能精细无机材料,其宽禁带、直接带隙为3.37ev,且粒径在1~100nm之间的氧化锌(ZnO)纳米晶体。它具有极好的抗氧化和抗腐蚀能力,高的熔点,良好的机电耦合性及环保性。由于其尺寸的细微化,使得比表面积急剧增加,因而产生一系列奇异的物理效应,如量子限域效应、表面效应、宏观量子隧道效应等,使其在光学、电学、磁学、化学等方面具有许多奇异的特性,因而产生了其体相材料所不具备的特殊性质。使其在光电器件、化工、医药等众多方面有着广泛的应用,其前景十分广阔[1-4]。纳米氧化锌可以用物理方法[5],化学方法和化学物理方法制备。生长分散性好、粒径分布集中、形貌均匀、化学稳定性好的ZnO纳米晶体是目前研究的热点[6,7]。物理方法制得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高。而化学制备法的优点在于可精确控制各组分的含量,并可实现分子、原子水平上的均匀混合,通过工艺条件的控制可获得粒度分布均匀、形状可控的纳米微粒材料。因此,它是目前采用最多的一种方法。纳米氧化锌的制备方法可以分为:液相法,气相法和固相法。其中液相法是实验室和工业生产广泛采用的制备纳米粉体的方法。其基本原理是选择一种合适的锌盐,再选择一种合适的沉淀剂或用蒸发、升华、水解等,将金属沉淀或结晶出来,最后将沉淀或结晶物脱水或加热而得到纳米粉体。与其他方法相比,液相法具有设备简单、原料容易获得,能够准确地控制粒子的化学组成,且粒子大小及形状容易控制,在反应中还可以采用精制手段,因而得到的氧化锌纯度高、活性好、成本低等特点。这里主要介绍化学法。

1 化学沉淀法

化学沉淀法是在原料溶液中添加适量的沉淀剂,使溶液中的金属阳离子形成相应的沉淀(沉淀颗粒的大小和形状由反应条件来控制),然后再经过滤、洗涤、干燥、热分解等工艺获得纳米粉体,它是制备纳米粉体的主要方法。依其沉淀方法可分为:直接沉淀法、均匀沉淀法。

1.1 直接沉淀法

常选用的沉淀剂有:氨水、碳酸铵、碳酸氢铵、草酸铵、碳酸钠等,其与锌离子生成相应的沉淀物,再经过滤、洗涤、干燥、热分解制得纳米氧化锌。如以碳酸氢铵为沉淀剂,与硫酸锌的反应式为:

收稿日期:2007-10-28;修回日期:2007-11-30。

作者简介:汤敏(1980-),女,安徽固镇人,硕士研究生,从事水污染控制工程研究。

*通讯作者:傅敏(1963-),男,重庆北碚人,博士,教授,从事环境功能材料与 三废 处理研究。E-ma i:l fu m i n1022@126.co m。

硫酸锌与碳酸氢铵根据方程式(1)反应:

5ZnSO 4+10NH 4H C O 3=Zn 5(OH )6(C O 3)2(s)+5(NH 4)2SO 4+8CO 2+2H 2O

(1)碱式碳酸锌沉淀物煅烧分解成ZnO 根据方程式(2)反应:

Zn 5(OH )6(CO 3)2(s)=5ZnO (s)+2CO 2(g)+3H 2O (g)

(2)工艺流程如下:

锌盐 加沉淀剂溶解 反应 加水分离、洗涤 干燥 热处理 纳米氧化锌

N aofum iU eka w a 等人[8]将氨水逐滴加入Zn(NO 3) 6H 2O 溶液,离心5m in 得到Zn(OH )2的白色沉

淀物。然后把Zn(OH )2分散到乙烯乙二醇、丙二醇、丁二醇3种不同的溶液中密封在不同的温度下加热24h 后无沉淀产生,再向此溶液中加入氨水溶液,离心5m i n 得到沉淀物,然后烘干得到ZnO 产物,结果表明:在低温条件下,在中性二醇溶液中加热Zn(OH )2,得到平均粒径为20n m 的ZnO 。当加热温度为35 时,ZnO 产物的结构主要以球形为主。使用二醇溶液加热Zn (OH )2可控制ZnO 产物的多空球形结构。北京师范大学张国青等人[9]在磁力搅拌器剧烈搅拌下,将N a OH 溶液逐滴加入ZnSO 4溶液,得到Zn (OH )2的色沉淀物。然后加入NH 4HCO 3,剧烈搅拌后,得到Zn 5(CO 3)2(OH )6半透明白絮状胶体溶液,静置后过滤、用红外灯干燥2h 后得到Zn 5(CO 3)2(OH )6前驱体。再在马福炉中煅烧、自然冷却后,用去离子水和无水乙醇洗涤、过滤,最后在红外灯下烘干得ZnO 纳米晶体。结果表明:在600 以下,可以生长出形貌均匀、分散性好、粒径分布集中的ZnO 纳米晶体,而且纯度高、化学性质稳定。

1.2 均匀沉淀法

均匀沉淀法常用沉淀剂有:尿素、六亚甲基四胺。均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。从理论上讲,均匀沉淀法优于直接沉淀法制备纳米氧化锌。以尿素为

例,其制备反应如下[10]:

(1)尿素的水解:C O (NH 2)2+3H 2O=2NH 3H 2O +CO 2。

(2)OH -的生成:NH 3 H 2O =NH +4+OH -。

(3)CO 2-3的生成:C O (NH 2)2=NH +4+CO 2-3。

(4)形成中间产物碱式碳酸锌:3Zn 2++CO 2-3+4OH -

+H 2O =ZnCO 3 2Zn(OH )2H 2O 。(5)灼烧得产物纳米氧化锌:ZnCO 3 2Zn(OH )2H 2O=3ZnO +3H 2O+CO 2。

其工艺流程如下:

硝酸锌 溶解 加压反应 分离、洗涤 煅烧 干燥 纳米氧化锌

中国科学院陈建刚等[11]用硝酸锌或醋酸锌分别与六亚甲基四胺,以等浓度0.005mo l/L 配制成两种反应溶液,通过化学溶液法在玻璃衬底上生长出长为5~8 m,直径为300~700nm 的ZnO 六角形亚微米棒。洪若瑜等[12]采用连续微波国徽,以硫酸锌和尿素为原料,制备了粒径为8~30nm 的纳米ZnO 。2 溶胶-凝胶法(SOL -GEL)

溶胶-凝胶法是近年来才开发的一种制备超微粉体的新技术。应用该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。它是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应的处理而得到所需的纳米粉体,它是制备纳米材料湿化学方法中较为重要的一种。H ohen

[13]及

E ric A.M [14]利用此法成功的制备了纳米氧化锌粉体。其化学反应方程式如下:

Zn(C H 3COO)2+H 2O Zn(OH )2+C H 3C OOH

Zn(OH )2 ZnO(S)+H 2O

T i a nbao Du 等人[15]采用溶胶-凝胶浸渍涂布技术,制备ZnO 半导体薄膜。利用耐热玻璃为模板,以Zn(C H 3COO)2溶于乙醇中,用丙酮将耐热玻璃上的感光层洗掉后,在不断搅拌中把模板加入Zn(C H 3COO)2/乙醇溶液中。一定的速度取出后,烘干,退火,得到的ZnO 半导体薄膜粒经为20~30nm 左右,具有较好的感光性能。周新木等人[16]利用PEG600为模板,以ZnSO 4 7H 2O 溶于纯水中,在不断搅拌中加入PEG600,搅拌。再缓慢加入氢氧化钠溶液调节ZnSO 4溶液至预定的pH 值并稳定,得到溶胶。289

第3期 汤 敏,等:纳米氧化锌制备方法研究进展

置于有聚四氟内衬的不锈钢反应釜中,烘干、洗涤得样品ZnO,其厚度为40n m,直径为20 m 。郭书霞等人[17]采用Zn(Ac)2 2H 2O,乙醇胺和乙二醇一甲醚为原料,制备出的ZnO 粉体为纤锌矿结构。粉体的紫

外荧光为光生电子、空穴直接复合所产生,可见荧光为光生电子、空穴通过复合中心复合而产生。PENG,Feng 等人[18]以醋酸锌、乙醇、C H 3OC H 2C H 2OH 、HOC H 2C H 2NH 2合成纳米氧化锌。此法可在低温条件下制备纯度高,分散性好,粉体分布均匀,化学活性好的纳米氧化锌,副反应少,工艺操作简单,易于控制且不需贵重设备,有工业化生产潜力。但原料成本高,在高温下热处理时有团聚。

3 微乳液法

近年来,用W /O 型乳液法制备超细粉体得以流行。它是由水、油(有机溶剂)、表面活性剂及其助剂组成的透明或半透明的各向同性的热力学稳定体系,其中水被表面活性剂及其助剂单层包裹形成 微水池 ,被用作反应介质,称其为 微型反应器 ,通过控制微水池的尺寸来控制粉体的大小制备纳米粉体。下面简要介绍用微乳液法制备纳米氧化锌(图1)。

颜肖慈等[19],以醋酸锌晶体、氢氧化钠、十二烷基苯磺酸钠、无水乙醇、甲苯、3次蒸馏水为原料,制得球形纳米氧化锌粒子,其粒度分布均匀,平均粒径约为10nm 左右,但此方法制备的纳米氧化锌团聚现象

较为严重。冯洁等[20]以硝酸锌、碳酸钠为原料,阴离子表面活性剂为乳化剂,

有机溶剂为分散剂采用乳化

图1 纳米氧化锌制备

法制备前驱物,热分解前驱物得到平均粒径为13.5nm 的

纳米ZnO 。

该技术的关键是制备微观尺寸均匀、可控、稳定的微

乳液,此法有装置简单、操作容易、粒子均匀可控等诸多优

点,已引起众多研究人士的关注;但此法成本费用较高,仍

有团聚现象,进入工业化生产目前仍有一定的难度。4 水热合成法

水热合成法是在密闭容器中,以水为溶剂,在一定的温度和水的自生压强下,原始混合物进行反应的一种合成法。由于反应在高温高压及水热条件下,水接近临界状态,反应物质在水中的物性与化学反应性能发生了很大变化,成为一种超细粉体的湿化学制备方法。

胡泽善等人[21],在异丙醇中用氢氧化钠分别与醋酸锌及溴化锌反应制备纳米氧化锌粒子。分别用高分辨率电子显微镜及原位紫外吸收光谱测定了粒子的大小及分布。实验结果表明,粒子的增大服从LS W (L ifshitz-S l y ozov -W agner)模型,即粒子体积随老化时间线性增大,粒子的分布不符合LS W 模型。A li E lkhidir Su li m an 等人[22],以ZnC l 2、

N a OH 为反应物在水溶液中搅拌8h ,生成Zn(OH )2沉淀。用蒸馏水洗涤后将Zn(OH )2溶于水中,将此溶液与聚乙烯基吡咯烷酮溶液混合、加压,持续8h 加热至160 ,洗涤、干燥得平均粒径为30nm 的ZnO 粉体。Tetsuo K a w ano 等人[23],以ZnSO 4、N a OH 为反应物在不同的反应程序中成功的制备出不同形态的纤维锌矿纳米ZnO 。当把N a OH 溶液逐滴加入到ZnSO 4溶液时得到的是椭圆体的纳米ZnO 。把ZnSO 4溶液逐滴加入到N a OH 溶液时得到的是ZnO 纳米棒,可通过加入氧化锌粒子控制纳米棒的尺寸,同时可稀释反应物的浓度得到微米级ZnO 棒。实验结果表明,纳米ZnO 的形态是由晶体成核与晶体生长间的平衡决定的。

该法可直接制得结晶完好、原始粒度小、分布均匀、团聚少的纳米氧化锌粉体。共制备工艺相对简单,无需煅烧处理;但高温高压下的合成设备较贵,投资大。

290重庆工商大学学报(自然科学版) 第25卷

5 化学气相法

气相法是以惰性气体为载体,将锌粉或锌盐带入有氧气的超高温环境气体中,在气相中发生化学反应形成基本粒子,并经成核、生长两个阶段,同时利用高温区与周围环境形成的巨大的温度梯度,通过急冷作用得到氧化锌纳米颗粒。

D ierste i n A [24]

等,以氧气为气源、锌片为原料,运用电化学气相沉积法制得纳米氧化锌粉末,其粒径大

约为20nm ,比表面积为105.8m 2/g 。

化学气相法制备的纳米氧化锌具有粒径小、粒度分布窄、分散性好、纯度高、不易团聚等特点,但操作要求较高,能量消耗大,粉体回收率低,成本高,难以工业化生产。6 激光诱导化学法

激光诱导化学法是利用反应分子气体对特定波长激光束的吸收而热解或化学反应,经成核生长形成纳米粉体;或运用高能激光束直接照射金属片表面加热气化、蒸发、氧化获得氧化物纳米粉体。该法制备的纳米具有颗粒小、粒度分布窄、分散性、纯度高、不团聚等特点,但耗能大、粉体回收率低、花费成本高,难以工业化。中科院固体物理研究所朱勇等[25]利用激光束,在不同能量密度下,直接加热锌靶制备出纳米氧化锌粉体,且产物形状结构不同,可为链状、弥散状,也可为晶须结构,粒径在10~40nm 。

7 固相反应法

固相法又可以分为两种:一种是利用各种超微粉碎技术将普通氧化锌直接研磨成超细氧化锌。目前开发的主要有高能球磨和气流粉碎技术。

马宏文等[26],以Zn(NO 3)2 6H 2O 和Na 2CO 3为原料、十二烷基苯磺酸钠为分散剂,采用低温固相法在350 下制得纳米ZnO 。通过XRD 物相分析,发现ZnO 纳米粒子样品的物相为六方晶第纤锌矿结构。

张永康等[37]以ZnSO 4 2H 2O 和无水N a 2C O 3为原料,在室温下通过研磨方式,运用固相反应法制备碳酸

锌,然后在200 热分解,得到粒径为6~12nm 的棒球形的氧化锌。

8 超重力法

超重力旋转填充床(RPB )是一种新型的化学反应设备,其中产生的离心加速度相当于重力加速度的上百倍,使相间传质和微观混合得到了极大地强化,为均匀快速成核创造了理想的环境[28]。超重力已成为纳米粉体材料制备的平台性技术,其制备的纳米粉体材料具有粒径小且颁布均匀等特点。

蔡意文等[29],以六水合硝酸锌为原料,将一定浓度的六水合硝酸锌水溶液加入超重力反应釜中,升温,达到一定温度的硝酸锌溶液自搅拌釜中经管道泵输送,经过液体流量计和液体分布器进入旋转床内,并经填料层形成强烈的微滴化或微细化丝膜;氨气经气体流量计从气体入口斡旋旋转床内,气液二相逆流接触,反应生成氢氧化锌,在洗涤过程中加入SE W 8001进行表面修饰,过滤,在一定温度下干燥与煅烧,制得纳米氧化锌。

9 超声辐射沉淀法

按物料配比(C 2O 2-4与Zn 2+物质的量的比为1.1 1),将一定体积的0.5m o l/L Zn 2+

溶液置于薄壁烧杯中,在频率为26~30k H z 的超声辐射下,以1.0m o l/L 的Za 2C 2O 4溶液为沉淀剂,采用正加法加料,等反应完全后继续超声3~5m i n ,再依次经水洗、醇洗、过滤及真空干燥得ZnO 前驱物粉体,选择适当温度,锻291第3期 汤 敏,等:纳米氧化锌制备方法研究进展

烧可得26nm左右的ZnO粉体[30]。

10 超临界流体干燥法

张敬畅等人[31],报道的一种方法是:配制Zn盐水溶液,室温搅拌加入适量分散剂,逐渐滴加氨水,直到预定的p H值,陈化得ZnO水凝胶。离心分离、用无水乙醇洗涤、交换,得Zn(OH)2醇凝胶。将醇凝胶转移至高压反应釜内,加入一定量筛选好的表面活性剂,再加一定量乙醇,维持超临界状态温度0.5h,缓慢释放流体后,用N2吹扫0.5h,冷却至室温得到纳米ZnO粉体。在最佳条件Zn2+、氨水浓度为0.5m o l/ L、p H=9、4 下陈化20h,超临界干燥温度为260 ,压力为7.5M Pa,所得ZnO粉体粒径分布在10~ 15nm,产率90%。

11 电化学法

电化学合成法是近年来被广泛应用的一种合成方法,它具有环保,反应条件温和,过程可控并易于自动化管理等优点。孟阿兰等人[32],采用一步电化学氧化法制备出不同直径的ZnO纳米线。该方法以HF-C2H5OH-H2O混合溶液为电解液,铅析为阴极,Zn片为阳极,在较低温度下直接制备出ZnO纳米线,并且可调整工艺参数,获得不同直径的ZnO纳米线。方法操作简单,合成时间短,能量消耗低,工作环境好,产量较高,可望成为合成金属氧化物纳米线的一种有效方法。得到的纳米线是具有六方纤锌矿结构的ZnO晶体。通过调整工艺参数可获得不同直径和形态的ZnO纳米线。主要特点是:合成温度低,操作简单,合成时间短,能量消耗低,在不同工艺条件下,可获得不同尺寸和形貌的纳米线,且产量较高。

12 结 语

在纳米氧化锌的制备中,因其制备方法不同所产生的纳米氧化锌的粒经大小,结构也有所不同。因此发展新的纳米ZnO制备技术显得非常重要。有待于研究的内容主要是:现有技术融合与其他高新技术的介入;适合工业化的化学制备方法与工艺技术;控制工程,包括颗粒尺寸、形状、表面及微结构的控制,表面改性与修饰技术等;生产具有新性能、粒径更小、大小均一、形貌均可调控、生产成本低廉的纳米氧化锌,甚至是有新功能的纳米结构材料。

参考文献:

[1]KAYANUM A Y.Q uantunr size effec ts of i nteracti ng electrons and ho l es in sem i conductor m icrocystals w i th spherica l shape

[J].Phy s R ev B,1988,38(15):9797-9805

[2]W ANG Y,HERRON N.N anome ter sized se m i conducto r clusters:m ater i a l synthesis,quantu m size effects,and photophysical

properties[J].J Phys Che m,1991,95(2):525-532

[3]S H I M M,GUYOT P.O rganic-capped ZnO nanocrysta ls:synt hesis and n-type character[J].J Am Chem Soc,2001,123:

11651-11654

[4]M ONT ICONE S,TU FE U R,KANA EV A.V.Co m plex nat u re of the v i s i ble fl uorescence o f co ll o i da l Zn O nanoparticle[J].J

Phys che m B,1998,102(16):2854-2862

[5]JI NG L,XU Z,S HANG J,e t a.l T he P reparati on and character izati on o f Zn O ultra fi ne pa rtic l es[J].M ater i a ls Sc ience and Eng i

neering,2002,332:356-361

[6]GUO L,YANG S H.H i gh l y m onod i sperse po l ym er-capped ZnO nanopa rti c l es:prepara tion and optical prope rties[J]Appl

Phys L ett,2000,76(20):2901-2903

[7]张伟,王风珠.利用立式振动磨制备超细粉的研究[J].功能材料,1997,28(5):5l1-513

[8]NAOFUM I U,S HUN S UK E I,TAKAS H I K.F or m ation o f po rous sphe rca l agg regated structure of ZnO nanoparticle by l ow-

te m pera t ure hea ting o f Zn(OH)

2i n dio l so l uti on[J].M a teria l s L ette rs,2007,61:1729-1734

292重庆工商大学学报(自然科学版) 第25卷

[9]张国青,孙萍,熊波,等.氧化锌纳米晶体的生长及生长机理分析[J].材料科学与工程学报[J],2006,24(2):286-288

[10]冯勋,张旭东,张俊,等.超氧化锌的制备及气敏性能研究[J].河南化工,2003(4):19-21

[11]陈建刚,郭常新,张琳丽,等.一步溶液法制备Zn O 亚微米晶体棒及其发光性能[J].发光学报,2006,27(1):59-64

[12]洪若瑜,李建华,倪静.连续微波法制备纳米氧化锌及其表征[J].精细石油化工,2005(6):15-19

[13]HOH E N B G,TOM ALL G.So l -G e l P ro cesing o f V aristor Pow der .[J].M a ter kes .1992,7(3):546-548

[14]ER IC A.Synthes i s and G row th o f Zwo N anoparti cces[J].J Phy chem,1998,102(29):5566-5572

[15]T I AN B AO D,HONG S ,OLU SEGUN J .So l-ge l der i ved Zn O /PV P nanocom posite th i n fil m f o r superox i de radical sensor

[J].M ater i a ls Sc ience and Eng i neer i ng ,2007,27:414-420

[16]周新木,李炳伟,张丽,等.模板法制备氧化锌片状晶体[J],化工新型材料.2007,35(1):70-72

[17]郭书霞,张兴堂,赵慧玲,等.纳米氧化锌的制备与发光性能的研究[J].无机化学学报,2006,22(4):724-728

[18]PENG F ,CHEN,S H,ZHSNG L.P reparati on o fV isi b le-li ght R esponse N ano-sized Zn O F il m and Its Photoca talytic D egra

dation to M ethy l O range [J].物理化学学报,2005,21(9):944-948

[19]颜肖慈,余林颇,罗春霞,等.纳米氧化锌微乳液法的研制和表征[J].十堰职业技术学院学报,2002,15(2):67-68

[20]冯洁.乳化-前驱物热分解法制备纳米氧化锌[J].光谱实验室,2004,21(3):442-444

[21]胡泽善,傅敏,魏小平,等.纳米氧化锌粒子分散性对其吸收光谱的影响[J].物理化学学报,2007,23(1):59-63

[22]AL I E S ,Y I W EN T,L I ANG X.P reparati on of ZnO nanoparticles and nanosheets and their appli cation to dye-sensitized so

l ar ce lls[J].So lar Energy M a terial ﹠So l a r Cells ,2007(2):1-4

[23]TET S UO K,H IROAK I I .A si m ple prepa ration technique for shape-con tro ll ed zi nc ox ide nanopartic l es :F or m ation o f narra w

size-d i str i buted nano rods usi ng seeds i n aqueous so l u ti ons[J].Co llo i ds and Surfaces ,2007(3):1-6

[24]D IERSTE I N A,NATTER H,M EYER F .E l ec troche m i ca l depositi on under ox i d izi ng cond iti ons:a new syn t hesis fo r nanocrys

ta lli ne m etal ox i des[J].Scr i pta m ater ,2001,44(8/9):2209-2212

[25]朱勇,沈辉,刘佩田,等.无机材料学报[J].1993,8(1):111-113

[26]马宏文,矫立男,杨雪,等.固相法合成纳米Zn O 及其光集约化性能研究[J].化学与生物工程,2006,23(4):17-21

[27]张永康,刘建本,易保华,等.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):343-344

[28]王玉红,贾志谦.改性纳米CaCO 3悬浮液流行为及填充聚酯氨基清漆性能研究[J].材料科学与工程,1998(2):65-67

[29]蔡意文,毋伟,陈建峰.超重力法纳米肤色氧化锌的制备与表征[J].北京化工大学学报,2004,31(4):28-31

[30]王文亮,李东升,候向阳,等.超声辐射沉淀法纳米Zn O 的制备与表征[J].化学研究与应用,2001,13(2):157-159

[31]张敬畅,高炜,曹维良,等.超临界流体干燥法制备Zn O 的研究[J].材料研究学报,2002,10(3):251-255

[32]孟阿兰,蔺玉胜,王光信.ZnO 纳米线的电化学制备研究[J].无机化学学报,2005,21(4):583-587

Research progress i n nanoparticle ZnO preparati on m ethods

TANG M i n ,FU M i n ,HU Ze -shan

(Co llege of Env ironm ental and B i o log ical Eng i n eering ,Chongq i n g T echnology and

Busi n essUn iversity ,Chongqing 400067,Ch i n a)

Abst ract :This paper introduces applicati o n prospect and research stat u s quo of nanoparticle ZnO at ho m e and abr oad,and m akes deta iled analysis and d iscussi o n on basic pri n ciple such as che m ical precipitating m eth od ,so l-gelm ethod ,m icro-e m u lsion m et h od ,hydro-ther m a l synthesis and che m ical gas chro m atography ,i n flu entia l factors ,the size of rad i u s of the products ,operation pr ocess and so on .The author po ints ou t the advanta ges and disadvantages o f each techno logy ,and g i v es future research d irecti o n :m ak i n g nanoparticle ZnO w ith ne w property ,s m aller rad i u s ,even size ,adjustable shape and lo w cos.t

K eyw ords :nanoparticle ZnO;preparati o n ;characteristics

责任编辑:田 静293

第3期 汤 敏,等:纳米氧化锌制备方法研究进展

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

氧化锌粉体的制备方法

1.纳米氧化锌的性质 1.1表面效应 表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能 1.2体积效应 当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。 2.纳米氧化锌的制备技术 制备纳米氧化锌的方法主要是物理法和化学法。其中,化学法是常用的方法。 2.1物理法 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立 式振动磨制备纳米粉体 ,得到了α-Al 2O 3 ,ZnO、MgSiO 3 等超微粉 ,最细粒度达 到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2.2化学法 化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR) 2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵 ,排放物对环境有污染 ,有待改善。

不同基底下生长氧化锌纳米线

不同基底下生长氧化锌纳米线研究 首先在FTO玻璃基底上用水热法制备氧化锌纳米线,发现在配备种子层的基础上0.7437克硝酸锌和0.35克六次甲基四胺在九十五摄氏度的温度下反应三个小时制得的氧化锌纳米线最好。然后以重金属金为基底用水热法制备氧化锌纳米线,以金为催化剂0.7437克硝酸锌和0.35克六次甲基四胺分别在70摄氏度,80摄氏度,90摄氏度反应七个小时,发现在七十摄氏度的条件下氧化锌纳米线排列最为整齐,结果最好。不同基底相对比发现以FTO为基底制备氧化锌纳米线,氧化锌纳米线排列紧密且长径比较大,但是倾斜严重,适合染料敏化太阳能电池等科技的研究。以重金属金为基底制备氧化锌纳米线,氧化锌纳米线排列宽松,但倾斜较小,长径比较小,个体较大。适合于研究单独一根氧化锌纳米线。 关键词:FTO基底,金基底,不同基底制备氧化锌纳米线的特点 最近人们对于碳纳米管的发现引起了制备其它一维纳米材料的极大兴趣。一维纳米结构氧化物具有独特的光学,电学性能。各种氧化物纳米线的制备和性能研究已成为当今的热点。氧化锌是重要的II – VI族直接带隙宽禁带半导体氧化物,具有较大的禁带宽度(3.2eV),激子结合能(60meV)高,能在室温及更高温度产生近紫外的短波激子发光。其中特别是具有较大长径比的氧化锌纳米线所表现出的奇特光学与电学性能,使其在低压和短波长光电子器件方面具有潜在的应用价值,例如透明导电材料,发光二极管,气敏传感器和荧光器件等。一维氧化锌纳米线是一种性能优异的新型功能材料,应用开发前景十分广阔。其制备方法多种多样,制备技术也日趋完善,它在传统材料、微电子、医药等领域的应用日益广泛和重要,对这些领域将会带来革命性的改变,也会影响到人们的日常生活。可以预见,随着氧化锌纳米线的制备方法、生长机理、结构表征等研究的不断深入,其应用研究将会有一个快速发展的阶段。 1.1纳米材料 1.1.1纳米材料简介 纳米材料是在纳米尺度空间内研究电子、原子和分子的内在运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。它的最终目标是人类能够按照自己的意愿直接操纵单个原子,制造具有特定功能的产品。 1.1.2纳米材料四大效应 体积效应 当纳米粒子尺寸比电子的德布罗意波更小时,内压、磁性、化学活性、热阻、光吸收、催化性及熔点等与普通粒子相比发生了很大的变化,周期性边界条件将被破坏。纳米粒子以下几个方面的应用均基于它的体积效应。例如,利用等离子共振频移随颗粒尺寸变化的性质,

共沉淀法制备BaO-ZrO2(BSZ)纳米粉体研究

0引言 单斜和四方相的转变是马氏体相变的体现[1],对 ZrO 2陶瓷的韧性有很大的影响,这就是相变增韧.很 多氧化物如CaO,MgO,CuO,Al 2O 3都被研究人员加入ZrO 2中[2-3],希望能够达到增韧的作用[4-9].对ZrO 2而言,在常温下稳定的四方相越多,陶瓷韧性越好[5].ZrO 2的相转变过程如下: m -ZrO 2ρ=5.8g ·cm -3 ΔV=-5%(1000~1200℃)ΔV =8%t-ZrO 2ρ=6.1g ·cm -3-2300℃ c-ZrO 2 ρ=6.27g ·cm -3 -2700℃ melt 目前关于BaO-ZrO 2(BSZ )系统相变增韧的研究不够深入.Maschio 等人研究得出,当BaO 摩尔含量为4%~8%时,主要以单斜和立方相形式存在;当摩尔含量为10%~12%时,以立方相形式存在;摩尔含量达到16%以上时均为四方相[10].Oyama 等对 文章编号:1674-9669(2013)01-0008-06 共沉淀法制备BaO-ZrO 2(BSZ )纳米粉体研究杨 斌,刘姗姗 (江西理工大学材料科学与工程学院,江西赣州341000) 摘 要:通过采用氯氧化锆(ZrOCl 2)、BaCl 2水溶液与NaOH 共沉淀反应,生成钡稳定氧化锆的前驱 体,该前驱体经过预烧结后得到BaO-ZrO 2粉体.研究了搅拌速率、pH 值、反应温度、预烧结温度对粉体结晶度的影响.通过分析BSZ 粉体的X 射线衍射(XRD )和扫描电镜(SEM )结果得出,搅拌速率为 280rad/min 、pH 值为10、反应温度为80℃、预烧结温度为800℃是合成BSZ 粉体的最佳工艺条件. 关键词:共沉淀;BSZ ;纳米粉体;相结构;结晶度中图分类号:TF123.2;TG146 文献标志码:A Preparation process of BaO-ZrO 2(BSZ )nano powder via co-precipitation method YANG Bin,LIU Shan-shan (School of Materials Science and Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China ) Abstract :NaOH was added as precipitating agent to the solutions of zirconyl chloride hydrate and barium chloride.Zirconia-baryta materials were obtained by sintering BSZ precursors produced by co-precipitation method.X-ray diffraction and scanning electron microscopy were used to study the crystallization behavior and particle morphology of BSZ powder.The Experiment results show that the optimal technological conditions of synthesizing BSZ powders were,stirring rate is 280rad/min,pH is 10,reaction temperature at 80℃,and pre-sintering temperature at 800℃. Key words:co-precipitation;BSZ;nano powder;phase structure;crystallization 收稿日期:2012-11-19 基金项目:国家高技术研究发展计划资助项目(863计划)(2010AA03A408)作者简介:杨 斌(1965- ),男,博士,教授,主要从事铜合金材料研究与开发、有色金属材料加工新技术新工艺研究、稀土新材料制备的研究, E-mail :yangbin65@https://www.360docs.net/doc/c36049937.html,. 有色金属科学与工程 第4卷第1期2013年2月 Vol.4,No.1Feb.2013 Nonferrous Metals Science and Engineering

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.360docs.net/doc/c36049937.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

纳米氧化锌的研究进展

学号:201140600113 纳米氧化锌的制备方法综述 姓名:范丽娜 学号: 201140600113 年级: 2011级 院系:应用化学系 专业:化学类

纳米氧化锌的制备方法综述 姓名:范丽娜学号: 201140600113 内容摘要:介绍了纳米氧化锌的应用前景及国内外的研究现状,对制 备纳米氧化锌的化学沉淀法、溶胶凝胶法、微乳液法、水热合成法、 化学气相法的基本原理、影响因素、产物粒径大小,操作过程等进行 了详细的分析讨论;提出了每种创造工艺的优缺点,指出其未来的研 究方向是生产具有新性能、粒径更小、大小均一、形貌均可调控、生 产成本低廉的纳米氧化锌。同时也有纳米氧化锌应用前景的研究。 Describes the application of zinc oxide prospects and research status, on the preparation of ZnO chemical precipitation, sol-gel method, microemulsion, hydrothermal synthesis method, chemical vapor of the basic principles, factors, product particle size, operating procedure, carried out a detailed analysis and discussion; presents the advantages and disadvantages of each creation process, pointing out its future research direction is the production of new properties, particle size is smaller, uniform size, morphology can be regulated, production cost of zinc oxide. There is also promising research ZnO. 关键字:纳米氧化锌制备方法影响研究展望 正文:纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生 变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效 应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

纳米氧化锌的研究进展

收稿日期:2002209212;修回日期:2002211205 3通讯联系人 文章编号:100421656(2003)0520601206 纳米氧化锌的研究进展 辛显双,周百斌3,肖芝燕,徐学勤,吕树臣 (哈尔滨师范大学理化学院,黑龙江哈尔滨 150080) 摘要:本文对纳米氧化锌的制备技术进行了全面介绍并客观地指出其优缺点,概括了常用的表征方法,着重对纳米氧化锌的应用与研究前沿作了系统的阐述,并展望了纳米氧化锌的应用前景。关键词:纳米氧化锌;制备;表征;应用;展望中图分类号:O6141241 文献标识码:A 纳米ZnO 是当前应用前景较为广泛的高功 能无机材料。由于其颗粒尺寸的细微化,比表面积急剧增加,表面分子排布、电子结构和晶体结构都发生变化,具有表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。从而使纳米ZnO 具有一系列优异的物理、化学、表面和界面性质,在磁、光、电、催化等方面具有一般ZnO 所无法比拟的特殊性能和用途,由它构成的二维薄膜和三维固体也不同于常规薄膜和块状固体材料[1~5]。本文对ZnO 的制备方法、结构的表征及用途进行了综述,并对纳米氧化锌的应用前景进行了展望。 1 纳米ZnO 的制备方法 纳米ZnO 的制备方法有物理方法和化学方法。物理方法是将常规的粉体经机械粉碎、球磨而制得。其特点是方法简单,但产品纯度较低,颗粒分布不均匀。化学方法是从原子或分子成核,生成纳米级的超微细粒子,这里主要介绍制备纳米ZnO 的化学方法。111 固相反应法 以Na 2C O 3和ZnS O 4?7H 2O 为原材料,分别研磨,再混合研磨,进行室温固相反应[6],首先合成前驱体ZnC O 3,然后于200℃热分解,用去离子水和无水乙醇洗涤,过滤,干燥后制得纯净的ZnO 产品,粒径介于610~1217nm 。石晓波[7]等以草酸和醋酸锌为原料,用室温固相反应首先制备前驱物二水合草酸锌,然后在微波场辐射分解得到 纳米氧化锌,平均粒径约为8nm 。室温固相反应法成本低,实验设备简单,工艺流程短,操作方便。且粒度分布均匀,无团聚现象,工业化生产前景乐观。112 气相反应法 激光技术气相沉积法 这种技术的主要工艺[8]是利用激光蒸发和在扩散云室中的可控凝聚相结合,从而控制粒子的尺寸分布和化学组成。E L -shall M Samy [9]等采用激光蒸发、凝聚技术,在极短时间内使金属产生高密度蒸气,形成定向高速金属蒸气流。然后用金属蒸气与氧气反应而制备出粒径为10~20nm 的ZnO 。此种方法具有能量转换效率高、可精确控制的优点。但成本较高,产率低,难以实现工业化生产。 喷雾热解法 喷雾热解法是将锌盐的水溶液经雾化为气溶胶液滴,再经蒸发、干燥、热解、烧结等过程得到产物粒子。Y un Chankang [10]等用此技术合成了纯度较高的纳米ZnO 。该法过程简单,粒度和组成均匀,但粒径较大。113 液相反应法 直接沉淀法 直接沉淀法是以可溶性锌盐与沉淀剂(如NH 3?H 2O ,(NH 4)2C O 3,NaOH 等)直接沉淀后,经过滤、洗涤、干燥、焙烧得纳米ZnO 。靳建华[11]等用直接沉淀法在无水介质所得的纳米ZnO 粒径为6~17nm 。直接沉淀法操作简单易行,对设备、技术要求不高,且成本低,产品纯度高。但由于此反应是沉淀剂与反应物直接接触而沉淀,因此会造成局部浓度不均匀、分散性较差及 第15卷第5期2003年10月 化学研究与应用Chemical Research and Application V ol.15,N o.5 Oct.,2003

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

纳米氧化锆的制备及其干燥技术_温立哲

收稿日期:2001-05-17 基金项目:广东省自然科学基金(000028);广东省教育厅自然科学研究项目资助(2000024) 作者简介:温立哲(1975-),男,2000级硕士研究生,主要研究方向为纳米氧化锆的制备. 纳米氧化锆的制备及其干燥技术 温立哲1,余忠民2,黄慧民1,周立清1,邓淑华 1 (1 广东工业大学轻工化工学院,广东广州510090 2 广东省质量监督局,广东广州510240) 摘要:纳米氧化锆是一种新型的高科技材料,由于其具有很多特殊的性质,因而有着广泛而重要的用 途 本文根据国内外研究制备纳米氧化锆的最新进展和其发展趋势,综述了纳米氧化锆的各种制备 的方法和干燥技术,并提出目前制备中存在的问题 关键词:纳米材料;氧化锆;干燥 中图分类号:TQ134.12 文献标识码:A 文章编号:1007-7162(2002)01-0063-07引 言 纳米级材料是指晶粒尺寸在0 1nm 到100nm 之间处于原子簇和宏观物体交接区域的超细微粒,由于纳米结构单元的尺度与物质中许多特性长度,如电子的德布洛意波长、超导相干长度、隧穿热垒厚度、铁磁性临界尺寸等相当,从而导致了纳米材料具有了不同于微观的原子、分子,也不同于宏观物体的物理化学特性 二氧化锆是一种具有高熔点(2700 )和高沸点、导热系数小、热膨脉系数大、耐高温、耐磨性好、抗蚀性能优良的金属氧化物材料 纳米级二氧化锆粉体材料因具有某些独特性能,如常温下为绝缘体,高温下则具有导电性、敏感特性、增韧性等 目前已用于制造结构陶瓷(如反应堆包套、航空发动机的排杠、汽缸内衬等)、功能陶瓷(如气体、温度、湿度、声传感器等)、压电陶瓷、电子陶瓷(如电容器、震荡器、蜂鸣器、调节器、电热组件等)、生物陶瓷、高温燃料电池、高温光学组件、磁流体发电机电极等高科技产品 有研究表明:100nm 的ZrO 2在拉伸疲劳试验中晶粒出现了300%的超塑性,由于晶粒粒径的减小,材料性能有了数量级的提高,烧结温度大大下降 作为添加剂它能使脆性材料增韧,韧性材料强度更强,使陶瓷材料的脆性问题可望得到解决 由于ZrO 2的化学稳定性好,表面同时具有酸性和碱性,同时拥有氧化性和还原性,又是 型半导体,易产生氧空穴,用作催化剂载体可与活性组份产生较强的相互作用 另外由于超细粒子具有高的比表面积和丰富的表面缺陷,所以超细Zr O 2在催化领域的应用前景广阔 因此研究纳米氧化锆的制备应用技术意义重大,已成为目前科技工作者关注和研究的热点[1],这也是我国九五规划重点发项目之一,以下就其制备和干燥技术进行介绍 1 纳米ZrO 2制备方法 纳米微粒的制备方法一般可分为物理方法和化学方法,化学法又可分为气相化学法和液相第19卷第1期 2002年3月广东工业大学学报Journal o f Guangdong University of Technology Vol 19No 1 March 2002

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

纳米氧化锌的综述

纳米ZnO的制备综述 纳米ZnO的制备综述 引言:纳米ZnO是一种面向21世纪的新型高功能精细无机产品,其粒径介于 1~100纳米,又称为超微细ZnO。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米ZnO产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米ZnO在磁、光、电、化学、物理学、敏感性等方面具有一般ZnO产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。 关键字:纳米ZnO 性质制备应用 一.纳米ZnO的性能表征 纳米级ZnO的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统ZnO的双重特性。与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等

一系列独特性能。 纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。纳米ZnO粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米ZnO。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米ZnO,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 二、纳米ZnO的制备方法 制备纳米ZnO材料的方法按物质的原始状态分为固相法、液相法、气相法3类。 2.1 固相法: 固相法是按照一定比例混合金属盐或金属氧化物,并研磨煅烧,使其发生固相反应而直接得到纳米粉末。 (1)将摩尔比1:1的Zn(NO 3) 2 ·6H 2 O和Na 2 CO 3 分别研磨10min,然后再混合研磨 20min,分别用去离子水和乙醇洗涤,80℃下干燥4h,待冷却后研细再置于马弗炉中,加热升温至400℃并保温3h,得到浅黄色纳米ZnO。或将硫酸锌和氢氧化钠按照摩尔比1:2的量置于研钵中,并向其中加入NaCl,研磨40min,完全反应后分别使用蒸馏水和乙醇洗涤2~3次,室温下干燥,得到纳米ZnO样品。 (2)沉淀法 将ZnSO 4 配制成浓度为1.5mol/L的溶液,加热至30~80℃,然后在搅拌下慢 慢滴加l:lNH 3·H 2 O使之生成Zn(OH) 2 胶体,搅拌、陈化。将配制好的(NH 3 ) 2 CO 3 , (0.5mol/L)溶液慢慢加人到Zn(OH) 2 胶体中不断搅拌,滴加完后继续搅拌反应, 过滤,用去离子水洗涤至无SO 42-(0.1mol/L 的BaCl 2 溶液检定无白色BaSO 4 沉 淀).将滤饼于100℃下烘干即得到前驱体。将前驱体置于马福炉中,以2℃·min-1的升温速率分别在300℃、400℃、500℃条件下分解,自然冷却,即得到ZnO样品。 2.2 气相法: 气相法是指用气体或将初始原料气态化,从而使其在气态条件下直接产生物理或化学反应,然后经冷却而凝聚为纳米微粒。气相法又可以分为化学气相氧化法、气相反应合成法、化学气相沉积法以及喷雾热分解法等。 (1)化学气相氧化法 化学气相氧化法是指将金属单质或金属化合物蒸发,在气相中被氧化而产生金属氧化物,经冷却后金属氧化物蒸气凝聚为纳米微粒。纳米ZnO粉体的合成是通过单质Zn蒸气在O 2 氛围中被氧化而得到。以高化学纯Zn粉作为原材料,在真空室内采用感应加热的方法将Zn粉原材料融化,原子化的Zn将在水冷壁上凝结为Zn 纳米颗粒,用2kW 级连续CO 2 激光器以输出功率600W进行照射,同时在激光照射过程中,向真空室内引入0.8~1.2kP的空气即可得到ZnO纳米颗粒。

相关文档
最新文档