7.5曲线和方程(三)

7.5曲线和方程(三)
7.5曲线和方程(三)

7.5曲线和方程(三)

班级 学号 姓名

一、 课堂目标:

进一步掌握已知曲线求方程的方法和步骤

二、要点回顾:

1、 求曲线的方程的一般步骤是:

(1) 建立_________的坐标系,用______________________表示曲线上任意一点的坐标 (2) 写出适合条件P 的点M 的集合P=_________________ (3) 用_________表示条件P(M),列出方程f(x,y)=0 (4) 化方程f(x,y)=0为___________形式

(5) 证明已化简后的方程的解为坐标的点都是_______________上的点

2、求曲线方程的五个步骤中,哪几步是可以省略的_________________ 三、 目标训练:

1、 到直线01=+-y x 的距离等于42的动点P 的轨迹方程是

( )

A. 09=+-y x

B. 07=+-y x

C. 0709=--=+-y x y x 或

D. 07=-+y x

2、 方程12=+y x 表示的图形围成的面积等于

( )

A.1

B.2

C.3

D.4

3、 若ABC ?的顶点B 、C 的坐标分别是(0,0)和(4,0),AB 边上的中线长为3,则顶点A 的轨迹

方程是

( )

A.()3682

2

=+-y x B. ())0(3682

2

≠=+-y y x C. ()982

2

=++y x

D. ())0(982

2

≠=+-y y x

4、已知直线L:2x+4y+3=0,P 为L 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为

( )

A.2x+4y+1=0

B.2x+4y+3=0

C.2x+4y+2=0

D.x+2y+1=0

5、曲线0),(=y x f 关于直线 x-y-3=0对称的曲线方程为

( )

A. 0),3(=-y x f

B. 0),3(=+x y f

C. 0)3,3(=+-x y f

D. 0)3,3(=-+x y f

6、已知A(-1,0),B(2,0),动点P 满足

2

1

=

PB

PA ,则P 点的轨迹方程是_____________________

7、已知A(a,b) (a>0,b>0)是一个定点,B 、C 分别是x 轴正半轴、y 轴正半轴上的动点,满足∠BAC=90O ,则BC 中点P 的轨迹方程是_____________________

8、在ABC ?中,若B 、C 的坐标分别是(-2,0)和(2,0),中线AD 的长度是3,则点A 的轨迹方程是_______________________

9、动点M(x,y)到定点(1,1)的距离与到定直线 x-y+1=0的距离相等,则动点M 的轨迹方程是___________

10、过点A(1,0)作直线L 交已知直线x+y+5=0于B ,在线段AB 上取一点P ,使得3:1:=BP AP ,求P 的轨迹方程

11、已知平面上有两定点A 、B ,a AB 2=,平面上一动点M 到A 、B 两点距离之比为2:1,求动点M 的轨迹方程

12、如图,已知点F 的坐标为(0,1),直线L 的方程为y+2=0,动点M 到点F 的距离比它到定直线L 的距离小1,求动点M 的轨迹方程

13#、已知ABC ?中,6=BC ,BC 边上的高等于2,点A 在与BC 平行的直线上运动,求ABC ?的垂心轨迹

20182019高中数学第2章圆锥曲线与方程疑难规律方法学案苏教版选修21

第2章 圆锥曲线与方程 1 利用椭圆的定义解题 椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值 例1 线段AB =4,PA +PB =6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是________. 解析 由于PA +PB =6>4=AB ,故由椭圆定义知P 点的轨迹是以M 为原点,A ,B 为焦点的椭圆,且a =3,c =2,∴b =a 2 -c 2 = 5.于是PM 的长度的最小值是b = 5. 答案 5 2.求动点坐标 例2 椭圆x 29+y 2 25=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________. 解析 设椭圆上的动点为P ,由椭圆的定义可知 PF 1+PF 2=2a =10, 所以PF 1·PF 2≤? ????PF 1+PF 222=? ?? ? ?1022=25, 当且仅当PF 1=PF 2时取等号. 由? ?? ?? PF 1+PF 2=10,PF 1=PF 2,解得PF 1=PF 2=5=a , 此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0) 点评 由椭圆的定义可得“PF 1+PF 2=10”,即两个正数PF 1,PF 2的和为定值,结合基本不等式可求PF 1,PF 2乘积的最大值,结合图形可得所求点P 的坐标. 3.求焦点三角形面积 例3 如图所示,已知椭圆的方程为x 24+y 2 3 =1,若点P 在第二象限,且∠PF 1F 2=120°,求

曲线和方程典型例题

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而 在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4 曲线4)1(2 2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

学案导学 备课精选高中数学 2.6.1曲线与方程同步练习(含解析)苏教版选修21

§2.6 曲线与方程 2.6.1 曲线与方程 课时目标 结合学过的曲线及其方程的实例,了解曲线与方程的对应关系,会求两条曲线的交点的坐标,表示经过两曲线的交点的曲线. 1.一般地,在直角坐标系中,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立如下关系: (1)__________________________都是方程f(x ,y)=0的解; (2)以方程f(x ,y)=0的解为坐标的点都在曲线C 上. 那么,方程f(x ,y)=0叫做________________,曲线C 叫做__________________. 2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x 0,y 0),则①点P 在曲线C 上?______________;②点P 不在曲线C 上?________________. 一、填空题 1.已知直线l 的方程是f(x ,y)=0,点M(x 0,y 0)不在l 上,则方程f(x ,y)-f(x 0,y 0)=0表示的曲线是__________________. 2.已知圆C 的方程f(x ,y)=0,点A(x 0,y 0)在圆外,点B(x′,y′)在圆上,则f(x ,y)-f(x 0,y 0)+f(x′,y′)=0表示的曲线是________________. 3.下列各组方程中表示相同曲线的是________. ①y=x ,y x =1; ②y=x ,y =x 2 ; ③|y|=|x|,y =x ; ④|y|=|x|,y 2=x 2. 4.“以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点”是“曲线C 的方程是f(x ,y)=0”的____________条件. 5.求方程|x|+|y|=1所表示的曲线C 围成的平面区域的面积为________. 6.到直线4x +3y -5=0的距离为1的点的轨迹方程为_____________________. 7.若方程ax 2+by =4的曲线经过点A(0,2)和B ? ?? ??12,3,则a =________,b =________. 8.如果曲线C 上的点的坐标满足方程F(x ,y)=0,则下列说法正确的是________.(写出所有正确的序号) ①曲线C 的方程是F(x ,y)=0; ②方程F(x ,y)=0的曲线是C ; ③坐标不满足方程F(x ,y)=0的点都不在曲线C 上; ④坐标满足方程F(x ,y)=0的点都在曲线C 上. 二、解答题 9.(1)过P(0,-1)且平行于x 轴的直线l 的方程是|y|=1吗?为什么? (2)设A(2,0),B(0,2),能否说线段AB 的方程是x +y -2=0?为什么?

创新设计高中数学苏教选修21习题:第2章 圆锥曲线与方程 21

§2.2椭圆 2.2.1 椭圆的标准方程 课时目标 1.经历从具体情境中抽象出椭圆模型的过程.2.理解椭圆的定义,明确焦点、焦距的概念. 3.能由椭圆定义推导椭圆的方程,初步学会求简单的椭圆的标准方程. 4.会求与椭圆有关的点的轨迹和方程. 椭圆的标准方程:焦点在x 轴上的椭圆的标准方程为________________ (a>b>0),焦点坐 标为________________,焦距为________;焦点在y 轴上的椭圆的标准方程为________________ (a>b>0). 注:(1)以上方程中a ,b 的大小为a>b>0,其中c 2=________; (2)椭圆x 2m +y 2 n =1 (m>0,n>0,m ≠n),当m>n 时表示焦点在______轴上的椭圆;当m

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

曲线与方程,圆的方程

曲线与方程、圆的方程 江苏 郑邦锁 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

高中数学选修1-1《圆锥曲线与方程》知识点讲义

高中数学选修1-1《圆锥曲线与方程》知识点讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 222 4,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁

扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 . a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24. AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y k k ??=+ -=++-??或当存在且不为时,()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

创新设计高中数学苏教选修21习题:第2章 圆锥曲线与方程 章末复习提升

1.椭圆、双曲线、抛物线的定义、标准方程、几何性质 椭圆 双曲线 抛物线 几何条件 与两个定点的距离的和等于常数 与两个定点的距离的差的绝对值等于常数 与一个定点和一条定直线的距离相等 标准方程 x 2a 2+y 2 b 2 =1(a >b >0) x 2a 2-y 2 b 2 =1(a >0,b >0) y 2=2px (p >0) 图形 顶点坐标 (±a,0) (0,±b ) (±a,0) (0,0) 对称轴 x 轴,长轴长2a ; y 轴,短轴长2b x 轴,实轴长2a ; y 轴,虚轴长2b x 轴 焦点坐标 (±c,0) c =a 2-b 2 (±c,0) c =a 2+b 2 (p 2,0) 离心率 01,e =c a e =1 准线 x =±a 2c x =±a 2c x =-p 2 渐近线 y =±b a x

2.曲线与方程 (1)曲线与方程:如果曲线C 上的点与一个二元方程的实数解建立了如下的关系:①曲线上点的坐标都是这个方程的解;②以这个方程的解为坐标的点都在曲线上,那么,这条曲线叫做方程的曲线,这个方程叫做曲线的方程. (2)圆锥曲线的共同特征:圆锥曲线上的点到一个定点的距离与它到一条定直线的距离之比是定值e ;当01时,圆锥曲线是双曲线;当e =1时,圆锥曲线是抛物线. 3.直线与圆锥曲线的位置关系 直线和圆锥曲线的位置关系有三种:相离、相切、相交.设直线l 的方程为Ax +By +C =0, 与圆锥曲线D 的方程联立? ???? Ax +By +C =0, f (x ,y )=0,可得(消去y )ax 2+bx +c =0(*). (1)当a ≠0时,若关于x 的方程(*)的判别式Δ>0,则直线与圆锥曲线有两个不同交点;若Δ<0,则直线与圆锥曲线没有交点;若Δ=0,则直线与圆锥曲线相切. (2)当a =0时,若方程(*)有解,则直线与圆锥曲线有一个交点. 题型一 圆锥曲线定义与几何性质的应用 椭圆、双曲线、抛物线的定义是经常考查的内容,往往体现在数学上的转化与化归思想.圆锥曲线的几何性质包括椭圆、双曲线、抛物线的对称性、顶点坐标、离心率,双曲线的渐近线,抛物线的准线等内容,主要考查这些性质的理解记忆. 例1 如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为2 2,以该椭圆上的 点和椭圆的左,右焦点F 1,F 2为顶点的三角形的周长为4(2+1);一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D . (1)求椭圆和双曲线的标准方程; (2)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明k 1·k 2=1. (1)解 由题意知,椭圆离心率为c a =2 2,得a =2c ,又由以椭圆上的点和椭圆的左,右焦点 F 1,F 2为顶点的三角形的周长为4(2+1),结合椭圆定义得2a +2c =4(2+1),所以可解得a =22,c =2,故 b 2=a 2- c 2=4,所以椭圆的标准方程为 x 28+y 2 4 =1. 易得椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双

2.4 曲线与方程

2.4曲线与方程 基础过关练 题组一曲线与方程的关系及其应用 1.若等腰三角形ABC底边的两端点分别是A(-4,0),B(2,0),则顶点C的轨迹是( ) A.一条直线 B.一条直线去掉一点 C.一个点 D.两个点 2.若点(2,-3)在曲线2x2-ay2=5上,则实数a的值等于( ) A.1 3B.1 C.3 D.±1 3 3.已知曲线y=x2-x+2与直线y=x-m有两个交点,则实数m的取值范围是( ) A.(-1,+∞) B.(-∞,-1] C.(-∞,-1) D.(-∞,1) 4.在平面直角坐标系中,方程|x| 3+|y| 2 =1所表示的曲线是( ) A.两条平行线 B.一个矩形 C.一个菱形 D.一个圆 5.方程x+|y-1|=0表示的曲线是( ) 6.(2020山东日照高二月考)方程4x2-y2-4x+2y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y-2=0 C.点(1 2 ,1) D.直线2x-y=0和直线2x+y-2=0

题组二 求曲线的方程 7.在平面直角坐标系中,到两坐标轴的距离之和等于3的点M 的轨迹方程为( ) A.x+y=3 B.x+y=-3 C.|x+y|=3 D.|x|+|y|=3 8.(2020浙江湖州高二期中)在平面直角坐标系xOy 中,若定点A(-1,2)与动点P(x,y)满足OP ????? ·AO ????? =8,则点P 的轨迹方程为( ) A.x-2y-8=0 B.x-2y+8=0 C.x+2y-8=0 D.x+2y+8=0 9.已知动点A 在圆x 2+y 2=1上,则点A 与定点B(4,0)连线的中点的轨迹方程是( ) A.(x-2)2+y 2=1 4 B.(x-2)2+y 2=1 C.(x-4)2+y 2=14 D.(x+2)2+y 2=1 4 10.已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0),则动点P 的轨迹方程为 . 11.已知A(-1,0),B(2,4),△ABC 的面积为10,则顶点C 的轨迹方程是 . 12.(2020吉林省实验中学高二月考)已知线段AB 的长等于10,两端点A,B 分别在x 轴,y 轴上移动,若点M 在线段AB 上,且AM ?????? +4BM ?????? =0,则点M 的轨迹方程是 . 13.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m,设m 与y 轴的交点为N,若向量OQ ?????? =OM ?????? +ON ?????? (O 为坐标原点),求动点Q 的轨迹方程.

曲线与方程同步练习1新选修21

单元测试题-圆锥曲线 数学(理) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共120分.考试时间105分钟. 第Ⅰ卷(选择题,共50分) 一、选择题本题共有10个小题,每小题5分;在每小题给出的四个选项中,只有一项是符 合题目要求的,把正确选项的代号填在试卷指定的位置上。 1.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 14 B . 1 2 C . 2 D .4 2. 若椭圆22221(0)x y a b a b +=>> ,则双曲线22 221x y a b -=的离心率是 ( ) A . 5 4 B . C . 3 2 D . 3.若双曲线192 2=-m y x 的渐近线l 方程为x y 35± =,则双曲线焦点F 到渐近线l 的距离为 A .2 B .14 C .5 D .25 4、直线y x b =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且OA OB ⊥,则b =( ) .2A .2B - .1C .1D - 5、若直线l 过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( ) A.1条 B.2条 C.3条 D.4条 6、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两 点,MN 中点的横坐标为3 2 - ,则此双曲线的方程是( ) A. 14 32 2=-y x B.13422=-y x C.12522=-y x D.15222=-y x

7、设离心率为e 的双曲线22 22:1x y C a b -=(0a >,0b >)的右焦点为F ,直线l 过点 F 且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是 ( ) A .221k e -< B . 221k e -> C .221e k -< D .221e k -> (实验班)已知定点M (1,),45 ,4()45--N 、给出下列曲线方程: ① 4x +2y -1=0 ②32 2 =+y x ③1222 =+y x ④12 22 =-y x 在曲线上存在点P 满足 MP P N =的所有曲线方程是 ( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 8、双曲线两条渐近线的夹角为60o,该双曲线的离心率为( ) A .332或2 B .332或2 C .3或2 D .3或2 9、若不论k 为何值,直线(2)y k x b =-+与曲线221x y -=总有公共点,则b 的取值范围是( ) A.( B.?? C.(2,2)- D.[]2,2- 10、椭圆22 1259 x y + =上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于( ) A .2 B .4 C .6 D . 32 (实验班做)如图,双曲线x 2a 2-y 2 b 2=1的左焦点为F 1,顶点为A 1,A 2,P 是双曲线上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为( ) A .相交 B .相切 C .相离 D .以上情况都有可能

7.5曲线和方程(三)

7.5曲线和方程(三) 班级 学号 姓名 一、 课堂目标: 进一步掌握已知曲线求方程的方法和步骤 二、要点回顾: 1、 求曲线的方程的一般步骤是: (1) 建立_________的坐标系,用______________________表示曲线上任意一点的坐标 (2) 写出适合条件P 的点M 的集合P=_________________ (3) 用_________表示条件P(M),列出方程f(x,y)=0 (4) 化方程f(x,y)=0为___________形式 (5) 证明已化简后的方程的解为坐标的点都是_______________上的点 2、求曲线方程的五个步骤中,哪几步是可以省略的_________________ 三、 目标训练: 1、 到直线01=+-y x 的距离等于42的动点P 的轨迹方程是 ( ) A. 09=+-y x B. 07=+-y x C. 0709=--=+-y x y x 或 D. 07=-+y x 2、 方程12=+y x 表示的图形围成的面积等于 ( ) A.1 B.2 C.3 D.4 3、 若ABC ?的顶点B 、C 的坐标分别是(0,0)和(4,0),AB 边上的中线长为3,则顶点A 的轨迹 方程是 ( ) A.()3682 2 =+-y x B. ())0(3682 2 ≠=+-y y x C. ()982 2 =++y x D. ())0(982 2 ≠=+-y y x 4、已知直线L:2x+4y+3=0,P 为L 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为 ( ) A.2x+4y+1=0 B.2x+4y+3=0 C.2x+4y+2=0 D.x+2y+1=0 5、曲线0),(=y x f 关于直线 x-y-3=0对称的曲线方程为 ( ) A. 0),3(=-y x f B. 0),3(=+x y f C. 0)3,3(=+-x y f D. 0)3,3(=-+x y f 6、已知A(-1,0),B(2,0),动点P 满足 2 1 = PB PA ,则P 点的轨迹方程是_____________________

2015高考理科数学《曲线与方程》练习题

2015高考理科数学《曲线与方程》练习题 [A组基础演练·能力提升] 一、选择题 1.方程x2-y2=0对应的图象是( ) 解析:由x2-y2=0得,y=x或y=-x,故选C. 答案:C 2.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( ) A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 解析:设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0得2x-y+5=0. 答案:D 3.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点的椭圆经过A,B两点,则椭圆的另一个焦点F的轨迹方程是( ) A.y2-x2 48 =1(y≤-1) B.y2- x2 48 =1(y≥1) C.x2-y2 48 =1(x≤-1) D.x2- y2 48 =1(x≥1) 解析:由题意知|AC|=13,|BC|=15,|AB|=14, 又∵|AF|+|AC|=|BF|+|BC|, ∴|AF|-|BF|=|BC|-|AC|=2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支.又 c=7,a=1,b2=48,∴点F的轨迹方程为y2-x2 48 =1(y≤-1). 答案:A 4.有一动圆P恒过定点F(a,0)(a>0)且与y轴相交于点A、B,若△ABP为正三角形,则点P的轨迹为( )

A .直线 B .圆 C .椭圆 D .双曲线 解析:设P (x ,y ),动圆P 的半径为R ,由于△ABP 为正三角形, ∴P 到y 轴的距离d =32R ,即|x |=32 R . 而R =|PF |=x -a 2 +y 2, ∴|x |= 32 ·x -a 2 +y 2. 整理得(x +3a )2-3y 2=12a 2, 即 x +3a 2 12a 2 -y 2 4a 2=1. ∴点P 的轨迹为双曲线. 答案:D 5.已知点A (1,0)和圆C :x 2 +y 2 =4上一点R ,动点P 满足RA →=2AP → ,则点P 的轨迹方程为( ) A.? ? ???x -322+y 2=1 B.? ? ???x +322+y 2=1 C .x 2 +? ? ???y -322=1 D .x 2 +? ? ???y +322=1 解析:设P (x ,y ),R (x 0,y 0), 则有RA → =(1-x 0,-y 0),AP → =(x -1,y ). 又RA →=2AP → , ∴?? ? 1-x 0=2x -1, -y 0=2y . ∴?? ? x 0=-2x +3,y 0=-2y . 又R (x 0,y 0)在圆x 2+y 2=4上, ∴(-2x +3)2+(-2y )2=4,即? ? ???x -322+y 2=1. 答案:A 6.设A 1,A 2是椭圆x 29+y 2 4 =1的长轴两个端点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与 A 2P 2交点的轨迹方程为( ) A.x 29+y 24=1 B.y 29+x 24=1 C.x 29-y 2 4 =1 D.y 29-x 2 4 =1

曲线与方程(基础+复习+习题+练习)

课题:曲线与方程 考纲要求:了解方程的曲线与曲线的方程的对应关系. 教材复习 1.曲线的方程与方程的曲线 在直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下关系: ()1曲线上的点的坐标都是这个方程的 ;()2以这个方程的解为坐标的点都是 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线(图形). 2.两曲线的交点 设曲线1C 的方程为()1,0F x y =,曲线2C 的方程为()2,0F x y =,则曲线12,C C 的交点坐标 即为方程组 的实数解,若此方程组无解,则两曲线12,C C . 3.求动点轨迹方程的一般步骤 ①建系:建立适当的坐标系;②设点:设轨迹上的任一点(),P x y ;③列式:列出动点P 所满足的关系式;④代换:依条件的特点,选用距离公式、斜率公式等将其转化为,x y 的方程式,并化简;⑤证明:证明所求方程即为符合条件的动点轨迹方程. 4.求轨迹方程常用方法 ()1直接法:直接利用条件建立,x y 之间的关系(),0F x y =; ()2定义法:先根据定义得出动点的轨迹的类别,再由待定系数法求出动点的轨迹方程. ()3待定系数法:已知所求曲线的类型,求曲线的方程.先根据所求曲线类型设出相应曲线的 方程,再由条件确定其待定系数; ()4代入法(相关点法) :动点(),P x y 依赖于另一动点()00,Q x y 的变化而变化,并且()00,Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 带入已知曲线得要求的轨迹方程. ()5参数法:当动点(),P x y 的坐标,x y 之间的关系不易直接找到,也没有相关动点可用时, 可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 5.对于中点弦问题,常用“点差法” :其步骤为:设点,代入,作差,整理. 基本知识方法 1.掌握“方程与曲线”的充要关系; 2.求轨迹方程的常用方法:轨迹法、定义法、代入法、参数法、待定系数法、直接法和交轨法、向量法. 要注意“查漏补缺,剔除多余”. 典例分析: 考点一 曲线与方程 问题1.()1(06调研)如果命题“坐标满足方程(,)0f x y =的点都在曲线C 上” 是不正确的,那么下列命题正确的是 .A 坐标满足方程(,)0f x y =的点都不在曲线C 上; .B 曲线C 上的点不都满足方程(,)0f x y =;

曲线和方程

例1如果命题“坐标满足方程f x, y 0的点都在曲线C上”不正确,那么以下正确的命题是 (A)曲线C上的点的坐标都满足方程f x, y 0 ? (B)坐标满足方程f x, y 0的点有些在C上,有些不在C上. (C)坐标满足方程f x, y 0的点都不在曲线C上. (D)—定有不在曲线C上的点,其坐标满足方程 f x, y 0 . 分析:原命题是错误的,即坐标满足方程f x, y 0的点不一定都在曲线C上,易知答案为D. 典型例题二 例2说明过点P(5, 1)且平行于x轴的直线|和方程| y 1所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可?其中“曲线上的点的坐标都是方程f(x, y) 0的解”,即纯粹性;“以方程的 解为坐标的点都是曲线上的点”,即完备性?这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P且平行于x轴的直线|的方程为y 1,因而在直线I上的点的坐标都满足y 1,所以直线I上的点都在方程|y 1表示的曲线上?但是以|y 1这个方程的解为坐标的点不会都在直线I上,因此方程|y 1不是直线I的方程,直线I只是方程y 1所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不 都在曲线上,即不满足完备性.

例3说明到坐标轴距离相等的点的轨迹与方程 y x 所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程y x 所表示的曲线上每一个点都满足到坐标轴距离相等?但是“到坐标轴距 离相等的点的轨迹”上的点不都满足方程 y x ,例如点(3,3)到两坐标轴的距离均为 3, 但它不满足方程y x .因此不能说方程y x 就是所有到坐标轴距离相等的点的轨迹方程, 到坐标轴距离相等的点的轨迹也不能说是方程 y x 所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上” ,即满足完备性,而“轨迹上的点的 坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才 能叫方程 的曲线. 典型例题四 一个交点、无交点,就是由直线与曲线的方程组成的方 也就是由两个方程整理出的关于 x 的一元二次方程的判 别式分别满足 0、 0、 0 . y k(x 2) 4, 解:由 2 x (y 1)2 4. 得(1 k 2)x 2 2k(3 2k)x (3 2k)2 4 0 4k 2(3 2k)2 4(1 k 2)[(3 2k)2 4] 4(4k 2 12k 5) 4(2k 1)(2k 5) .??当 0即 (2k :1)(2k 5) 0,即 1 k 5 时,直线与曲线有两个不同的交点. 2 2 当 0即(2k 1)(2k 5) 0, 即卩 k 1 或k 5时,直线与曲线有一个交点. 2 2 当 0即(2k 1)(2k 5) 0, 即卩 k 1 或k -时,直线与曲线没有公共点. 2 2 说明: 在判断直线与曲线的交点个数时, 由于直线与曲线的方程组成的方程组解的个 数 与由两方程联立所整理出的关于 x (或y )的一元方程解的个数相同,所以如果上述一元方程 是二次的,便可通过判别式来判断直线与曲线的交点个数, 但如果是两个二次曲线相遇,两 曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同, 所 以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 例4曲线x 2 (y 1)2 4与直线y k (x 2) 4有两个不同的交点,求 k 的取值范 围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、 程组分别有两个解、一个解和无解,

曲线与方程教案(详细)

2.1曲线与方程 2.1.1曲线与方程2.1.2求曲线的轨迹方程 一、教学目标 (一)知识教学点 使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点 通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点 通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础. 二、教材分析 1.重点:求动点的轨迹方程的常用技巧与方法. (解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法. (解决办法:先使学生了解相关点法的思路,再用例题进行讲解.) 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神. 三、教学过程 学生探究过程: (一)复习引入 大家知道,平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM.∵k OM·k AM=-1,

创新设计高中数学苏教选修21习题:第2章 圆锥曲线与方程 62

2.6.2 求曲线的方程 课时目标 1.掌握求轨迹方程建立坐标系的一般方法,熟悉求曲线方程的五个步骤.2.掌握求轨迹方程的几种常用方法. 1.求曲线方程的一般步骤 (1)建立适当的____________; (2)设曲线上任意一点M 的坐标为(x ,y); (3)列出符合条件p(M)的方程f(x ,y)=0; (4)化方程f(x ,y)=0为____________; (5)证明以化简后的方程的解为坐标的点都在曲线上. 2.求曲线方程(轨迹方程)的常用方法有直接法、代入法、定义法、参数法、待定系数法. 一、填空题 1.已知点A(-2,0),B(2,0),C(0,3),则△ABC 底边AB 的中线的方程是______________. 2.与点A(-1,0)和点B(1,0)的连线的斜率之积为-1的动点P 的轨迹方程是______________. 3.与圆x 2+y 2-4x =0外切,又与y 轴相切的圆的圆心轨迹方程是____________________. 4.抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,则抛物线的方程为____________. 5.设过点P (x,y )的直线分别与x 轴的正半轴和y 轴的正半轴交与A 、B 两点,点Q 与点 P 关于y 轴对称,O 为坐标原点,若BP =2PA →,且OQ →·AB → =1,则P 点的轨迹方程是________________________. 6.到直线x -y =0与2x +y =0距离相等的动点轨迹方程是________________. 7.方程(x +y -1)x -1=0表示的曲线是____________________________. 8.直角坐标平面xOy 中,若定点A (1,2)与动点P (x,y )满足OP →·OA → =4,则点P 的轨迹方程是__________________________. 二、解答题 9.设圆C :(x -1)2+y 2=1,过原点O 作圆C 的任意弦,求所作弦的中点的轨迹方程. 10.已知△ABC 的两顶点A 、B 的坐标分别为A(0,0),B(6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.

相关文档
最新文档