电厂锅炉空气预热器低温腐蚀及预防措施探讨 刘磊

电厂锅炉空气预热器低温腐蚀及预防措施探讨 刘磊
电厂锅炉空气预热器低温腐蚀及预防措施探讨 刘磊

电厂锅炉空气预热器低温腐蚀及预防措施探讨刘磊

发表时间:2018-04-18T15:28:44.393Z 来源:《电力设备》2017年第31期作者:刘磊[导读] 摘要:近年来,电厂锅炉空气预热器低温腐蚀及预防问题得到了业内的广泛关注,研究其相关课题有着重要意义。

(中国能源建设集团天津电力建设有限公司天津 016000)摘要:近年来,电厂锅炉空气预热器低温腐蚀及预防问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了锅炉空气预热器低温腐蚀原因与危害,并结合相关实践经验,分别从多个角度与方面就其低温腐蚀的预防展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。

关键词:电厂锅炉;空气预热器;低温腐蚀;预防 1前言

作为一项实际要求较高的实践性工作,电厂锅炉空气预热器低温腐蚀的预防有着其自身的特殊性。该项课题的研究,将会更好地提升对电厂锅炉空气预热器低温腐蚀问题的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其防腐工作的最终整体效果。 2锅炉空气预热器概述

空气预热器是电厂锅炉的重要辅机,主要是利用锅炉尾部烟道中的烟气通过其内部散热片,将进入锅炉前的空气预热到一定的温度,用于提高锅炉的热效率,降低能量消耗。由于锅炉长时间低负荷运行,空气预热器低温腐蚀现象严重,造炉空气预热器受热面的损坏和泄漏,导致引风机负荷增加,限制锅炉出力,严重影响锅炉运行的安全性和经济性。

锅炉中煤粉与助燃空气燃烧后产生的高温烟气依次流经不同的辐射对流受热面后进入空预器预热进口冷风,进入炉膛的空气被加热,有利于稳燃和燃尽。电站锅炉装设空预器的主要作用包括如下几点:首先,降低排烟温度,提高锅炉效率。在现代燃煤电站中,由于回热循环的存在,锅炉给水经各级加热器加热后温度参数大大提高,如中压锅炉的给水温度为172℃左右,高压锅炉的给水温度为215℃左右,超高压锅炉的给水温度为240℃左右,亚临界压力锅炉的给水温度达到了260℃左右。因此,烟气在省煤器处与给水换热后的温度仍然较高,要使省煤器后排烟温度降到100℃左右是不现实的,而如果直接排放必然造成相当大的排烟热损失。装设空气预热器后,20摄氏度左右的冷空气与省煤器出来的高温烟气进行换热,一方面显著地降低了排烟温度,另一方面回收了排烟的热量重新进入炉膛,达到了提高燃料利用率的目的。其次,入炉风温的提高改善了燃料的着火与燃烧条件,同时有利于降低燃料燃烧不完全的损失,这一点对着火困难的煤种尤其重要。由于提高了燃烧所需的空气温度,改善了燃料的着火环境和燃烧效率,同时也降低了不完全燃烧热损失q3、q4,锅炉效率得到提高。其三,可以允许辐射受热面设计数量的减少,降低钢材消耗。由于炉内理论燃烧温度得到提高,炉内的辐射换热得到强化,在给定蒸发量的前提下,炉内水冷壁可以布置得少一些,这将节约金属材料,降低锅炉造价。 3锅炉空气预热器低温腐蚀原因与危害

3.1锅炉空气预热器低温腐蚀原因

锅炉燃料在燃烧时,其中的氢元素和氧元素生成水蒸汽,且锅炉燃烧器采用蒸汽雾化,所以烟气中带有大量水蒸汽。同时燃料中的硫元素燃烧生成的SO2和SO3气体,与烟气中的水蒸气生成硫酸蒸汽。由于锅炉长时间低负荷运行,排烟温度达不到设计值。所以当空气换热器受热面温度低于烟气露点时,硫酸蒸汽便凝结在空气预热器受热面上形成酸性液体,对受热面造成严重腐蚀。况且酸液体还会粘结烟气中的灰分,增加了预热器的积灰。

3.2锅炉空气预热器低温腐蚀的危害

锅炉空气预热器低温腐蚀情况对锅炉安全、平稳以及经济运行带来较大影响:首先,根据更换空气预热器时对空气预热器换热管的观察,局部换热管由于腐蚀已经大面积穿孔。如果锅炉长时间运行,换热器管由于腐蚀断裂,脱落的部分可能会对风机叶轮造成破坏,甚至导致风机连锁停炉。一旦锅炉紧急停炉将对全厂蒸汽平衡带来较大影响。所以锅炉空气预热器的低温腐蚀不但是公用工程平稳运行的一个隐患,更是全厂平稳运行的一个隐患。

4电厂锅炉空气预热器低温腐蚀的预防措施

4.1加强掺烧工作的管理

掺烧不能只考虑机组负荷和锅炉结焦问题,但还需更深一步探讨掺烧煤中的硫燃烧所产生的SO2对催化剂和空气预热器安全运行的影响,以及掺烧后灰分对受热面的磨损、积灰堵塞及输灰的影响等问题。根据目前燃用的煤质,硫的质量分数在1%以下,灰分在28%以下,可基本满足运行要求。高负荷掺烧时一般是准煤消耗量较大,低负荷时尾煤掺入量较大。但尾煤的硫的质量分数平均在1.2%左右(甚至更高),而低负荷时烟温较低,接近硫酸蒸汽露点,因此有必要在低负荷时适当增加低硫煤的掺入量,控制入炉煤硫的质量分数在1%,减少SO2的生成,从而进一步控制空气预热器的低温腐蚀。此外,还可以采取降低过剩空气量的措施减少烟气中的剩余氧气,从而降低SO3的产生,当燃烧室过剩空气系数的临界量约为1.05的时候,有明显的抗低温腐蚀效果。

4.2改变受热面的布置方式

一般情况下,改变受热面的布置有两种方式:其一,将管式空气预热器卧置。卧置管式空气预热器与立置管式空气预热器相比较,在烟气和空气进口温度一样的情况下,卧置管式空气预热器可以将壁温提高10到30℃。将管式空气预热器进行卧置,可以使空气在管内流动,而烟气则在管外冲刷;其二,将传热方式进行改变。一般情况下,为了得到较高的预热空气温度而却尽量减少受热面积,通常会采用逆流布置空气预热管的方式,但是,为了保证空气预热器不被低温腐蚀,可以改变这种逆流传热方式,将这种方式改成先顺流后逆流传热方式,或者直接顺流的传热方式,这两种方式都可以提高空气预热器低温段的金属壁温。

4.3在锅炉方面的控制

除了以上采用方式提高受热面的温度外,还可以采用提高排烟的温度的方法,以及提高空气预热器进风温度的方法和提高省煤器入口水温的方法。一般情况下,当壁温达到105℃的时候,可避免或减轻腐蚀现象的发生。此外,要减少或避免锅炉低负荷或超负荷运行锅炉低负荷运行必然造成排烟温度降低到烟气露点以下,引起空气预热器管壁腐蚀。当锅炉超负荷运行时,给煤量及排烟量均相应加大,预热器难以适应烟尘排量骤增的要求,烟气阻力增大,就会发生管内积灰堵塞现象。

4.4运行中加强对空气预热器进、出口差压的监视

空气预热器堵灰及腐蚀的原因及预防措施

空气预热器堵灰及腐蚀的原因及预防措施 【摘要】回转式空气预热器在运行中常见的问题是堵灰及腐蚀,堵灰及腐蚀严重影响锅炉运行的安全性及经济性。本文针对我厂#4炉空气预热器在运行中存在的问题,并就其中原因作出简要的分析,提出几点预防建议措施,以供同行参考。【关键词】空气预热器、堵灰、腐蚀 一、概述 湛江电力有限公司#4机组装机容量为300MW,汽轮机为东方汽轮机厂制造的亚临界、中间再热、两缸两排汽、凝汽式汽轮机,型号为N300-16.7/537/537/-3(合缸),采用喷嘴调节。锅炉DG1025/18.2-Ⅱ(5)为东方锅炉厂制造的亚临界压力、中间再热、自然循环单炉膛;全悬吊露天布置、平衡通风、燃煤汽包炉。锅炉配备两台型号为LAP10320/3883的回转式三分仓容克式空气预热器。空气预热器还配有固定式碱液冲洗装置和蒸汽、强声波吹灰装置,在送风机的入口装有热风再循环装置。 二、空气预热器运行中存在的主要问题 1 空气预热器堵灰 运行中,首先发现一次、二次风压有摆动现象,随后摆幅逐渐加大,且呈现周期性变化。其摆动周期与空气预热器旋转一周的时间恰好吻合,这说明空气预热器有堵塞现象。这是因为当堵塞部分转到一次风口时,一次风压开始下降;当堵塞部分转到二次风口时,二次风压又开始下降,在堵塞部分转过之后,风量又开始增大。#4锅炉燃烧较不稳定,空气预热器堵灰时,由于风量的忽大忽小,炉膛负压上下大幅度波动,严重影响锅炉燃烧的稳定性。 2 空气预热器腐蚀 空气预热器堵灰及腐蚀是息息相关的。空气预热器堵灰时,空气预热器受热面由于长期积灰结垢,水蒸汽及SO3容易黏附在灰垢上,加重了空气预热器的腐蚀;而空气预热器腐蚀时,受热面光洁度严重恶化,加重了空气预热器的积灰。空气预热器堵灰及腐蚀时,运行中表现出空气预热器出口一、二次风温降低,排烟温度升高,锅炉效率降低。

锅炉空气预热器问题知多少

锅炉空气预热器问题知多少 一、循环流化床锅炉空气预热器有何作用? 利用排烟热量加热锅炉助燃所需空气的受热设备,叫做空气预热器。空气预热器的作用是:1、强化燃烧。由于提高了锅炉的助燃空气的温度,可以缩短燃料的干燥时间和促使挥发分 析出,从而使燃料迅速着火,加快燃烧速度,增强燃烧的稳定性,提高燃烧的效率;2、强 化传热口由于使用了热空气并增强了燃烧,可以提高燃烧室的烟气温度,加强炉内辐射换热; 3、提高锅炉运行的经济性,加装了空气预热器可以有效的进一步降低排烟温度,减少排烟 损失,提高锅炉效率。 4、空气通过空气预热器加热后再送入炉膛,提高炉膛温度、促进燃料着火,改善或强化燃烧,保证低负荷下着火稳定性。 5、回热系统的采用使得给水温度提高,给水温度可高达250~290℃,若不采用空气预热器,排烟温度将很高。 6、炉膛内辐射传热量与火焰平均温度的四次方成正比。送入炉膛热空气温度提高,使得火 焰平均温度提高,从而增强了炉内的辐射传热。这样,在满足相同的蒸发吸热量的条件下, 就可以减少水冷壁管受热面,节省金属消耗量。 7、热空气作为制粉系统中干燥剂。 二、循环流化床锅炉空气预热器有哪几种形式?循环流化床锅炉目前采用的空预器有三种, 大多数循环流化床锅炉使用管式空预器,管式空预器又分为立管式和卧管式;少数循环流化 床锅炉采用热管空预器,它的优点是漏风系数较小;第三类是采用回转式空预器,它的优点 是相对体积较小,适合大容量循环流化床锅炉。如引进的白马 300MW 循环流化床锅炉。由 于循环流化床锅炉一次风压较高,为避免漏风系数过大,用于循环床的回转空预器采用特殊

分仓和密封方式。 三、为什么循环流化床锅炉不宜采用立式管式空预器?由于循环流化床锅炉风机压头比煤粉 锅炉高很多,如果采用立式管式空预器,空气将从管外走,空预器护板的密封性不好,容易 漏风。而采用卧式管式空预器,空气从管内走,密封结构更易于处理,避免漏风。此外,采 用卧式管式空预器,烟气在管外横向冲刷,空预器管子壁温较高,不易腐蚀。四、空气预热 器的腐蚀与积灰是如何形成的?由于空气预热器处于锅炉内烟温最低区,特别是未级空气预 热器的冷端,空气温度最低、烟气温度也最低,受热面壁温最低,因而最易产生腐蚀和积灰。当燃用含硫量较高的燃料时,生成的 SO 2 和 SO 3 气体,与烟气中的水蒸气生成亚硫酸或硫 酸蒸汽。在排烟温度低于酸蒸汽露点时,硫酸蒸汽便凝结在受热面上,对金属壁面产生严重 腐蚀。同时,酸液体也会粘结烟气中的灰分,越积越多,易产生堵灰。循环流化床锅炉尾部 烟道受热面积灰,受热面表面传热系数下降,使吸热量下降,排烟温度上升,锅炉热效率下降。如果积灰严重,则会增加烟道阻力,导致引风机负荷增大,厂用电率增加。长期腐蚀和 积灰会造成受热面的损坏和泄漏。当泄漏不严重时,可以维持运行,但使引风机负荷增加, 限制了锅炉出力,严重影响锅炉运行的经济性。五、什么是锅炉的低温腐蚀?由于燃煤中含 有 S,而 S 在燃烧过程中会产生 SO 2 ,进而部分 SO 2 会被氧化成 SO 3 ;另一方面,锅炉烟气中还含有 NOx 等酸性气体,在烟气温度较低时,这些酸性气体会与烟气中的水蒸气发生反应生成相应的酸,生成的酸附着在尾部受热面以后,会对尾部受热面的金属产生腐蚀现象; 或者在尾部换热管壁温度较低时,烟气中的酸性气体与管壁上的凝结水发生反应生成稀酸, 腐蚀尾部受热面的金属,统称为低温腐蚀。 锅炉SCR烟气脱硝空气预热器堵塞具体解决方法: 1、将入炉的煤硫粉的设定值控制在Sar≯0.9%的范围,尽可能地将原烟气SO2的浓度掌控在<1500mg/Nm3的情况,这样便能够很好的减少预热器当中烟气出现过多的现象;此外,需 对脱硝系统中的喷氨量进行科学合理性的掌控,要确保脱硝率不可高出85%的范围,尽可能

锅炉SCR烟气脱硝空气预热器堵塞原因及其解决措施

锅炉SCR烟气脱硝空气预热器堵塞原因及其解决措施 截至2012年4月,建成、在建及签订合同的火电机组锅炉烟气脱硝装置约650台装机容量共计3.8亿kW,其中投运SCR装置的机组容量超过1.0亿kW。这些机组在安装SCR装置时,对部分空气预热器(空预器)换热元件进行了改造,并配置了高效吹灰器。在已投运烟气脱硝装置的机组中,改造过的和尚未改造的空预器均出现过因硫酸氢氨堵塞而造成烟侧阻力增加的现象,部分空预器改造后还出现了排烟温度升高,炉效降低的情况。 1空预器硫酸氢氨堵塞 燃煤锅炉炉膛内烟气中的SO2约有0.5%~1.0%被氧化成SO3。加装SCR系统后,催化剂在把NOx还原成N2的同时,将约1.0%的SO2氧化成SO3。在空预器中/低温段换热元件表面,SCR反应器出口烟气中存在的未反应的逃逸氨(NH3)、SO3及水蒸气反应生成硫酸氢氨或硫酸氨:NH3+SO3+H2O→ NH4HSO4 2NH3+SO3+H2O→ (NH4)2SO4 当烟气中的NH3含量远高于SO3浓度时,主要生成干燥的粉末状硫酸氨,不会对空预器产生粘附结垢。当烟气中的SO3浓度高于逃逸氨浓度(通常要求SCR出口不大于3μL/L)时,主要生成硫酸氢氨(ABS),生成规律见图1。 在150~220℃温度区间,ABS是一种高粘性液态物质,易冷凝沉积在空预器换热元件表面,粘附烟气中的飞灰颗粒,堵塞换热元件通道,增加空预器阻力并影响换热效果。 硫酸氢氨造成的堵灰清除比较困难,严重时需停炉进行离线清洗。为降低硫酸氢氨的影响,目前主要从空预器本体改造或者脱硝系统氨逃逸控制两方面采取措施。

2空预器本体改造 2.1改造措施 空预器烟侧进出口温度范围约110~400℃,涵盖了高粘性硫酸氢氨的生成温度区间。为了应对硫酸氢氨的影响,空预器采取了以下改造措施。 (1)传统空预器元件分为高、中、低温3段,冷段高度约300mm,主要为了防止硫酸低温腐蚀。当硫酸氢氨温度区间跨越2层换热元件时,接缝处的硫酸氢氨吸附飞灰结垢搭桥现象更加严重。为此,需合并传统的冷段和中温段,将换热元件改为2段,冷段高度加大到约800~1200mm,涵盖机组不同负荷下硫酸氢氨的生成温度范围,保证全部硫酸氢氨在冷段完成凝结和沉积。 (2)空预器冷段元件较高,元件下部烟气温度较低,易受到烟气中的酸结露低温腐蚀,造成元件表面锈蚀龟裂,加剧硫酸氢氨粘附挂灰。为提高冷段元件的表面光洁度和防腐蚀能力,通常采用高强度低合金考登钢材质、表面镀搪瓷或者表面使用硅作涂层。根据国外经验[2],搪瓷镀层能显著降低硫酸氢氨的结垢速率,但如镀层因加工质量而损裂,将不利于防止硫酸氢氨的吸附。SCR空预器冷段采用何种型号的换热元件,主要受到煤中硫含量、入口烟气中SO3浓度、入口烟气O2浓度、冷段综合温度水平等因素的综合影响。根据国外某公司的经验(图2),煤中硫含量小于1.75%且冷段综合温度大于138℃时,冷段可采用考登钢材质。 (3)加装SCR系统后,空预器冷段换热元件通常采用局部封闭、高吹灰通透性的波形(如FNC或DNF)替代倾斜的双层皱纹形,使元件表面沉积的飞灰易于被吹灰器清扫。 (4)空预器冷段换热元件即使采用镀搪瓷元件,如果没有有效的吹灰清洗装置相配套,同样会发生严重的堵灰。目前,空预器冷段通常配置回转式双介质高能量射流吹灰器,正常运行过程中,采用高压蒸汽吹扫,当空预器烟侧阻力超过设计值的50%时,投运高压水冲洗。冲洗主要有离线和在线2种方式,前者是在保持60%左右机组负荷时,将单侧空预器解列隔离进行高压水冲洗,完成后采用同样方式冲洗另一台空预器;后者是在机组满负荷或部分负荷下,对任一台运行中的空预器进行高压水冲洗。高压水冲洗时,水压达10MPa以上,水量小于70kg/min,对烟气成分或烟气温度影响甚微。

锅炉空气预热器安装作业指导书

春风油田排601-20区1×130t/h燃煤 注气站工程 锅炉空气预热器安装作业 指导书 编制: 审核: 批准: 胜利油建新疆分公司项目部 徐州市中宇建设有限公司 2013年11月

1.编制依据 1.1空预器安装图及有关说明; 1.2《电力建设施工及验收技术规范》(锅炉机组篇)DL/T5047-95; 1.3《火力发电厂焊接技术规程》DL/T869-2012; 1.4《火电施工质量检验及评定标准》(锅炉篇); 1.5《火电施工质量检验及评定标准》(焊接篇); 1.6《电力建设安全操作规程》第一部分:火力发电厂2002版。 2.工程概况 2.1本炉空气预热器管箱采用立式、顺列布置,分成二级,最上级管箱为热风预热器,横向节距均为60mm,纵向节距为40mm,下级管箱为冷热风管箱,横向节距均为60mm,纵向节距均为40mm。管箱单重最大为:11.4t。管箱共24只。烟气自上而下从管内流过,空气从管外流过,与烟气呈逆流布置。空气预热器的重量通过管子两端的管板传到钢梁上。 空气预热器布置在锅炉尾部Z3-Z4柱之间,标高4500mm-12150mm(下级)和21920mm-25330mm(上级)。通过座架、连通箱、护板形成一、二、三次风和冷热风通道。空气预热器总重量为211.49t。 2.2施工内容 2.2.1设备检查、编号。 2.2.2空气预器管箱、座架安装。 2.2.3护板、连通箱、伸缩节组合安装。 2.3施工条件 尾部钢结构安装完毕并通过验收。 2.4主要施工机械、工机具 2.4.1 110吨汽车吊 1辆; 2.4.2 5吨倒链 4台; 2.4.3 3吨倒链 3台; 2.4.4 割把 4套; 2.4.5 磨光机 2台; 2.4.6 钢卷尺50mm 1把; 2.4.7 玻璃管水平仪 1副; 2.4.8 电焊机BX-400 4台;

利用空气预热器风量分切防止堵灰

利用空气预热器风量分切防止堵灰 摘要:针对于空预器现堵灰状况,应采取有效措施提高冷端温度,从机理上降 低低温结露和腐蚀,从而解决空预器堵灰问题,改善空预器运行现状。风量分切 防堵灰技术采用为针对性加热方式,在蓄热元件转至烟气侧之前,提高该点的温 度到B点,使冷端温度最低点高于酸结露点,避开酸结露区,降低低温结露。 关键词:堵灰;风量分切;温度;酸结露区;露点 1 本场概述 1.1 锅炉参数 大唐鲁北发电公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美 国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一 次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。现有2台 330MW燃煤发电机组分别于2009年9月20日、2009年12月20日投产发电。 主蒸汽额定压力18.58Mpa,主汽温543℃。 1.2 2号炉空预器参数 表1-1 2号炉2A空预器 2 堵灰情况及堵灰原因 2.1 2号炉堵灰情况 鲁北公司自超低排放改造及配煤掺烧后,空预器压差高的问题成为威胁机组 安全经济运行的重要问题,随着煤质硫份及喷氨量的增加,空预器堵灰情况更加 严重,压差上升速率急剧加快,严重影响了机组运行。鲁北公司锅炉空预器烟气 侧差压实际运行时在3kPa左右,最高时达到4kPa以上,导致引、送、一次风机 耗电率上升,空预器换热效果下降,排烟温度升高,锅炉经常缺氧燃烧,飞灰含 碳量上升,锅炉效率严重下降,另外还因其原因出现了机组限出力和风机失速等 不安全事件[1]。 自2017年2月14日至3月20日,空预器进行了热解及水冲洗工作,效果如下: 2月23日,使用提高单侧空预器后部排烟温度的方法对硫酸氢铵进行热解, 2B侧空预器排烟温度160℃持续时间70分钟,压差较同负荷状态下降约0.35kpa。 2月27日,2B空预器进行热解硫酸氢铵[2],2A/2B空预器烟气侧出入口差压 分别下降0.33kpa/1.03kpa(平均主汽流量752t/h,平均负荷248MW时)。 2月28日,2A空预器热解,2A/2B空预器烟气侧出入口差压分别下降 0.15kpa/0.06kpa(平均主汽流量728t/h,平均总风量938t/h,平均负荷240MW 时)。 3月2日,2B空预器热解,2A/2B空预器烟气侧出入口差压分别下降 0.32kpa/0.74kpa(平均主汽流量823t/h,平均总风量991t/h,平均负荷268MW 时)。 2017年4月28日至5月2日,2号炉进行停机检修,对2号炉空预器进行 了离线水冲洗工作,启动后2A/2B空预器烟气侧出入口差压分别为2.25/1.5 (330MW时数据)。 自此,每次停机对2号炉空预器进行离线水冲洗,并在机组运行过程中进行 间断性在线水冲洗,但烟气侧出入口差压均在2以上。 2.2 2号炉空预器堵灰原因分析

锅炉空气预热器安装

1、工程简介 1.1托电一期2×600MW机组#2机每台炉内配两台三分仓回转式空气预热器,型式为主轴式,双密封结构。型号为32VNT2060。两台空预器对称布置在锅炉尾部烟道中,其主体结构通过主座架、侧座架、一次风架等,其底梁横跨生根于锅炉钢架16850 mm标高梁上。 1.2 空预器总重625T,各主要安装部件具体参数:(单台) 2、施工工艺流程

2.1总体吊装顺序:两台空预器同时吊装。 2.2单台空预器施工工艺流程: 底梁→底部结构→底部检修平台→端柱→转子中心筒→顶部结构→空气侧转子外壳及风道→转子→铰链柱侧、烟气侧转子外壳及烟道→换热元件的安装及扇形板的固定→空预器整体检查调整及密封 说明:轴承及驱动系统到货及时可随顶部和底部结构同时安装。 3、施工应具备的条件 3.1施工机械采用BTQ2000塔吊,主臂长66.32m,副臂长48m,工作幅度随吊装部件的不同灵活选择,DMQ1600门座吊及63/42龙门吊为辅助吊车。 3.2 锅炉钢架第二层安装完毕并验收合格方可施工。 3.3施工机具准备 序号名称规格数量备注 1 塔吊BTQ2000 1 主吊机械 2 门座吊DMQ1600 1 辅助机械 3 龙门吊63/42 1 辅助机械 4 钢丝绳Φ32.5,L=20m 3对 5 吊环Φ20 8 6 卡环8t 8 7 卡环5t 4 8 卡环3t 6 3.4人员组织 总指挥:马二孩 技术负责:韩廷会、杨小东 起重指挥:刘喜庆、赵迎喜 起重工:炼汝奇刘日新朱军魏炳奇 李晓青贾耀明李振海康全部等

4、施工步骤:(单台) 4.1空预器底梁及底部结构安装 4.1.1单台空预器底梁共2件,单件重11.375t,外型尺寸:长15880mm、宽500mm、高3680mm、等。锅炉钢架标高为+16.85mm,空预器支撑梁安装、验收完毕后,将标定方向的底梁按图纸设计的位置安装在锅炉的支撑钢梁上,安装具体位置如附图所示。该件采用2点吊装钢丝绳选用Φ32.5、L=20m、8t卡环2个、5t卡环4个,由门座吊将其移运至锅炉组合场,再由龙门吊将其移运至BTQ2000覆盖区域,由BTQ2000将其空投至所定位置,与支撑钢架临时固定。 4.1.2底部结构安装:待底梁纵横中心线及标高调整好后,将底部结构移运至BTQ2000覆盖区域,由BTQ2000空投至底梁上方就位。底部结构外形尺寸:长15600mm、宽3840mm、高2010mm、重13.985t、采用4点吊装、5t卡环、Φ32.5、L=20m的钢丝绳2对,塔吊工作幅度41m、额定起重量28t、负荷率50% 底部检修平台随底梁的安装就位而穿插安装,安装位置位于两底梁之间14.615m标高处,底部轴承随底部结构一起安装就位,安装在轴承登板上,用角钢和螺栓将底梁与支架固定在一起。 4.1.3将端柱铰链固定在底梁上,调整测量其垂直方向,将二组端柱分别装在铰链上,装上螺栓将其紧固。 4.2转子中心筒的安装 利用所提供的吊耳吊装转子的中心筒,将其安装到底梁支板的轴承座上,即扇形板和扇形板支板的中心孔中,该件重13.809t,外形尺寸:Φ3500×3993,由龙门吊将其移运至BTQ2000覆盖区域,,由塔吊将其空投至所定位置,找正就位,塔吊工作幅度41m,额定起重量28t,最大负荷率46.7%,采用4点吊装,Φ32.5钢丝绳2对,5t卡环。 4.3顶部结构的安装 4.3.1顶部结构重约23.29t、外形尺寸:长15600mm、宽3720mm、高1680mm。 4.3.2顶部结构翻转吊装

SCR法烟气脱硝后空气预热器堵塞及应对措施

收稿日期:2014-05-28 作者简介:惠润堂(1963—),男,陕西渭南人,高级工程师,主要从事火电厂环保工程设计、科技研发等工作。 过3×10-6(体积浓度)后,温度为150~200℃范围内,逃逸的氨与烟气中的SO 3将反应生成硫酸铵((NH 4)2SO 4)和硫酸氢铵(NH 4HSO 4)[3]。这些副反应产物会牢固粘附在空气预热器(空预器)传热元件表面,使传热元件发生强烈腐蚀和积灰。通常,对于加装SCR 脱硝装置且燃煤硫分大于1%的机组,建议对空预器进行配套改造[4],但由于部分机组空预器运行时间较短或刚大修完毕,同时出于工程投资考虑,部分燃煤电厂增设脱硝设施后暂未改造空预器[1]。下文以某电厂为例,对烟气采用 SCR 法脱硝后空预器堵塞的成因进行分析。 1 某电厂基本情况 1.1 脱硝设施概况 某电厂9、10号机组为660MW 超临界机组, 采用SCR 脱硝技术控制NO x 排放,还原剂制取采用尿素热解工艺。SCR 烟气脱硝装置设计反应器入口NO x 为600mg/m 3(标准状态,下同),目前机日开始,空预器一、二次风侧及烟气侧阻力出现较快速度的增长。由于烟风系统压差大,机组被迫限出力运行。同样的运行情况及煤质参数下9号机组空预器烟气侧阻力运行正常。 根据2012年11月14日10号机组DCS 烟风系统运行监测,运行负荷为450MW ,空预器烟气侧系统阻力约为3000Pa 。由空预器烟气侧阻力趋势图可知,2012年11月初以来,空预器烟气侧由于堵塞,烟气侧阻力最高接近4500Pa ,远远高于空预器技术协议中的保证值1220Pa ,空预器二次风侧阻力最高达到2000Pa 。空预器堵塞后机组只能够被迫限出力运行,降低机组负荷至450MW ,此时空预器烟气侧阻力降至3000 Pa ,二次风侧阻力降至1200Pa 。 2 运行状况 2.1 燃煤煤质变化 2012年11月入冬后电厂入炉燃煤煤质数据 发电

空气预热器腐蚀积灰问题探讨

编号:AQ-JS-00092 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 空气预热器腐蚀积灰问题探讨Discussion on corrosion and ash deposition of air preheater

空气预热器腐蚀积灰问题探讨 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:空气预热器作为电站锅炉的重要设备,目前存在的主要问题是空预器易发生腐蚀和堵灰现象,这主要是由于传统的烟气低温腐蚀和氨逃逸带来的硫酸氢铵腐蚀的影响。针对2种不同的影响因素,需要采取不同的解决措施。在分析空预器堵塞原因的基础上,综述了近年来我国为解决空预器堵塞而采取的相关措施,如优化暖风器设计、采用碱性吸收剂控制SO3的技术、空气预热器的改造等。 关键词:暖风器;低温腐蚀;空气预热器;氨逃逸 当前燃煤发电作为我国最主要的发电形式,面临节能减排要求的日渐提升,煤价的不断上涨,锅炉空预器的出口烟温也越来越低,仅略高于酸露点的温度。 在低温烟气环境中,空气预热器容易发生低温腐蚀和堵灰现象,某300MW燃煤机组,采用电袋除尘器除尘,机组运行了半年的时间,空气预热器已经堵塞,在滤袋的表面附着着大量的黏附物,黏

附物为有较强的黏附能力的黑色硬质物质,黏附物很难通过人为手工去除。空气预热器堵塞造成电袋除尘器的运行阻力增大,烟尘排放超标;同时也导致风机的通道阻力增大,增加了风机的电耗。若堵灰严重时则必须采取停炉的措施,将增加机组非正常停机的次数,严重影响了电厂的经济效益。 对于北方的电站锅炉,在冬季的情况下,空气预热器由于入口处空气初始温度偏低,低温腐蚀积灰的问题也更加严重。空气预热器堵灰会影响机组高负荷运行,降低机组的经济性和稳定性,因此,解决空气预热器的腐蚀积灰问题对于保障机组的正常稳定运行有重要的意义。 空预器腐蚀积灰的主要原因有2种:烟气的低温腐蚀和氨逃逸造成的硫酸氢铵腐蚀。针对这2种不同的腐蚀积灰原因,必需要采取相应的不同措施,以增强机组的经济性和稳定性。 1烟气低温腐蚀 烟气低温腐蚀是指当锅炉的排烟温度低于烟气的酸露点时,在锅炉的低温受热面上会凝结烟气中的水蒸气和硫酸蒸气,凝结的水

浅析焦炉煤气电站锅炉空气预热器低温腐蚀的原因及对策 张魏雄 曹虎银

龙源期刊网 https://www.360docs.net/doc/5c11736954.html, 浅析焦炉煤气电站锅炉空气预热器低温腐蚀的原因及对策张魏雄曹虎银 作者: 来源:《商品与质量·学术观察》2013年第05期 陕西神木洁能电厂两台蒸发量为240t/h燃气发电锅炉,2010年安装调试正式运行,半年 后锅炉小修时发现空气预热器低温段的管子腐蚀严重。本文就这种现象进行了分析,查找在很短时间内管子腐蚀的原因,并提出了预防治理建议。 1、锅炉参数及燃料特性: 1.1锅炉相关参数(见表1) 1.2锅炉设计燃料特性(见表2) 2、腐蚀情况 腐蚀发生在空气预热器低温段。1#、2#锅炉空气预热器四个管箱,每个管箱靠前段的几排管子严重腐蚀,有的管壁腐蚀开孔,内部有白色结晶体。空气预热器材质为考登钢(Corten),管子规格¢40x1.5mm,锅炉低负荷运行烟道温度低时,有凝结水流出,严重的 地方被腐蚀溶解。 根据运行经验将冷风温度提高到20度以上,两台引风机运行保持烟气均衡时腐蚀不是很严重,冷风温度低时腐蚀就比较严重,虽然烟道用高温环氧树脂漆防腐,但油漆全部成片脱落,不起作用。采用搪瓷内外封面的空预器管子,用烟道的凝结水浸泡几天,搪瓷管腐蚀严重。在夏季、由于环境温度比较高对管子腐蚀就比较小。由于时间短,腐蚀数量少,电厂将腐蚀透的管子上下封堵,暂时不影响锅炉运行。 3、腐蚀成因分析 对空气预热器内部白色结晶体进行化验为硫化物结晶体,对凝结水化验PH为2.0为酸性。经过分析认为属于低温腐蚀。 经化验煤气中硫化氢含量过高。在燃烧过程中,燃烧中的硫化氢在燃烧后生成二氧化硫,二氧化硫与火焰高温区域内的氧原子反应生成三氧化硫。烟气中的全部或一部分三氧化硫与烟气中的水蒸气化合生成硫酸蒸汽。 三氧化硫转化为硫酸蒸汽的转化率为:

锅炉空气预热器分析

锅炉空气预热器分析 空气预热器有三个大类,分别是板式空气预热器、回转式空气预热器和管式空气预热器。 空气预热器是用于锅炉系统热交换性能提升的一种设备。空气预热器的主要作用是将锅炉排出的烟气中的热量收集起来,并传导给进入锅炉前的空气。 1、管式空气预热器 管式空气预热器的主要传热部件是薄壁钢管。管式空气预热器多呈立方形,钢管彼此之间垂直交错排列,两端焊接在上下管板上。管式空气预热器在管箱内装有中间管板,烟气顺着钢管上下通过预热器,空气则横向通过预热器,完成热量传导。 管式空气预热器的优点是密封性好、传热效率高、易于制造和加工,因此多应用在电站锅炉和工业锅炉中。管式空气预热器的缺点是体积大、钢管内容易堵灰、不易于清理和烟气进口处容易磨损。 2、板式空气预热器 板式空气预热器的结构松散而不紧凑,制造需要耗费大量的钢材,因此制造成本较高。板式空气预热器的盒子由焊接方式拼接,焊接工作量大且缝隙较多,容易出现泄漏。板式空气预热器目前已经很少被使用。 板式空气预热器的主要传热部件是薄钢板,多个薄钢板一起焊接成长方形的盒子,而后数个盒子拼成一组,板式空气预热器就由2到4个钢板焊接盒子组成。板式空气预热器工作时,烟气会流经盒子的外侧,而空气流经盒子的内侧,通过钢板完成热传导。 3、回转式空气预热器 回转式空气预热器的优点是体积小、重量轻、结构紧凑,传热元件承受磨损的余量大,因此回转式空气预热器特别适合应用于大型锅炉。回转式空气预热器的缺点是内部的机构复杂,消耗电力较大且漏风量较高。 回转式空气预热器是指内部设有旋转部件,通过旋转的作用在烟气和空气之间传导热能的一种空气预热器。回转式空气预热器还能够分为两个类别,也就是受热面旋转的转子回转式空气预热器,和风道旋转的风道回转式空气预热器。

防止空气预热器低温腐蚀措施

防止空气预热器低温腐蚀措施 某发电厂300 MW机组锅炉配备2台回转式空气预热器(以下简称空预器)。该空预器为三分仓容克式,是一种以逆流方式运行的再生热交换器。蓄热元件分热段和冷段,热段的波纹板用0.6 mm厚的钢板压制而成,冷段波纹板由1.2 mm厚的低合金耐腐蚀考登钢压制而成,全部蓄热元件分装在24个扇形仓格内,蓄热元件高度自上而下分别为400,800,300,300 mm,冷热段各两层。因为空预器的运行和维护对机组安全运行至关重要,因而有必要对防止空预器的低温腐蚀进行研究。 1.低温腐蚀的危害 回转式空预器安装在锅炉尾部,进入空预器的烟气与空气进行热交换后,温度降低,从冷段蓄热元件流出的烟温约在155℃左右。因此,在燃用高硫燃料时,可能引起空预器低温腐蚀,造成蓄热元件严重损坏。同时,由于壁温低而凝结出的液态硫酸会粘结烟气中的灰粒子,造成烟道堵灰,严重时将影响锅炉满负荷运行。空预器低温腐蚀增加了设备检修维护费用,严重影响锅炉的安全经济运行。 2.低温腐蚀的原因 当燃用含硫高的燃料时,燃烧后形成的SO2有一部分会进一步被氧化成SO3,且与烟气中的水蒸汽结合成硫酸蒸汽。烟气中硫酸蒸汽的凝结温度称为酸露点,它比水露点要高很多。烟气SO3(或者说硫酸蒸汽)含量愈多,酸露点就愈高,烟气中的酸露点可达140~160℃,甚至更高。 烟气的酸露点与燃料含硫量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增加的。显然,燃料中的含硫量较高,发热量较低,燃烧生成的SO2就越多,进而SO3也将增加,致使烟气酸露点升高。烟气对受热面的低温腐蚀常用酸露点的高低来表示,露点愈高,腐蚀范围愈广,腐蚀也愈严重。广安发电公司的燃煤含硫量校核值最低为2.86%,实际含硫量最高可达4%左右,属高含硫煤种。因此,必须加强运行及维护管理,制定出相应的防范措施,保证设备的安全运行。

电厂锅炉空气预热器低温腐蚀及预防措施探讨 刘磊

电厂锅炉空气预热器低温腐蚀及预防措施探讨刘磊 发表时间:2018-04-18T15:28:44.393Z 来源:《电力设备》2017年第31期作者:刘磊[导读] 摘要:近年来,电厂锅炉空气预热器低温腐蚀及预防问题得到了业内的广泛关注,研究其相关课题有着重要意义。 (中国能源建设集团天津电力建设有限公司天津 016000)摘要:近年来,电厂锅炉空气预热器低温腐蚀及预防问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了锅炉空气预热器低温腐蚀原因与危害,并结合相关实践经验,分别从多个角度与方面就其低温腐蚀的预防展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:电厂锅炉;空气预热器;低温腐蚀;预防 1前言 作为一项实际要求较高的实践性工作,电厂锅炉空气预热器低温腐蚀的预防有着其自身的特殊性。该项课题的研究,将会更好地提升对电厂锅炉空气预热器低温腐蚀问题的分析与掌控力度,从而通过合理化的措施与途径,进一步优化其防腐工作的最终整体效果。 2锅炉空气预热器概述 空气预热器是电厂锅炉的重要辅机,主要是利用锅炉尾部烟道中的烟气通过其内部散热片,将进入锅炉前的空气预热到一定的温度,用于提高锅炉的热效率,降低能量消耗。由于锅炉长时间低负荷运行,空气预热器低温腐蚀现象严重,造炉空气预热器受热面的损坏和泄漏,导致引风机负荷增加,限制锅炉出力,严重影响锅炉运行的安全性和经济性。 锅炉中煤粉与助燃空气燃烧后产生的高温烟气依次流经不同的辐射对流受热面后进入空预器预热进口冷风,进入炉膛的空气被加热,有利于稳燃和燃尽。电站锅炉装设空预器的主要作用包括如下几点:首先,降低排烟温度,提高锅炉效率。在现代燃煤电站中,由于回热循环的存在,锅炉给水经各级加热器加热后温度参数大大提高,如中压锅炉的给水温度为172℃左右,高压锅炉的给水温度为215℃左右,超高压锅炉的给水温度为240℃左右,亚临界压力锅炉的给水温度达到了260℃左右。因此,烟气在省煤器处与给水换热后的温度仍然较高,要使省煤器后排烟温度降到100℃左右是不现实的,而如果直接排放必然造成相当大的排烟热损失。装设空气预热器后,20摄氏度左右的冷空气与省煤器出来的高温烟气进行换热,一方面显著地降低了排烟温度,另一方面回收了排烟的热量重新进入炉膛,达到了提高燃料利用率的目的。其次,入炉风温的提高改善了燃料的着火与燃烧条件,同时有利于降低燃料燃烧不完全的损失,这一点对着火困难的煤种尤其重要。由于提高了燃烧所需的空气温度,改善了燃料的着火环境和燃烧效率,同时也降低了不完全燃烧热损失q3、q4,锅炉效率得到提高。其三,可以允许辐射受热面设计数量的减少,降低钢材消耗。由于炉内理论燃烧温度得到提高,炉内的辐射换热得到强化,在给定蒸发量的前提下,炉内水冷壁可以布置得少一些,这将节约金属材料,降低锅炉造价。 3锅炉空气预热器低温腐蚀原因与危害 3.1锅炉空气预热器低温腐蚀原因 锅炉燃料在燃烧时,其中的氢元素和氧元素生成水蒸汽,且锅炉燃烧器采用蒸汽雾化,所以烟气中带有大量水蒸汽。同时燃料中的硫元素燃烧生成的SO2和SO3气体,与烟气中的水蒸气生成硫酸蒸汽。由于锅炉长时间低负荷运行,排烟温度达不到设计值。所以当空气换热器受热面温度低于烟气露点时,硫酸蒸汽便凝结在空气预热器受热面上形成酸性液体,对受热面造成严重腐蚀。况且酸液体还会粘结烟气中的灰分,增加了预热器的积灰。 3.2锅炉空气预热器低温腐蚀的危害 锅炉空气预热器低温腐蚀情况对锅炉安全、平稳以及经济运行带来较大影响:首先,根据更换空气预热器时对空气预热器换热管的观察,局部换热管由于腐蚀已经大面积穿孔。如果锅炉长时间运行,换热器管由于腐蚀断裂,脱落的部分可能会对风机叶轮造成破坏,甚至导致风机连锁停炉。一旦锅炉紧急停炉将对全厂蒸汽平衡带来较大影响。所以锅炉空气预热器的低温腐蚀不但是公用工程平稳运行的一个隐患,更是全厂平稳运行的一个隐患。 4电厂锅炉空气预热器低温腐蚀的预防措施 4.1加强掺烧工作的管理 掺烧不能只考虑机组负荷和锅炉结焦问题,但还需更深一步探讨掺烧煤中的硫燃烧所产生的SO2对催化剂和空气预热器安全运行的影响,以及掺烧后灰分对受热面的磨损、积灰堵塞及输灰的影响等问题。根据目前燃用的煤质,硫的质量分数在1%以下,灰分在28%以下,可基本满足运行要求。高负荷掺烧时一般是准煤消耗量较大,低负荷时尾煤掺入量较大。但尾煤的硫的质量分数平均在1.2%左右(甚至更高),而低负荷时烟温较低,接近硫酸蒸汽露点,因此有必要在低负荷时适当增加低硫煤的掺入量,控制入炉煤硫的质量分数在1%,减少SO2的生成,从而进一步控制空气预热器的低温腐蚀。此外,还可以采取降低过剩空气量的措施减少烟气中的剩余氧气,从而降低SO3的产生,当燃烧室过剩空气系数的临界量约为1.05的时候,有明显的抗低温腐蚀效果。 4.2改变受热面的布置方式 一般情况下,改变受热面的布置有两种方式:其一,将管式空气预热器卧置。卧置管式空气预热器与立置管式空气预热器相比较,在烟气和空气进口温度一样的情况下,卧置管式空气预热器可以将壁温提高10到30℃。将管式空气预热器进行卧置,可以使空气在管内流动,而烟气则在管外冲刷;其二,将传热方式进行改变。一般情况下,为了得到较高的预热空气温度而却尽量减少受热面积,通常会采用逆流布置空气预热管的方式,但是,为了保证空气预热器不被低温腐蚀,可以改变这种逆流传热方式,将这种方式改成先顺流后逆流传热方式,或者直接顺流的传热方式,这两种方式都可以提高空气预热器低温段的金属壁温。 4.3在锅炉方面的控制 除了以上采用方式提高受热面的温度外,还可以采用提高排烟的温度的方法,以及提高空气预热器进风温度的方法和提高省煤器入口水温的方法。一般情况下,当壁温达到105℃的时候,可避免或减轻腐蚀现象的发生。此外,要减少或避免锅炉低负荷或超负荷运行锅炉低负荷运行必然造成排烟温度降低到烟气露点以下,引起空气预热器管壁腐蚀。当锅炉超负荷运行时,给煤量及排烟量均相应加大,预热器难以适应烟尘排量骤增的要求,烟气阻力增大,就会发生管内积灰堵塞现象。 4.4运行中加强对空气预热器进、出口差压的监视

600MW机组锅炉空气预热器堵塞原因分析及治理

600MW机组锅炉空气预热器堵塞原因分析及治理 详细地分析了空气预热器堵塞理论和实际两个方面的原因,从而从控制氨逃逸率、控制空预器壁温、对沉积的NH4HSO4进行及时清理、对空预器进行在线清洗四个方面提出了预防600MW机组锅炉空气预热器堵塞的措施,从而保证空气预热器的安全正常运行。 标签:空气预热器;堵塞;原因;治理 doi:10.19311/https://www.360docs.net/doc/5c11736954.html,ki.1672-3198.2017.18.101 在烟气脱硝的同时,催化剂也可使部分烟气中SO2氧化产生SO3,SO3与SCR过程中未反应的氨(逸出氨)反应生成硫酸氢铵,硫酸氢铵具有的腐蚀性特征会对催化床层和空预器造成危害。空气预热器堵塞会直接造成锅炉废气温升,增加排气热损失,增加阻力,影响风机输出,从而影响整个锅炉输出,堵塞灰尘甚至造成严重的风扇振动,脱硫系统由于烟气温度太高,不能投入运行,这将会对锅炉的安全经济运行造成严重的影响。 1 600MW机组锅炉空气预热器 600MW机组锅炉空气预热器储热部件波纹板是根据烟气流动方向分为热端层、中间层和冷端层,储热部件自上而下分别为0.5mmHE4型碳钢、0.5mmHE4型碳钢和1.2mmHE2型搪瓷钢板,冷段HE2型搪瓷钢板储热部件为耐腐蚀的传热部件,剩余热段储热部件为碳钢。 2 空气预热器堵塞原因分析 对于具有SCR脱硝装置的单元,SCR系统脱硝反应锅炉在燃烧中产生SO3和水,当脱硝逸出的NH3与SO3、水在低温情况下将会生成硫酸氢氨NH4HSO4(公式如下),而在150 ~220℃温度范围,NH4HSO4是一种高粘性液态材料,易粘附装置内的灰尘,从而堵塞热交换器元件的通道;易冷凝在空气预热器金属表面,从而腐蚀金属表面,导致空气预排气横截面积降低,电阻增加,最终使其传热效率降低。 2NH3+SO3+H2O→(NH4)2SO4(NH3∶SO3 2∶1时) 另外,当NOx还原成N2时,SCR催化剂也产生以下反应: SO2 + O2 → SO3 反应产物中的NH 4HSO4在通常位于常规设计预热器的中间温度部分的下部和冷端的上部的150~230℃的温度(高灰尘布置SCR)下开始冷凝,以在传热元件的表面上形成附加的吸附层。通常2~3月,大量的灰分被吸附,导致传

电厂锅炉空气预热器的低温腐蚀研究

电厂锅炉空气预热器的低温腐蚀研究 发表时间:2018-08-21T13:32:36.267Z 来源:《电力设备》2018年第15期作者:李辉 [导读] 摘要:空气预热器的出现,提高了电厂锅炉的热效率,最大限度降低了电厂锅炉作业对环境的污染。 (山东电力建设第三工程有限公司山东省 266100) 摘要:空气预热器的出现,提高了电厂锅炉的热效率,最大限度降低了电厂锅炉作业对环境的污染。因此,空气预热器被越来愈多的企业追捧。然而,对于电厂锅炉而言,空气预热器也是最容易发生低温腐蚀与堵灰问题的,一旦发生该问题就会严重影响电厂锅炉的整体作业。如何采取合理的措施,预防空气预热器的低温腐蚀与积灰问题是笔者阐述的重点。鉴于此,本文是对电厂锅炉空气预热器的低温腐蚀进行研究和分析,仅供参考。 关键词:电厂锅炉;空气预热器;低温腐蚀 引言:电厂锅炉的实际运行安全会受到空气预热器低温度腐蚀的影响,为进一步提高电厂锅炉的实际运行效益,必须采取科学合理的措施,解决空气预热器的低温腐蚀问题。结合个人实践工作经验与相关参考文献,就电厂锅炉空气预热器的低温腐蚀问题加以阐述,以期为广大同行提供参考借鉴。 一、空气预热器的低温防腐机理 水露点指的是烟气中蒸汽的露点温度,通常来说水露点较低,大约在40℃~50℃。硫酸蒸汽是由烟气之中的SO3与蒸汽相结合形成的,大大提升了烟气中的酸露点。通过图1烟气露点温度与硫酸蒸汽含量示意图,可以清楚看到随着烟气中SO3与H2O含量的进一步提高,烟气酸露点也进一步提高。一般情况下,烟气蒸汽含量维持在0.05~0.15。而当当烟气之中的SO3含量到达0.005%时,此时酸露点温度则高于150℃。 烟气中的SO3及蒸汽含量直接决定了烟气中硫酸蒸汽的酸露点,可以用以下公示对固体燃料工程进行估算: 图1烟气露点温度与烟气中硫酸蒸汽量的关系 公式中:tsld表示烟气酸露点/℃;tld表示烟气水露点/℃;β表示与炉膛出口空气系数有关联的常数;Syzs,Ayzs表示燃料折算硫分和折算灰分百分比;αfh表示飞灰占总灰分的实际份额。 如若空气预热器中的低温段壁温和酸露点相接近,或是已经低于酸露点,那么此时烟气中的硫酸蒸汽就开始凝结,造成腐蚀,其化学反应公式如下: SO2↑+H2O+Fe→FeSO3+H2↑ SO3↑+H2O+Fe→FeSO4+H2↑ 此外,金属表面还会形成许多的微电池,负极为铁,正极为焊渣,发生的腐蚀电化学反应示如下: 负极:Fe-2e→Fe2(氧化) 正极:2H+2e→H2↑(还原) 二、空气预热器低温腐蚀的预防措施 为进一步降低空气预热器的低温腐蚀问题,在实际工作过程中可以通过提高壁温,使硫酸蒸汽不会发生冷凝产生结露,或是低于腐蚀的浓度范围,这是两种方法。 对于管式空气预热器而言,如若将管内的灰尘及管壁热阻、管子内壁和外壁之间的面积都忽略不计,那么壁温Tw、烟稳θ、空气温度t,三者之间的关系可以用以下公式表达: 公式中:αy、αk表示烟气侧换热系数、空气侧换热系数。 上述公式也是人们用来提高壁温的重要理论依据所在。通常情况下,越是靠近进风口,其壁温也越低,容易受到低温腐蚀的影响。要想提高壁温、降低低温腐蚀,可以采取提高预热器进风温度的方法。 对于一些含有硫的燃料,特别是硫含量较高时,采取提高冷段壁温至酸露点的这种方法是十分不划算、不经济的。因为使用该种解决方式,不仅会大大提高排烟温度,还会大大降低锅炉的实际利用效率。当壁温过低且壁温和蒸汽间的露点差值并没有超过一定数值的时候,末级的预热器会遭到严重腐蚀。因此,在设计锅炉时,必须要做好预热器冷段壁温的选取工作。国内外的实际研究结果表明,当燃用的硫含量为Sy=2.5%~3.0%时,其相应的酸露点则为tsld=120℃~140℃燃煤的煤粉炉,此时的预热器其冷端壁温、蒸汽露点二者之间的tld差值最低应达到20℃,此时的冷端壁温不得低于70℃~75℃。如若此时的壁温低于此数值,那么壁面之上就会发生严重的积灰与腐蚀问题,积灰变硬无法清除干净;而当Tw的数值在90℃以上时,壁面的积灰和腐蚀情况也会大大下降,且积灰也更加容易清除。因此,壁温达到90℃以上,可以有效抑制低温腐蚀问题的发生。由此可知,对于使用多硫燃料的锅炉而言,预热器的冷端壁温必须要达到90℃以上。选择此数值不会使锅炉的排烟温度变得更高。

空气预热器

空气预热器 空气预热器的分类: 按空气预热器的工作原理,空气预热器可分为间壁导热式和再生式两种? 间壁导热式空气预热器的特点是在烟气与空气之间存在一个壁面,烟气将热量通过这中间壁面传给空气? 再生式空气预热器是烟气和空气轮流地流过一种中间载热体(金属?陶瓷?液体等)来实现传热,当烟气流经中间载热体时,把载热体加热?当空气流经载热体时,载热体本身受到冷却,而空气得到加热? 间壁导热式可分为管式和板式预热器?再生式空气预热器可分为转子转和风罩转等型式? 空气预热器的作用: 空气预热器的作用包括: (1)降低排烟温度提高锅炉效率?随着电站循环中工质参数的提高,由于采用回热循环,用汽轮机的抽汽来加热给水,进入锅炉的给水温度愈来愈高?给水温度由中压的150℃提高到亚临界压力的260℃?原来低压锅炉中用省煤器来降低排烟温度的功能随着锅炉给水温度的提高而下降?只用省煤器就不能经济地降低锅炉的排烟温度,甚至无法降低到合适的温度?然而空气的温度较低,若将省煤器出口的烟气来加热燃烧所需的空气,则可以进一步降低排烟温度,提高锅炉效率?

(2)改善燃料的着火条件和燃烧过程,降低了燃烧不完全损失,进一步提高锅炉效率?对于着火困难的燃料,如无烟煤,常把空气加热到400℃左右? (3)热空气进入炉膛,提高了理论燃烧温度并强化炉膛的辐射传热,进一步提高锅炉的热效率? (4)热空气还作为煤粉锅炉制粉系统的干燥剂和输粉介质?鉴于以上几点,现代锅炉中空气预热器成为锅炉不可少的部件?对于低压锅炉,因给水温度很低,用省煤器已能很有效地将烟气冷却到合理的温度,常无空气预热器?不过有的工业锅炉,给水除氧后温度也只有104℃,为了改善着火燃烧条件,也有采用空气预热器的?对于火床燃烧的工业炉,因炉排片温度的限制,即使有空气预热器,空气的温度也不超过150~180℃? 回转式空气预热器: 回转式空气预热器的缺点是漏风系数大,结构复杂,传动装置消耗电能?优点是受热面两面受热,传热系数高,单位体积内受热面大,外形尺寸小?重量轻,不怕腐蚀?同等换热容量的空气预热器,采用回转式空气预热器可比管式空气预热器节省约1/3的钢材? 受热面回转再生式空气预热器又称容克式空气预热器,其基本结构如下图:

空气预热器方案说明

10吨蒸汽锅炉空气预热器方案 (节煤率5%以上;提高锅炉岀功10%以上) 一、热管式空气预热器的工作原理及优点 热管式空气预热器的主要传热元件为重力式热管,重力式热管的基本结构如图1所示。热管由管壳、外部扩展受热面、端盖等部分组成,其内部被抽成1.3×(10-1—10-4)Pa的真空后,充入了适量的工作液体。 图1 热管传热原理简图 热管的传热机理是:当热流体流经热管的蒸发段时热量经由扩展受热面和管壁传递给工质,由于管内的真空度较高,工质在较低温度下开始沸腾,沸腾产生的蒸汽流向冷凝段冷凝放出热量,热量再经管壁和扩展受热面传递给冷流体,冷凝后的工质在重力的作用下流回蒸发段,如此循环不已,热量就不断的由热流体传递给了冷流体。 热管的传热机理决定着热管有以下基本特性:①极高的轴向导热性:因在热管内部主要靠工作液体的汽、液相变传热,热阻趋于零,所以热管具有很高的轴向导热能力。与银、铜、铝等金属相比,其导

热能力要高出几个数量级。②优良的等温性:热管内腔中的工质蒸汽处于饱和状态,蒸汽在从蒸发段流向冷凝段时阻损很小,在整个热管长度上,蒸汽的压力变化不大,从而也就决定着在整个热管长度上温度变化不大,所以说热管具有优良的等温性。 由热管组成的热管式空气预热器具有以下的优点:①由热管的等温性决定着在预热器中每排热管都工作在一个较窄的温度范围内,这样就可以通过结构调整使每排热管的壁温高于露点温度,从而避免发生结露、腐蚀和堵灰的现象,从而保证了锅炉不会因为空气预热器的堵灰、引风机出力不足,影响锅炉的正常运行的情况。而管式预热器由于烟气在管内流动时烟温逐渐降低,所以每根管子的壁温都是沿烟气的流动方向逐渐降低的,在每根管子的烟气出口部位,由于烟温和空气温度均较低,很容易发生结露、黏灰、堵灰的现象,影响引风机的抽力,从而影响锅炉的正常运行。②一般管式空气预热器设计和烟气流速较高(11—14m/S),且换热管用壁厚较小(约1.5mm)的焊接管,所以管子很容易磨穿,产生漏风,引起鼓、引风机的电耗增加。而热管式空气预热器,管子为无缝钢管,强化换热主要靠扩展受热面,烟气流速设计较低(6—8m/S),磨损较轻。另外热管式空预器中通过中隔板使冷热流体完全分开,在运行过程中即使单根热管因为磨损、腐蚀、超温等原因发生泄露,也只是单根热管失效,而不会发生漏风现象。③在热管式空气预热器中烟气和空气均横向冲刷管子外侧,烟气横向冲刷管子外侧要比纵向冲刷管子内侧传热系数高出20%--30%。在热管式空气预热器中可以比较容易的实现冷、热流体的完全逆流换热,获得最大的对数温差。另外在保证管壁温度不太低的情况下,烟气侧和空气侧的受热面均可获得充分的扩展。这样空气预热器可以做的非常紧凑,一般在相同的换热量的情况下,热管式空预器比管式空预器体积减少1/3,烟气总流阻减少1/2。④在相同的

相关文档
最新文档