ABR流量控制技术

ABR流量控制技术
ABR流量控制技术

第27卷第8期

Iio1.27 他8

计算机工程

Computer Engineering

2001年8月

August 2001

·基金项目论文·文童编号:lflllD 3428 001 8—0蚪7—03 文献标识码:A 中图分类号:TP393

面向拥塞控制的显式速率流量控制机制

孔竞飞,吴介一,张孝林

(东南大学CINIS叶『心南京210096)

播要:研究和分析了基于速率的流量控制模型.针对已有屁式速率(EPRCA)机制存在的不是,提出了一种新的控制机

~']eRFCM 通过广域

NWAN和局域网LAN中的仿真研究表明,在反映控制机制性能的瓣时参数振荡性和栩制的鲁棒性方面,EP~Cbl要优于EPRCA。

关键词:ATM网络;拥塞控制;流量控制

An Explicit Rate Flow C0ntr0l M echanism for Congestion Control

K0NG JJngfel, WU Jieyi.蜀[王^NGXiaolin

(cI s Ce~er ofSouthe~tUniversi ,Naniing 21 0096)

l Abstract】In this paper,a rat~based 11o~,contmI model is s d attd a n w mech~aism ERFCM is put lbrward for insuf1%iencs,of the emsting

mechanisnls gueh EPRCA.Underthe staroundings ofW AN and LAX,"simuIatiotls sh w that p -0rman。亡ofERFCM a /i advantage ol&?r one of

EPRCA attwo points ofo i】I ofI and robtLsti~itv

【K w0rds】ATM network,r,c ofI Unn control; F1ow control

在局域网LAN和广域网w 环境中,ATM (异步传输

模式)都是一个重要的协议,在变化着的阿络基本结构中,它将起到一个主要的作用。在相同的物理阿络中,它支持多种业务类型和比特率j这些业务具有不同的服务质量(QoS] 需求,如信元传输延迟(CTD)、延迟变化(cDV)班及信元丢

失率(CLR)等。然而,在未来的高速多媒体通信环境中,并不清楚哪种类型的服务和应用会占主导地位。因此,对于将来的多媒体服务,作为基础结构~gATM网络应能适应于不

同的通信比特率、服务种类、通信模式等对此,ATM论

坛业务量(truffic)管理规范4 1[1。定义了5种服务类型:常比特

速率(CB R]服务、可变比特速率[VBR)服务、可用比特速率(ABR)服务、未指定比特速率CUBR)服务和受保证帧速率

(GFR哪l务,其中VBRJ]l务又分为两种:实B,~VBR(rt-VI3R) 和非实时VBR(1 VBR)。

ATM是定长的信元(ccⅡ)作为高速通信信息的裁体,

它具有高速、低比特错误率、动态分配带宽和高复台能力的优点,这些使得它非常适宜于具有QoS保证的多媒体1专输。由于多媒体业务的特性,常引起网络拥塞并降低其业务的质量。因此,拥塞控制和预防对保证多媒体业务的质量是至关重要的,遗可通过流量控市蜊哺悚实现

以往的流量控制模型是用来调节发端和接收端间的业务

速掣。,其目的是快/慢的发送器不引起接收端的过载/欠

载,这是因为过载或欠戴使接收端的业务质量降低。在业务量管理规范4 1中,定义了一种基于速率~gABR流量控制模型,它可用来在竞争用户间自适应地分享可使用带宽。与

往流量控制模型有所不同,在A丹R流量控制模型中,不仅接收端参与控制操作,管理其输入缓冲区状态;而且阿络组件如中继结点(交换机)也参与操作,它负责管理网络本地拥塞状态计算或估计其可支持带宽值等。因此,这类流量控制机制实质上还起到了拥塞控制的作用。本文研究和分析了这种模型,针对已有控制机制(如增强型比例速率控制算法EPRCN )存在的不足,提出了一种新的控制机制ERFCM。

I ABR流量控制模型和显式速率流量控制机制

AIBR~务通常用于数据传输。当多媒体在动态可变带

宽通道中传输时,对于ATM网络中~0ABRN务,根据阿络

拥塞的程度,可提供给ABR源结点的网络带宽量始终变化着。拥塞时.源的比特率降低以便阿络从拥塞状态恢复因此,ATM网络中,流量控制机制的任务是调节ABR业务量

班便获得高阿络资源利用率、避免和控制网络拥塞、降低服务费用。

1 1反馈与流量控制模型

文献【1]定义的ABR服务流量控制模型是基于反馈控制

的一种在线控制模型。在规范4 t中反馈被定义为一蛆操作的集台,通过这些操作,阿络和端系统根据网络组件的状志调节提交给ATM虚电路(cormcctj。n)的业务量。一个反馈系统通常由3个部分组成:(1)抽样函数庀负责获取网络自g状态

信息,这些信息包括阿络拥塞程度,这可由来自交换机缓冲区占有量或显式输入速率信息获得;(2)控制算法,来自抽样函数的反馈信息被控制算法用来计算下一步的控制参数,它可以包括ABR源的数据发送速率;(3)执行单元,它使用控制算法计算的输出控制参数来实现控制体制,典型的执行单元是流量控制机制中的速率调节器

图1所示为规范4 I中所定义的面f ^BR服务的基于速率

流量控制模型。图中,ABR源矗定时(如每32个数据信

元)发送一个ERM (前向资源管.元,目的结点将接

收到的带有阿络状态信息的FRM加上本地的资源状志信息后,发还给源结点,此时称其为BRM (后向资源管理)信元,根据接收到的日RM信息,源结点调节其信元发送速率以适应变化着的网络环境。

基金珂目:讧苏省自赫科学基金资助珂目(BK99013)

作者简介:孙竞飞(1 977~),男,硕士生,研究方向为计算机网

络;吴介~.教授、博导;张孝{丰,博士生

收稿日期:200(I—l1—0B

— -47_一

维普资讯https://www.360docs.net/doc/5f2268204.html,

变机】竞换叽2 乱:-

口?一DID 口??j 口一口口雠

蜀匿宦国

一骱蜀甑口

囝1 ABR服务谛量控制模型

1.2显式速率流量控制机制

~~ATM网络中,根据交换机中拥塞管理标准和所采用的

控制算法,各种基于速率的流量控制机制广义上可以分为两类二进制机制和显式速率(ERJ卡几制。在二进制机制中,交按棚主要执行两种运算:探测初始的拥塞和向源结点提供二

进制反馈。对于显式速率机制,交换机执行3种主要运算:(1)计算可支持每个vcg9带宽公平分享值;(2)决定负载,这可通过管理输出缓冲区队列长度或其增长率来实现;(3)决定实际显式速率(ER)q4:将其发往源结点。这两类机制的共同

目的是最大化网

基于速率流量控制机制的具体运行过程为:每隔固定数

目(NRM)的数据信元,源端发送一个FRNI信元。FRIvl信

元包含几个域,主要有允许信元速率(ACR)域,拥塞标识(cI)域以及显式速率(ER)域当目的结点收到FRIvI信

元时,将带有网络最终信息的刚反馈给源端,此时该

FRM信元称之为BRM信元。网络信息包含在cI或/和ER域中,这取决于中问结点的运行模式。在二进制运行模式中,当拥塞时,交换机设置数据信元或/*agMfa元的拥塞位cI。对于显式速率模式,ER交换机计算每个活动虚电路(VC)

的交换机可用窨量的平均公平分享值,称这个量为显式速率ER并将其置^FRM或BRM发给源端。基于BRM信元中的反

馈信息,源端调节其AcR。如果q置位,源端根据速率减少因子(RDF)减少其AcR直到建立连接时协商的最小信元速

率(MCR);反之,源端根据速率增加因子(RIF)增加其ACR,直到建立连接时协商的峰值信元速率(PCR),但是

不得超过ER值。

2 ERFCM流量控制机制

ERFCMr~于ER流量控制机制,它在上述运行过程的基

础上,通过增补一些规则而形成的。在该机制中,为了有效地管理本地拥塞,针对交换机输出缓冲区瞬时队列长度Q,设置了3个阈值:QL、QH和QVH,其中QLqvtt时,设置非常拥

塞状态拥塞时,当Q

是对于使用ERFCM显式速率计算算法的交换机,在对所?

有源端平均信元速率估计的基础上,试图公平地把允许发送速率(显式速率)分配给所有源端。希望的公平速率是一个估计fglACR,它可被送给所有的源端以便垒薛ABR业务量不超过交换机链路(Iink1的ABR容量这里希望的公平速率ER 是通过X,jACR,交换机本身fl~MACR (平均允许信元速率) 进行指数加权平均得到的,具体算法如下:

If FIlM 信元

Ir【Q QLCF x QH)AND (MACR>ACR)

『f Q QVIt

M ACR=MACR+AV × rACR M ACR 、

else I~ACR=N'IACR+L^V X fACR一}IAC'R、

If(Q

n U ‘uL

M ACR=NL~CR—AV x ‘ACR M ACR 、

else 、IACR =MACR +LAV × rACR —M ACR1

}

else If BRM 信元

If Q qLCF ×QH

f

H o QvII

ER ¨lilI{E MACR X MRF}

else If AC R )DPF x M ACR

ER=nfin{ER,ERF× MACR}

)

elselIf Q

ER=Jnhl fER,MACR,MRF}

else If Q

If ACR

ER rain fER,MACR/ER

}

式中:ACR是刚收到的RM信元AcR域中的值,AV是主

要平均因子,LAV是低值平均因子,MR 是主要减少因子-DPF是下压因子,ERF是显式减少因子,QLCF是队列长度控制因子;其中LAV

3仿真模型与实验

3.1仿真模型

要分析和比较ERFcM流量控制机制的性能,文中选择

文献?推荐的显式速率流量控制机f,d]EPRCA~ I阼为比较对象。仿真模型选用由5个源端、5个目的端午口2个交换机组成

的包含单一瓶颈交换机SW]的网络拓扑,如图2所示,其中

源端为具有贪婪性质的竞争源网络中选用~ABRII[bJf端系统主要参数如表1所示,仿真运行时间为500ms,所有源端

从时间O秽开婿发送数据。对于EPRcA机制,选用的控制参

数为文献I5]中曲缺省值,它们是:AV=Iil6,MRF=I 74.VCS=7/8,DPF=7/8,ERF=15/1 6,拥塞阈值为QL=200cdlg QH=400cells,DQT=600cells。对于ERFCi~JtfJ,其控制参数

为:LAV=1/32,QLCF=0 825,其它参数与EPRcA相同。

1椁靳弛目的蝙确

耀

;耀霪——围<,,;

} / sw l sWZ \\涩

图2单-gt.@~接网络仿真模型

3.2仿真实验

为了能较为垒面地测试和比较ERFCM流量控市Ⅱ机制的

性能.在遗一部分中.我们选择两利l网络环境:WAN*n

维普资讯https://www.360docs.net/doc/5f2268204.html,

LAiN。宴验中.通过测量源端系统(如b1 1)的AcR和粗颈交换机(如】]的缓冲区队列长度Qfl9动恋性来[:t{:

j~ERFCMfl,'J

性能。

3.2 1 LAN环境中的仿真实验

在该实验中.所有端用户与网络问的链路参数相同,长

度均为1km,速率为14979Mb/s;交换机间的链路长度为

10hn,速率为50Mt:ds;圉3为所搠掺数变化曲线。

均值为1O 2652M'~s.也基本等于其公平分享值10Mb/s。由此,可以得出结论.在广域网环境中,ERFcM机制下的参

数振荡性和拥塞控制效果方面同样优于EPRCAc

另一方面,随着网络环境的变化.网络的往返传输延迟(aTr)也不同,~gWAN中fl~RTT耍大于LAN中~#RTT、由E

述两个实验可知:在RTT对于流量控制机制参数的影响方面,B 机制的鲁棒性方面,对ERFCM机制下的参数影响小

∞?一?∞?一?

Simulation Time(ms)

㈨bl1的ACR动寿特性

∞ 1.. 15r ??? 450 ∞

Simulation Time fms

fb)swl缓和区动志特性

图3局域网LMI环境下的仿真曲线

3.2 2 WAN环境中的仿真实验sImuMien Time(ms

La】bl1的ACR动密特性

Simu[alio.Time(ms)

fb J sⅥ1埋冲匡的劫态特性

图4 广域网■^N环境下的仿真结果

于对EPRCA}Jt制下的影响.特别是ERf,'CM机制下的ACR参数的均值,

基本不随R’l'Tfl~变化而变化因此在控制机制的鲁棒性方面.ERFCM同

样优于EPRCA

4结论

本文对于一个具体的网络拓扑,

研究和分析了面向ABRIt~务的流量控制模型,针对已有流量控制机制(如EPRCA)存在的不足,文中提出了一

种显式速率流量控制机制ERFCM。

通过反映网络运行性能的两个动态参数:源端允许信元速率ACR和瓶颈交

换机输出缓冲区队列长度Q,分析和比较了该机制的性能。在两种网络1wAK 和LAN)环境下的仿真结果表明:在表明

阿络性能的瞬时参数振荡性、拥塞控制

效果和机制的鲁棒性方面,ERFCM优于

EPRcA

参考文献

1 TraSc Manak,eme it Specification Version 4 1

ATM Forum.af-tm一0 121.1999·03

2 Kamolphiv~xmg S,Karbowiak A E,Mehr~our

tI Fl0w Control in ATM Networks:A Survey ComputerCe~mnunication。【998。21 951-96R

与实验1有所不同.在该实验中.所有端用户与网络间 3 Jaitt R}RamakrishnanKK Congestion Avoidlmce in Computer

的链路参数相同r长度改为1000tatx.速率为149 79Mb/s;Networkswith aCarmecfionlessNetworks Layer:Concepts,Goals and

交换机问的链接长度~2000km,速率.N50Mb/s。N4.g7所测 Methodologv.In Proc of IEEE Computer Neiworking s Ⅵn Iun

堂·星耋 W a shJ ntoa ,D 1 。??,?

和源结点允许信元发送速率AcR r在它们的振荡频率方面·‘ i 品?

E M与EPRcA基本相同;在振荡幅度方面r ERFCML~明 5

Roberts L Enhanced PRCA(1'roportional Rale-b貅㈣d AI thm)

显低于EPROA。由此可得出,ERFcM机制的拥塞控制效果 ATM Foram,94.0735R1 1994—08

也好于EPRc州几制。对于参数AcR,其ERFcM机制下最大

值为50 8094Mlds,远小于EPRCA的最大值116 122Mb/s;其(上接第26页:参考文献

敛然而.实际中算法通常在少于log~'v次迭代后收敛就 l McKeownN Fast St,,Jt~aedBackplanefor aGigabit SwitchedRouter

是说对于一个16端口的调度器,4次迭代足够Tj Cisco vsletuswhit paper,t997-[‘

~..。亳现简单一一个曼由卫优。 G u pt㈨a P ,lv f c :等。

级编码器构成u--q"16~H的调度器易于在单芯片中实现。 3 N。wm.衄P

, M 【吐I : =:l1= G Eab R ut IEEE

我4i'1$~c计了8个端口的路由-Nlg,理样机t串行数据速率Co蛐mmieation blagazin

. 1 997_0 1

为1 25Gbps.系统的调度算法为ESLIP算法c调度器在单片 4 McK㈣N Schedulin Cell㈣i Input eued S~vit hlPhD The

Eis1

FPGA中实现.支持8个端口和组播通信.每次调度的时隙为Universitv ofCalitbmia at Berkeley,1995.05

592ns,FPGA采用的是Ah l公司的EPF10klO(}A一1,使用资 5陈虎成高速互联及高速交换技术的研究f博士论文1中国科学技

源约为5万门。系统测试证明了EsL 算法的良好特性。术尤学,20∞

* ∞ * ∞ r

一丘一 0《

===

维普资讯https://www.360docs.net/doc/5f2268204.html,__

微流控技术平台在IVD中的运用

一、微流控平台的定义和特点 微流控是一项融合了微电子学、材料科学、生物科学、制药以及临床医学等众多领域的综合性技术,需要跨领域跨学科的深入交流和合作。什么是微流控芯片?微型+集成+自动化。微流控芯片顺应分析仪器的发展趋势(微型化/集成化与便携化),很大程度缩短样本处理时间,并通过精密控制液体流动,实现试剂耗材的最大利用效率,把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用。 微流控芯片的发展正呈现三个基本特征:1)平台研究多学科交叉,2)应用研究多领域渗透,3)产业迅速崛起将成为新一代即时诊断(POCT)的主流技术;微流控反应筛选芯片在高通量药物筛选、材料合成、模拟和单细胞测序等领域显示了巨大潜力;而微流控细胞/器官芯片则有望应用于药物毒理和药理作用研究,部分替代医药研究试验动物,是细胞及微环境操控最重要的技术平台。 微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。微流控芯片内部集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。 原则上,微流控芯片作为一种“微全分析技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。目前来看,体外诊断是微流控技术的最大的应用场景,而在体外诊断中,微流控技术应用的重点在于化学发光(免疫诊断)和分子诊断中。 二、微流控的研究及产业化 微流控的理论研究兴起于20多年前,目前,理论研究准备已经非常成熟,在此,不再赘述。下面我们主要看看产业化之路 对比国内外商业化的微流控产品,国外在生化免疫、分子领域均有相对成熟的产品,其中不乏重磅级代表品种(雅培的i-STAT、Illumina的测序仪系列等);国内微流控产品的商业化相对落后,最早上市的微点生物mlabs系列等。 在产业化中,微流控一般分为以下几大类型:气压推动式微流控,离心力推动式微流控,液滴微流控,数字化微流控,纸质微流控等。 气压推动式微流控主要利用气压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像生物梅里埃的filmarray, 罗氏诊断的cobas Liat PCR System,Atlas Genetics的io,博晖创新的HPV分子诊断全自动分析仪,华迈兴微的M2微型化学发光分析系统等等都是。 离心微流控是利用离心力来实现微流控芯片中的芯片的推动,在微流控产业中也占据着重要地位,比如美国爱贝斯(Abaxis)Piccolo Xpress?即时生化检测仪,天津微纳芯科技的pointcare M,杭州霆科生物的微流控芯片农残速测仪等等。

CNG工艺计算书

东平**能源有限公司CNG加气子站工程 工艺计算书 设计公司 O一四年二月

* * *

一、工程简介 本项目为**有限公司CNG卩气子站工程,位于**省道南侧预留建筑用地,总4464m 2 (约6.7亩),设计供气能力为1.0万Nr3/d。 加气站总建筑占地面积为602.56m2,总建筑面积为602.56m2,其中站房为154.8m 2,辅助用房为86.4 m2,加气罩棚为240.0m2。站内主要配置额定排量为1000Nm/h的压缩机2台(一开一备)、4000Nm/h的卸气柱1台、储气井三口(2n3*3个)、1m3的 污水罐1台,2?40Nm/min的加气机2台。设计定员12人。 二、设备选型 1 ?压缩机 加气站设计规模1.0万Nm3/0。按正常情况考虑,本站有效加气时间为10?12 小时/天,则要求压缩机小时总排量为840?1000 Nm3/时。 本项目设置2台CNG压缩机(一开一备)。其设计参数如见下表: 压缩机设备参数表2- 2 ?加气机 根据本站设计规模及加气区布置,设置2台加气机即可满足本站工艺设计要求本项目选用加气机两台,其主要技术参数见下表。

4.污水罐 本工程设置污水罐一台,水容积V=1ri3,最高运行压力0.4MP& 由于CN罐车运来的压缩天然气比较干净,压缩机长时间使用时会产生少量污水及废油,因此1m3污水罐能够满足正常生产运行要求。其主要技术参数如下:污水罐主要技术参数表表2-4 5)储气井 本项目储气系统用于储存高压压缩天然气,以便节省给汽车充气的时间,储气方式为储气井,设置水容积为2m3勺高压储气井1组、2m3勺中压储气井2组,合计6m3 可储存压缩天然气1500Nm3储气井主要技术参数见下表: 储气井主要技术参数表表2-5 三、工艺计算 1. 基本参数 1)设计压力: CNG工艺系统设计压力:27.50 MPa放空管道为2.5MPa,排污管道0.1MPa(常

军事高技术的发展及对现代作战的影响

军事高技术的发展及 对现代作战的影响 杨胜利 科学技术的发展特别是军事高技术的发展正在军事领域引发一场深刻的变革。从20世纪80年代以来发生的屡次局部战争,特别是20世纪末发生的科索沃战争中,人们可以看出:现代战争已在很大程度上表现为高技术的较量,谁拥有军事高技术,谁就能够在战争中占据更大的主动权;现代战争已进入高技术时代。 一、军事高技术的内涵与特点 军事高技术是高技术的重要组成部分。它具有高技术的一切特征,但同时又具有其自身的特点。一般认为,军事高技术是建立在现代科学技术成就基础上,处于当代科学技术前沿,以信息技术为核心,在军事领域发展和应用的,对国防科技和武器装备发展起巨大推动作用的那部分高技术的总称。 高技术与一般技术相比,有七大特点: 1、高智力。高技术是知识密集型技术,它的发展必须依靠创造性的智力劳动,依靠富有创新意识、创新能力的高素质人才,体现了高智力的特性。比如半导体集成电路,从成本上讲,原料及能源仅占其总成本的2%,而其余98%都是其智力含量。 2、高投资。高技术的研究开发需要昂贵的设备和较长的研制周期,因而研制过程需要耗费巨额资金。据统计,目前,一般高技术企业用于研究开发的经费占其产品销售额的比例高达10-30%,而科研成果产业化的投资又比研究开发投资高出5-20倍,形成高技术产业后的设备更新投资还会越来越大。比如制造

集成电路的设备,十年之中关键设备就更新了三代,每更新一代,设备投资就要增加一个数量级。 3、高竞争。高技术的时效性决定了谁先掌握技术、谁先开发出产品并抢先投放市场或用于战场,谁就能获得优势,占据主动。为此,世界军事强国和大国都制定了高技术发展计划,试图在世界高技术发展的竞争中占有一席之地。 4、高风险。高技术竞争的失败,对企业而言,就意味着投资的失败;对国家而言,意味着国家利益将要受到损害。此外,高技术研究本身也蕴含着巨大的风险,甚至要以生命作为代价。以航天技术的发展为例,40多年来,航天技术取得了神话般的巨大成就,但其风险也高得惊人。1961年3月23日,苏联的邦达连科就成为为航天事业献身的第一人。另据英国《新科学家》杂志数据分析:目前正在组装的国际空间站,在组装过程中,发生至少一次重大失误的可能性为73.6%。 5、高效益。高技术产品是高附加值产品,其形态是知识的物化形式,所以其价值远远超过所消耗的原材料和能源的价值。实践证明,高技术成果一旦转化为市场化的产品,就能获得巨大的经济收益,一旦得到实际应用,就能产生广泛的社会影响。比如航天技术,其投资效益比高达1:14,充分体现了高效益的特点。 6、高渗透。高技术本身具有极强的综合性和技术辐射性或渗透性,隐含着巨大的技术潜力,不仅可以用于新兴产业的创立,而且可以用于传统产业的改造,成为经济、国防、科学、技术、政治、外交和社会生活等各个领域发展变化的驱动力。 7、高速度。高技术产业是目前发达国家经济中最活跃也是增长最快的经济部门。美国经济在“9 。11”事件前已连续十多年呈现高增长、低通胀趋势,而且美国GNP占世界总值的比例也由90年代初的24.2%增加到2000年的30%。这些都是以信息技术为

流量控制系统设计

目录 第一章过程控制仪表课程设计的目的意义 (2) 1.1 设计目的 (2) 1.2 课程在教学计划中的地位和作用 (2) 第二章流量控制系统(实验部分) (3) 2.1 控制系统工艺流程 (3) 2.2 控制系统的控制要求 (4) 2.3 系统的实验调试 (5) 第三章流量控制系统工艺流程及控制要求 (6) 3.1 控制系统工艺流程 (6) 3.2 设计内容及要求 (7) 第四章总体设计方案 (8) 4.1 设计思想 (8) 4.2 总体设计流程图 (8) 第五章硬件设计 (9) 5.1 硬件设计概要 (9) 5.2 硬件选型 (9) 5.3 硬件电路设计系统原理图及其说明 (13) 第六章软件设计 (14) 6.1 软件设计流程图及其说明 (14) 6.2 源程序及其说明 (16) 第七章系统调试及使用说明 (17) 第八章收获、体会 (20)

参考文献 (21)

第一章微控制器应用系统综合设计的目的意义 1.1 实验目白勺本次课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。本设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。 本次设计的主要任务是通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的液位参数设计其控制系统。设计中要求学生掌握变送器功能原理,能选择合理的变送器类型型号;掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;掌握PID调节器的功能原理,完成液位控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。通过对过程控制系统的组态和调试,使学生对《过程控制仪表》课程的内容有一个全面的感性认识,掌握常用过程控制系统的基本应用,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。 1.2课程设计在教学计划中的地位和作用 本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对 《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用,使学生加深对过去已修课程的理解,用本课程所学的基本理论和方法,运用计算机控制技术,解决过程控制领域的实际问题,为学生今后从事过程控制领域的工作打下基础。因此本课程在教学计划中具有重要的地位和作用。

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

网络监控流量及存储算法.doc

1080P、720P、4CI F、CIF所需要的理论带宽【转】 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及 视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算 方法做以先容。 比特率是指每秒传送的比特 (bit)数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码 (压缩 )后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是 0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量 就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流 (DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率, 是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流 越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用 FTP上传文件到网上往,影响上传速度的 就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从 FTP服务器上文件下载到用户电脑,影响下传 速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数 =网络带宽至少大小; 注: 监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽 (将监控点的视频信息下载到监控中心 );例:

电信 2Mbps 的 ADSL宽带, 50 米红外摄像机理论上其上行带宽 是512kbps=64kb/s,其下行带宽是 2Mbps=256kb/。 例: 监控分布在 5 个不同的地方,各地方的摄像机的路数: n=10(20 路)1 个监控中心,远程监看及存储视频信息,存储时间为30 天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为 512Kbps,即每路摄像头所需的数据传 输带宽为 512Kbps,10 路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率 ) × 10(摄像机的路数 ) ≈ 5120Kbps=5Mbps(上行带宽 ) 即: 采用 CIF视频格式各地方监控所需的网络上行带宽至少为 5Mbps;D1 视频格式每路摄像头的比特率为 1.5Mbps,即每路摄像头所需的数据传输带宽为 1.5Mbps,10 路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率 ) × 10(摄像机的路数 )=15Mbps(上行带宽 )即: 采用 D1 视频格式各地方监控所需的网络上行带宽至少为 15Mbps;720P(100万像素 )的视频格式每路摄像头的比特率为 2Mbps,即每路摄像头所需的数据传输带宽为 2Mbps,10 路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率 ) × 10(摄像机的路数 )=20Mbps(上行带宽 ) 即: 采用 720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps;1080P(200 万像素 )的视频格式每路摄像头的比特率为 4Mbps,浙江监控批发网

ABR流量控制技术

第27卷第8期 Iio1.27 他8 计算机工程 Computer Engineering 2001年8月 August 2001 ·基金项目论文·文童编号:lflllD 3428 001 8—0蚪7—03 文献标识码:A 中图分类号:TP393 面向拥塞控制的显式速率流量控制机制 孔竞飞,吴介一,张孝林 (东南大学CINIS叶『心南京210096) 播要:研究和分析了基于速率的流量控制模型.针对已有屁式速率(EPRCA)机制存在的不是,提出了一种新的控制机 ~']eRFCM 通过广域 NWAN和局域网LAN中的仿真研究表明,在反映控制机制性能的瓣时参数振荡性和栩制的鲁棒性方面,EP~Cbl要优于EPRCA。 关键词:ATM网络;拥塞控制;流量控制 An Explicit Rate Flow C0ntr0l M echanism for Congestion Control K0NG JJngfel, WU Jieyi.蜀[王^NGXiaolin (cI s Ce~er ofSouthe~tUniversi ,Naniing 21 0096)

l Abstract】In this paper,a rat~based 11o~,contmI model is s d attd a n w mech~aism ERFCM is put lbrward for insuf1%iencs,of the emsting mechanisnls gueh EPRCA.Underthe staroundings ofW AN and LAX,"simuIatiotls sh w that p -0rman。亡ofERFCM a /i advantage ol&?r one of EPRCA attwo points ofo i】I ofI and robtLsti~itv 【K w0rds】ATM network,r,c ofI Unn control; F1ow control 在局域网LAN和广域网w 环境中,ATM (异步传输 模式)都是一个重要的协议,在变化着的阿络基本结构中,它将起到一个主要的作用。在相同的物理阿络中,它支持多种业务类型和比特率j这些业务具有不同的服务质量(QoS] 需求,如信元传输延迟(CTD)、延迟变化(cDV)班及信元丢 失率(CLR)等。然而,在未来的高速多媒体通信环境中,并不清楚哪种类型的服务和应用会占主导地位。因此,对于将来的多媒体服务,作为基础结构~gATM网络应能适应于不 同的通信比特率、服务种类、通信模式等对此,ATM论 坛业务量(truffic)管理规范4 1[1。定义了5种服务类型:常比特 速率(CB R]服务、可变比特速率[VBR)服务、可用比特速率(ABR)服务、未指定比特速率CUBR)服务和受保证帧速率

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源 微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。 1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

纺织工艺计算

工艺计算方法 经用量=总经根数*(1+织缩率)*(1+捻缩率)*(1-浆伸率)*(1+其它工艺缩率)*D数/9000*(1+回丝率) 纬用量=坯布纬密*钢筘外幅*(1+捻缩率)*(1+其它工艺缩率)*D数/9000*(1+回丝率)成品的平方米克重(g/m2)={净用量*(1+染缩)+纬净用量*(1+纬向缩率)}*(1-缄量)/成品外幅 织缩率=坯布纬密*基本组织系数*(1+经纬原料不等差率+绉线增加率)=成品纬密/1+练染用坯率 各类喷水产品的用坯率(经缩) 纯锦纶丝织物 5.7% 纯涤纶丝织物8.5% 锦涤交织物7.9% 锦棉交织物7.5% 涤纶与涤棉混纺纱织物8.6% 涤纶与粘胶混纺纱织物 6.7% 涤纶经纬强捻20T以上10% 经向是弹力原料经缩在45%左右 FDY 7-8个DTY 8-10个 各类喷水产品的用坯率(纬缩) 纬向是涤纶的产品,纬缩一般在10个左右(165-150),纬纱为150D以上的加4-6个,捻度的在6-8个左右。 纬向是棉的产品,纬缩一般在5-6个左右 纬向是棉氨的产品,纬缩一般在43个左右(208-145) 超粗损耗越小 锦纶15-18 涤纶11-13 弹力锦纶15-20 低弹涤纶10-14 涤棉、涤粘纱8-10 涤棉加捻丝10-12 日产量=(转速*24小时*60分钟)/每米纬密*运转率 上浆率=实际用量*浓度*折光系数/千米丝重*100% 千米丝重=片经丝数*D数/9000 折光系数:涤纶90% 锦纶88% 坯布克重计算方法:

坯布规格190T涤塔夫68D*68D 20#*2穿*30梭门幅165cm 以下算法只适用于不加捻产品,算出来是米克重哦,当然加捻产品算克重都可以套用,如果是织造厂算原料的用量,在纬的门幅上至少+10cm,经不用加。 一、原料用量计算 定义:织一米坯布需经纬原料多少克? 1、长纤类:经用量(g/m)=总经根数*(D/9000)*1.1 纬用量(g/m)=坯布纬密*上机门幅*(D/9000)*1.1 或=成品纬密*成品门幅*(D/9000)*1.1 注:1.1=1+10%,10%为织缩率+损耗,一般FDY取1.08,DTY取1.12 例1、涤塔夫上机门幅168cm 17筘3穿坯布纬密28梭原料:63D FDY*63D FDY 求原料用量 解:经用量=168*17*3*63/9000*1.08=64.77g/m 纬用量=168*28*63/9000*1.08=35.56 g/m 即理论米克=64.77+35.56=100 g/m 例2、75DFDY+100DDTY 五枚缎12#*5入*166 坯布纬密30梭求原料用量解:经用量=12*5*166*75/9000*1.08=89.64 g/m 纬用量=30*166*100/9000*1.12=61.97 g/m 2、短纤类:经用量=0.64984*(经密/经线纱支)*门幅 纬用量=0.64984*(纬密/纬线纱支)*门幅 注:也可把短纤换成长纤,用长纤公式来计算,D=5315/S 例1、N-70D FDY*21S 133*72 59"求原料用量 解:经用量=133*59*70/9000*1.08=65.91 g/m 纬用量=0.64984*72/21*59=131.4 g/m 例2、经:N-70D DTY +30D氨纶纬:30S棉+40D氨纶86*58 59"求原料用量及原料所占比例 解:氨纶有个拉缩比,一般30D的氨纶按10-13D计算,40D按15-18D计算,70D按25D计算,拉缩比一般可取3,如40/3=13.33,按15-18算 经用量锦纶=70*86*59/9000*1.12=44.2 经用量氨纶=86*59*13/9000*1.1=8.06 纬用量棉=58*59*5313/30/9000*1.1=74.1

自动化在军事领域的应用

浅谈自动化及在现代军事中的应用 ——军事中的自动化技术一览 杨超自动化1202(理科试验班1205)3120104128 内容摘要:在历经了第二次世界大战之后,随着科学技术的迅速发展,各个 国家军队建设都产生了一些重要的变革,深刻地影响着现代军事战争的格局。其中电子、信息、计算机等多方面科学技术的突飞猛进,自动化技术就在这一过程中应运而生,在军队部队建设和发展中具有重要作用,处于不可撼动的地位。本文首先介绍了自动化的定义、基本概念及其未来的发展前景,之后比较详尽的说明了自动化技术在军事领域中四个方面的主要应用并举出相应的应用实例。 关键词:自动化军事自动化武器精确制导军事指挥自动化军事决策科学化训练、作战仿真模拟化

一、自动化简介 (一)自动化的定义 自动化是指在生产管理过程中,在没有人或极少人的参与的情况下,机器、设备或某一类系统,按照既定的要求,经过一系列方法,实现预期的目标的过程。其中的方法包括自动检测、信息处理、分析判断、操纵控制等。由此可见,自动化最重要的一点便是目标系统具有完全的自动能力。随着计算机及其相应技术的快速发展,自动化技术从中应运而生,它一方面利用其自动性能,将人类从繁重的体力劳动、费时的脑力劳动及危险恶劣的工作环境中解放出来;另一方面能极大地提高人类的劳动生产率,增强人类发展世界、改造世界的能力。总而言之,自动化的应用与发展,体现了一个国家农业、工业和国防的真正水平,更是一个国家科学技术现代化的重要标志。 (二)基本概念 在自动化这一概念产生初期,人们认为自动化室能够使用机械劳动替代人力劳作完成预期目标这一动态过程。然而,随着电子信息技术及计算机技术的飞速发展,自动化不仅仅只是帮助人们完成繁重的体力劳动,更多的是辅助或完全替代人类的脑力劳动。这是自动化发展过程中一个质的飞跃,它解放了人类更多的生产力,为经济增长带来了巨大的利润,为科技社会发展注入了一针有力的强心剂。所以我们说,自动化具有多形式、多功能、多范围的优势及特点。 (三)发展前景 正如前文所说,自动化的应用范围非常的广泛,从早期的电气、工业和国防发展到了交通、经济、建筑、能源、环境等领域,几乎无所不包。自动化的应用在广度和深度上随着电子信息技术和计算机科学的发展而不断拓展,这为自动化今后的发展提供了难能可贵的机遇。 就自动化现有的技术发展,基于个人电子计算机或军工业计算机的控制系统已成为自动化的主流,综合自动化系统具有广阔的发展前景,它具有数字化、网络化、智能化的特点,体现了当今信息时代自动化的主流发展的方向。我国自“十五”计划以来大力发展有自主知识产权的自动化产业,特别是在《“十二五”规划纲要》中,多次提出要发展信息产业、提高各领域的自动化水平。由此可见,我国的自动化技术的发展得到了国家强有力的支持。因此,在我看来,在不远的将来,自动化技术一定会给我们的生产生活带来更多意想不到的惊喜。 二、军事自动化

微流控技术的起源和展望

微流控技术的起源和展望 George M. Whitesides 摘要:微流控技术用在几十微米尺度的管道中操控流体。它已逐渐发展成为全新的领域,其影响延伸到化学合成、生物分析、光学、甚至信息技术。但是,微流控领域依然处在早期发展阶段。即使作为基础科学和技术示范,有些问题也必须得到解决:选择和关注最初的应用,制定循环发展的策略,也包括商业化。这些问题的解决还需要想象和创新。 什么是微流控?微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10-9至10-18升,1立方毫米至l立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小[1]。微流控既利用了它最明显的特征——尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 作为一项技术,微流控似乎好的不真实:至少在分析领域的主要应用中,它表现出太多的优点和太少的缺点。但是微流控还没有发展成为广泛使用的技术。为什么呢?为什么不是每个生物化学实验室都贴上“芯片实验室”的标签呢?为什么不是每个病人都用微流控家用检测系统监测自己的病情呢?答案还不明确。微流控的优势令人信服难以错过,我相信微流控技术将成为分子分析的主流方式,也许分子合成也是这样。话虽如此,微流控发展成为一项主流的新技术还需要时间和大环境的支持,这个问题的解答不仅对微流控领域是重要的,对那些正在努力去争取成功的新技术也同样重要。 微流控技术从四个领域发展而来:分子分析、生物防御、分子生物学和微电子学。首先来看分子分析。微流控技术最早起源于微量分析方法——气相色谱法,高压液相色谱法,以及用毛细管形式彻底革新了化学分析的毛细电泳法。这些方

基于PLC 的流量控制系统

辽宁工业大学 电气控制与PLC技术课程设计(论文)题目:基于PLC的流量控制系统设计 院(系):电气工程学院 专业班级:自动化112 学号: 110302032

学生姓名:王毅 指导教师:(签字) 起止时间:2014.6.30~2014.7.11 本科生课程设计(论文) 课程设计(论文)任务及评语 自动化:电气工程学院教研室:

I 本科生课程设计(论文) 摘要 随着科技的飞速发展,自控系统的应用正在不断深入,同时代替传统控制检测技术日益更新。自动控制技术可谓无所不能。 本文提出一种对液体流量进行实时精确控制的设计方案。该方案以PLC控制为基础,由上位机、PL C、电动调节阀组成。它不仅适用于流量控制,在改变动作设备后同样适用于对温度、液位、速度、高度等模拟量的控制。 论文采用文字叙述与图表相结合的方式,逐步做出解释,从而得出具体结论。更清晰的展示了设计的全过程与每个细节之间的处理方式。 关键词:PLC;自动控制;流量控制 II 本科生课程设计(论文)

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成总体结构 (2) 2.2.1 控制方案比较和确定 (2) 2.2.2 流量控制系统的组成及原理图 (3) 2.2.3 水流量系统控制流程 (4) 第3章硬件设计 (5) 3.1PLCS7-200介绍 (5) 3.2主机CPU224 (6) 3.3变频器的选择 (8) 3.4水泵电机的选择 (9) 3.5流量变送器的选择 (10) 第4章软件设计 (11) 4.1PLC程序设计 (11) 4.2系统流程图 (11) 4.3程序 (13) 第5章课程设计总结 (16) 参考文献 (17) III 本科生课程设计(论文) 第1章绪论 PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它 采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系

基于单片机的流量控制系统设计

过程控制系统 课程设计 设计题目:基于单片机的流量控制系统设计 学生姓名: 专业:测控技术与仪器 班级学号: 指导教师 设计时间:2010.6.28-2008.7.11

《过程控制系统》课程设计任务书 专业测控技术与仪器班级姓名 设计题目:基于单片机的流量控制系统设计 一、设计实验条件 过程控制系统实验室实验系统 二、设计任务 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。(2)编制流量控制程序 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间: 2 周 2、设计时间安排: 熟悉实验设备、实验、收集资料:4天 设计计算、绘制技术图纸:4天 编写课程设计说明书:5天 答辩:1天

一,流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】 在天然气工业蓬勃发展的现在,天然气的计量引起了人们的特别关注,因为在天然气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、航天航空、军事领域等也都有广泛的应用。 二,系统方案 1、方案整体思路 液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。 本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。 2、实现流程 流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。 图1 流量过程控制组成框图

微流控技术

微流控技术及其应用 摘要:微流控技术广泛应用于生化分析、疾病诊断、微创外科手术、环境检测等领域。微通道结构设计与制造、微纳尺度流体的驱动与控制、微流控器件及系统的集成与封装是该领域的3大关键技术。本文综述了微流控技术在这3个方面的发展现状及在不同领域中的应用,展望了微流控技术的发展前景,指出多相微流体的介观传输理论及跨尺度流体的性质将是今后研究的重点与热点。 1、微流控技术简介: 微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术,可广泛应用于生化分析、免疫分析、微创外科手术、环境监测等众多领域。根据美国两院院士、哈佛大学乔治·怀特塞兹(George Whitesides)教授2006年刊登在国际顶级科学期刊《科学》上的文章中的定义,微流控(Microfluidics)是指针对极微量体积流体(10-9L~10-18L)进行操控的科学与技术。实现微流体操控的主要方法就是将流体限制在一个微米甚至纳米尺度的通道中,而这些通道的制作手段起源于制作微电子处理芯片的半导体工艺流程。最早提出微流控这个概念的是1990年在瑞士Ciba-Geigy公司做研究的Andreas Manz教授,他最初的设想是将微机电(MEMS)与分析化学相结合,从而做出一个类似芯片能将各种功能集成在一起的微型分析仪器。当时,这样的系统被称为微全分析系统,英文是Miniaturized totalanalysis systems,简称为MicroTAS或μTAS。1998年,微流控技术被评为世界十大科技进展之一,发展至今,微流控已经演变成一个十分独特的前沿科学领域。微流控技术还有另一个十分形象化的名字,芯片实验室(Labonachip),就好比将实验室里对样品的各种操作流程都集成在一块小芯片上。 2001年,英国皇家化学学会为此专门推出了《芯片实验室》(LabonChip)期刊,如今该期刊已经成为国际微流控领域的顶级期刊。 2、微流控技术应用 微流控芯片的显著特点:所需样品试剂量很小,分析速度快,易于阵列化从而能够实现高通量检测、系统集成化、微型化、自动化和便携式;在单细胞或单分子研究领域,微流控芯片有着明显的优势。此外,由于样品在微纳尺度下的特殊效应,使用微流控芯片也能够开展一些独特的前沿研究。其被用于航空航天、医学、农业、生物工程、材料加工、化工工业等众多领域。 2.1 生物医学领域的应用 微纳尺度下,流体间的传质、传热和反应过程高效、易控,主要是因为: 1)短程分子扩散有利于控制化学反应进程并且能够快速达到平衡状态; 2)相对较大的界面有利于促进界面反应; 3)反应发生时只需要少量热能,散热和加热过程都容易实现,能精确控制反应温度; 4)待分析的溶液或物质需求量极微小,可以节省贵重药品消耗或有毒物质的挥发。这些特点使微流控技术应用于萃取提纯口“、病毒及细胞或大分子的分离与检测以及疾病的快速诊断口方面具有显著的优势。 2.2层流微加工技术 层流微加工是利用微流体的层流特性,通过精确地控制化学反应试剂在微通道中的传输过程,在微通道中特定区域加工或合成化学物质的新型微加工技术。

流量控制解决方案

Hillstone QoS流量控制解决方案 QoS介绍 QoS(Quality of Service)即“服务质量”。它是指网络为特定流量提供更高优先服务的同时控制抖动和延迟的能力,并且能够降低数据传输丢包率。当网络过载或拥塞时,QoS 能够确保重要业务流量的正常传输。 QoS的实现 通常来讲,实现QoS管理功能的工具包括: ?分类和标记工具 ?管制和整形工具 ?拥塞管理工具 ?拥塞避免工具 图22-1描绘了QoS的体系结构。 图22-1:QoS体系结构 如图22-1所示,数据包通过入接口进入系统后,首先会被分类和标记。在这一过程中,系统会通过管制机制丢弃一些数据包。然后,根据标记结果,数据包会被再次分类。系统会通过拥塞管理(Congection Management)机制和拥塞避免(Congection Avoidence)机制对数据包进行管理,为数据包排列优先次序并且在发生拥塞时保证高优先级数据包的顺利通过。最后,系统会将经过QoS管理的数据

包通过出接口发送出去。 分类和标记 分类和标记的过程就是识别出需进行不同处理(优先或者区分)的流量的过程。 分类和标记是执行QoS管理的第一步。分类和标记应该在和源主机尽量接近的地方进行。 分类 通常来讲,分类工具依据封装报文的头部信息对流量进行分类。为做出分类决定,分类工具需要对头部信息进行逐层深入检查。图22-2显示出头部信息的分类字段,而表22-1列出不同字段的分类标准。 图22-2:分类字段 表22-1:分类标准

标记 可携带标记的字段如下: ?第2层标记字段:802.1Q/p。 ?第3层标记字段:IP优先权和DSCP。 802.1Q/p 通过设置802.1Q头的802.1p用户优先级位(CoS)来标记以太网帧。在以太网第2层以太网帧中至于8种服务类别(0到7)可以标记。数值的分配请参阅表22-2。 表22-2:应用类型值 IP优先权和DSCP IP优先权与CoS相同,有8种服务(0到7)可以标记,请参考表22-2。 DSCP(DiffServ Code Point)是区分服务代码点。DSCP提供6位字段用于QoS标记,这6位字段是与IP优先权相同的3位,再加上接下来的ToS字段的3位。因此,DSCP值的范围是0到63。图22-3为DSCP和IP优先权位示意图。 图22-3为DSCP和IP优先权位示意图 DSCP值有两种表达方法,数字形式和关键字形式。关键字形式的DSCP值称为逐跳行为(PHB)。目前有三类已定义的PHB,分别是尽力服务(BE或者DSCP 0)、

浅析网络流量控制技术及应用

浅析网络流量控制技术及应用 摘要:有效的流量控制不仅是网络稳定、高效运行的基础,同时又是各种QoS 服务模型和技术的基础和前提。本文主要分析了网络流量控制技术以及在网络中的实际应用。 关键词:流量控制方法应用 1、引言 随着网络业务的飞速发展,网络用户越来越希望得到更好的服务。网络性能越来越成为人们关注的焦点。目前网络系统的正常运行还存在一系列的问题,最为突出的是由网络流量过大引发的网络拥塞。由于网络流量的复杂性,对于网络流量的控制无法象其它线性、非线性系统一样方便地进行控制,对于网络流量控制技术的研究仍有许多难点。 2、网络流量控制现状 据统计,P2P数据流量占因特网总流量达60%,并且在用户总数没有显著增长的情况下,P2P数据流量仍然在快速持续增长。它在改变数据网络流量突发性数学模型的同时,也影响了ISP的商业运作模式。 2.1主要危害 极度利用峰值带宽,带宽统计复用的服务模型随之失效,运营商运营成本增加;长时间高度拥塞的网络带来网络管理的困难和功能失效的危险;实时性要求较高的服务,例如V oIP、Streaming Video和Audio将面临前所未有的不确定的网络运行环境;网络拥塞导致的业务投诉增加,服务品质下降。 2.2存在困难 传统的流量控制只针对IP与端口进行控制,这在基于服务型的网络环境中是没有问题的。随着P2P端到端的应用蓬勃发展,以BT为代表的应用已经成为网络流量中的主要部分。这类应用的特点是:通讯流量巨大、种类繁多、无固定服务端口、特征变化迅速、检测困难。传统手段管理P2P应用,会面临如下局限:(1)阻塞P2P常用端口:一方面拒绝了用户的正常通信要求,降低或者违反了服务条约,另一方面导致了P2P应用转向使用随机端口和专用端口(如HTTP 80端口)躲避检查;(2)使用NAT方法隐藏用户公网IP:导致了NAT穿越技术在P2P软件中的广泛应用;(3)阻塞P2P对等端向P2P信息服务节点的通信:导致了P2P对等端使用代理服务器的方法躲避检测,也导致P2P信息服务节点向随机分布和隐藏的方向发展;(4)限制用户的上行带宽:违反了服务条约而且导致了向公网用户的数据请求量增大。

相关文档
最新文档