流量控制背压技术

流量控制背压技术
流量控制背压技术

流量控制/背压技术

2011-09-20 21:19

在千兆以太网的MAC 子层,除了支持以往的CSMA/CD介质访问控制协议外,还引入了全双工流量控制协议。其中,CSMA/CD协议用于解决共享信道的争用问题,即支持以集线器作为星型拓扑中心的共享以太网组网;全双工流量控制协议适用于交换机到交换机或交换机到站点之间的点-点连接,两点间可以同时进行发送与接收,即支持以交换机作为星型拓扑中心的交换以太网组网。

当以太网交换控制电路端口工作在半双工模式时,符合IEEE 802.3协议的载波侦听多路访问/冲突检测(CSMA/CD)算法,可以实现隐式的流量控制,即采用背压技术(Back Pressure)防止缓冲区的溢出,在发送方数据到来前采取某种动作,阻止发送方发送数据。

背压技术是交换控制电路发出一种伪碰撞信号(False Collision Signal)技术。背压技术通常根据已用缓冲区的容量比例来实现,当已用缓冲区容量达到一个预先设定的比例时,端口将根据这个阈值生成阻塞信号,而当空闲缓冲区容量超过另一个较低的比例时,端口将取消阻塞信号。在拥塞端口所在的网段内,阻塞信号的传输可以使该网段里所有的端口都能检测到冲突,等待阻塞信号结束后再传输数据帧,从而阻止更多的碰撞,暂时中止了数据的传输,使缓冲区的空间得到释放。

而在全双工网络中,交换控制电路端口不检测冲突,忽略可延迟传送的载波侦听,所以不能采用背压技术解决拥塞,需要采用显式的流量控制机制,使交换控制电路能够阻塞处于拥塞状态的站点。于是,IEEE 802.3协议为MAC控制子层提供了一个全双工流量控制结构框架,MAC控制子层是介于逻辑链路控制子层和介质访问控制子层间的可选功能。

交换控制电路要防止缓冲区溢出,可以利用MAC控制子层来控制以太网介质访问控制子层的操作。当已用缓冲区容量达到一个预先设定的阈值时,端口向全双工链路对方发出停止发送数据的请求,这个请求通过MAC控制子层产生的控制帧实现。

同样,端口可以接收由其他站点MAC控制子层产生的控制帧,控制帧夹在客户数据帧流中发送,接收方会根据帧的内容将控制帧分离出来,提交到MAC控制子层中的流量控制模块,流量控制模块解析控制帧的内容,提取帧中的控制参数,根据控制参数决定暂停发送的时间。

在全双工MAC控制框架下,流量控制机制是通过PAUSE功能实现的。PAUSE功能可以防止瞬时过载导致缓冲区溢出时不必要的帧丢失。PAUSE操作实现了一种简单的停-等式流量控制机制。如果某个端口要停止帧的接收,可以发送一个带有参数的PAUSE帧,参数指示全双工链路对方在开始发送数据前需要等待的时间。当链路对方接收到PAUSE帧后,在参数指定的时间内停止发送数据。当指定时间超出,或端口流量控制状态解除后,原拥塞端口重新发出操作参数为0的PAUSE帧,链路对方从暂停的位置继续发送数据帧。

MAC控制帧是符合IEEE 802.3协议的以太网帧,可以通过其唯一的类型域标识符(0x8808)识别。MAC控制帧在网络上的发送和接收与数据帧类似,除了前导码和帧开始符外,长度为以太网帧的最小帧长度(64字节)。MAC控制帧的'数据'字段内,前两个字节标识了MAC控制的操作码,表示帧请求的控制功能。目前协议只定义了一种操作代码,即PAUSE操作,操作代码为0x0001。操作码后是操作所需的参数,参数只用了数据字段的2个字节,'数据'字段中其余位将填充 0。PAUSE帧格式如图5-18所示。

PAUSE帧各个字段的定义如下:

前导码:与数据帧前导码相同,为连续7字节的10101010序列,用于物理层设备的同步。

帧开始符:也与数据帧帧开始符相同,为序列10101011,表示帧数据内容的开始。

目的地址:为帧发送端口的48位MAC地址,它可以是单播地址,也可以是组播地址,协议规定PAUSE的目的地址为保留的组播地址0x01-80-C2-00-00-01。

源地址:为发送PAUSE帧端口的48位MAC地址。

类型:为所有MAC控制帧保留类型0x8808。

操作码:恒为0x0001。

PAUSE操作参数:为2字节的暂停时间参数。它是PAUSE发送方请求对方停止发送数据帧的时间长度,通常为0xFFFF,时间度量单位是以当前传输速率传输512位数据所用的时间,接收方实际暂停的时间为操作参数字段内容与以当前传输速率传输512位数据所用时间的乘积。

帧校验和(FCS):为4个字节的循环冗余校验序列(CRC)字段。

微流控技术平台在IVD中的运用

一、微流控平台的定义和特点 微流控是一项融合了微电子学、材料科学、生物科学、制药以及临床医学等众多领域的综合性技术,需要跨领域跨学科的深入交流和合作。什么是微流控芯片?微型+集成+自动化。微流控芯片顺应分析仪器的发展趋势(微型化/集成化与便携化),很大程度缩短样本处理时间,并通过精密控制液体流动,实现试剂耗材的最大利用效率,把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用。 微流控芯片的发展正呈现三个基本特征:1)平台研究多学科交叉,2)应用研究多领域渗透,3)产业迅速崛起将成为新一代即时诊断(POCT)的主流技术;微流控反应筛选芯片在高通量药物筛选、材料合成、模拟和单细胞测序等领域显示了巨大潜力;而微流控细胞/器官芯片则有望应用于药物毒理和药理作用研究,部分替代医药研究试验动物,是细胞及微环境操控最重要的技术平台。 微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。微流控芯片内部集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。 原则上,微流控芯片作为一种“微全分析技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。目前来看,体外诊断是微流控技术的最大的应用场景,而在体外诊断中,微流控技术应用的重点在于化学发光(免疫诊断)和分子诊断中。 二、微流控的研究及产业化 微流控的理论研究兴起于20多年前,目前,理论研究准备已经非常成熟,在此,不再赘述。下面我们主要看看产业化之路 对比国内外商业化的微流控产品,国外在生化免疫、分子领域均有相对成熟的产品,其中不乏重磅级代表品种(雅培的i-STAT、Illumina的测序仪系列等);国内微流控产品的商业化相对落后,最早上市的微点生物mlabs系列等。 在产业化中,微流控一般分为以下几大类型:气压推动式微流控,离心力推动式微流控,液滴微流控,数字化微流控,纸质微流控等。 气压推动式微流控主要利用气压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像生物梅里埃的filmarray, 罗氏诊断的cobas Liat PCR System,Atlas Genetics的io,博晖创新的HPV分子诊断全自动分析仪,华迈兴微的M2微型化学发光分析系统等等都是。 离心微流控是利用离心力来实现微流控芯片中的芯片的推动,在微流控产业中也占据着重要地位,比如美国爱贝斯(Abaxis)Piccolo Xpress?即时生化检测仪,天津微纳芯科技的pointcare M,杭州霆科生物的微流控芯片农残速测仪等等。

气体质量流量控制器原理

LINE-TECH(莱因泰可)北京 LINE TECH自1997年成立后迈进了气体控制相关技术工程, 终于诞生出今天的M系列,MFC/MFM产品。 LINE TECH气体质量流量控制器和流量计广泛应用于:真空镀膜设备、光电产业到工业工具的表面镀膜、SPUTTER磁控溅射台、PVD、CVD、MOCVD、氧化、等离子刻蚀、离子注入,直拉式晶炉,精密半导体、燃料电池、气调储存保鲜相关设备、生物反应器、生物过程控制器、大学实验室、研究所、食品及制药产业、医疗设备、气相色谱仪等相关行业。 LINE-TECH致力于为客户提供专业的仪器仪表及精密稳定的过程控制设备。公司自成立以来,以灵活的经营机制,以“质量第一、服务第一、客户第一”的信念,为客户提供更加专业化的、优质的服务,深受各界用户的欢迎,并且在石油、化工、电力等重点行业做出了突出成绩。如今产品远销美国,澳大利亚,日本,台湾,伊朗,中国,印度等...我们将一如既往的为所有的客户提供更优质、高效的服务。属性特征 ?质量流量检测 ?不因温度和压力的波动 而失准 ?方便型的流量控制系统 ?高准确度 ?拒绝漏气 ?耐高压(90bar) ?快速的响应时间 ?高重复精度 ?性能稳定 ?宽量程比 ?高性价比 ?ce认证 ?ISO9001:2008/KS Q9001;2009 ?完善的AS售后服务

关于MFC和MFM 1.质量流量计,质量流量控制器的概念 质量流量计,即Mass Flow Meter(MFM),是一种精确测量气体流量的仪表,其测量值不因温度或压力的波动而失准,不需要温度压力补偿。 质量流量控制器,即Mass Flow Controller(MFC),不但具有质量流量计的功能,更重要的是,它能自动控制气体流量,即用户可根据需要进行流量设定,MFC自动地将流量恒定在设定值上,即使系统压力有波动或环境温度有变化,也不会使其偏离设定值。 2.质量流量计,质量流量控制器的流量单位 气体质量流量单位一般以SCCM(Standard Cubic Centimeter per Minute)和SLM(Standard Liter per Minute)来表示,亦即每分钟标准毫升、每分钟标准升。这意味着,这种仪表在不同的使用条件下,指示的流量均是标准状态下的流量。这是这种仪表和其它流量计的重要区别,也是SCCM、SLM不同于Ml/min、L/min之处。 如果需要单位时间内流过的质量(如g/min),可以查阅标准状态下的气体密度,然后作乘法就可以了。3.质量流量计/质量流量控制器的主要的优点 (1)直接测量气体的质量流量 热式质量流量计直接测量流体质量流量,输出质量流量信号,无需其他设备,如温度测试仪和压力表,也无需进行换算。 (2)无可移动部分 本身无类似转轴等的移动部件,增加了本身的可靠性,无需机械维护。 (3)可以精确的测量微小流量,采用分流装置,又可以测量大流量,而且温度,压力范围很大。 (4)测量控制的自动化 质量流量计/质量流量控制器可以将流量测量值以输出标准电信号输出。这样很容易实现对流量的数字显示,流量自动计量,数据自动记录,计算机管理等。对质量流量控制器而言,还可以实现流量的自动控制。(5)精确地定量控制流量 质量流量控制器可以精确地控制气体的给定量,这对很多工艺过程的流量控制,是用于对于不同气体的比例控制等。 (6)准确度高,重复性好 我们的产品准确度可达+-1%F.S(full scale)重复性为+-0.25%F.S(full scale) (7)体积小巧,安装方便,操作简单 (8)技术先进,符合发展潮流 4.使用流量计/质量流量控制器应注意的问题 (1)被测气体需要清洁。 注意不要造成气路堵塞,当质量流量控制器出现某些故障,或气源不洁导致传感器或分流器堵塞,或因操作失误,均有可能造成堵塞。对于的用户而言,应当特别给以注意,既要选择合适的型号,又要正确进行系统设计和正确使用。 (2)我公司产品以氮气(N2)来标定,如用其他气体时需要进行换算 5.区分使用质量流量计和质量流量控制器的场合 一般而言,仅对流量进行计量或监测时,用质量流量计;需要对流量进行控制时,用质量流量控制器。某些测量场合,用二者皆可,但质量流量控制器更好用。 6.不同气体的质量流量的换算 产品出厂一般是按氮气标定、按氮气流量确定流量规格。用同一规格的MFM/MFC测量不同的气体,当流量检测值相同时,实际的流量值可能不同。我们在说明书中给出了不同气体相对于标定气体(氮气)的质量流量转换系数。如果您使用的产品是标准出厂产品(按氮气标定显示),而需要知道实际使用气体的质量流量时,先在产品说明书中找到实际使用气体的转换系数。在测量过程中,在此系数乘以流量显示值即是实际使用气体的质量流量;反之,在确定所购产品的量程时,以实际使用气体的最大期望流量值除以转换系数,即是相应的氮气标定产品的流量值。

流量控制系统设计

目录 第一章过程控制仪表课程设计的目的意义 (2) 1.1 设计目的 (2) 1.2 课程在教学计划中的地位和作用 (2) 第二章流量控制系统(实验部分) (3) 2.1 控制系统工艺流程 (3) 2.2 控制系统的控制要求 (4) 2.3 系统的实验调试 (5) 第三章流量控制系统工艺流程及控制要求 (6) 3.1 控制系统工艺流程 (6) 3.2 设计内容及要求 (7) 第四章总体设计方案 (8) 4.1 设计思想 (8) 4.2 总体设计流程图 (8) 第五章硬件设计 (9) 5.1 硬件设计概要 (9) 5.2 硬件选型 (9) 5.3 硬件电路设计系统原理图及其说明 (13) 第六章软件设计 (14) 6.1 软件设计流程图及其说明 (14) 6.2 源程序及其说明 (16) 第七章系统调试及使用说明 (17) 第八章收获、体会 (20)

参考文献 (21)

第一章微控制器应用系统综合设计的目的意义 1.1 实验目白勺本次课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用。本设计主要是通过对典型工业生产过程中常见的典型工艺参数的测量方法、信号处理技术和控制系统的设计,掌握测控对象参数检测方法、变送器的功能、测控通道技术、执行器和调节阀的功能、过程控制仪表的PID控制参数整定方法,培养学生综合运用理论知识来分析和解决实际问题的能力,使学生通过自己动手对一个工业过程控制对象进行仪表设计与选型,促进学生对仪表及其理论与设计的进一步认识。 本次设计的主要任务是通过对一个典型工业生产过程(如煤气脱硫工艺过程)进行分析,并对其中的液位参数设计其控制系统。设计中要求学生掌握变送器功能原理,能选择合理的变送器类型型号;掌握执行器、调节阀的功能原理,能选择合理的器件类型型号;掌握PID调节器的功能原理,完成液位控制系统的总体设计,并画出控制系统的原理图和系统主要程序框图。通过对过程控制系统的组态和调试,使学生对《过程控制仪表》课程的内容有一个全面的感性认识,掌握常用过程控制系统的基本应用,使学生将理论与实践有机地结合起来,有效的巩固与提高理论教学效果。 1.2课程设计在教学计划中的地位和作用 本课程设计是为《过程控制仪表》课程而开设的综合实践教学环节,是对 《现代检测技术》、《自动控制理论》、《过程控制仪表》、《计算机控制技术》等前期课堂学习内容的综合应用,使学生加深对过去已修课程的理解,用本课程所学的基本理论和方法,运用计算机控制技术,解决过程控制领域的实际问题,为学生今后从事过程控制领域的工作打下基础。因此本课程在教学计划中具有重要的地位和作用。

气体质量流量计控制器知识

气体质量流量计控制器知识 气体质量流量控制器(MFC)与气体质量流量计(MFM),MFC是带有控制气体质量流量的装置,而MFM 是不具有控制气体质量流量功能的装置。 首先区分一下 MFC为Mass Flow Controller的缩写,即质量流量控制。流体在旋转的管内流动时会对管壁产生一个力,它是科里奥利在1832年研究水轮机时发现的,简称科氏力。质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,变送器提供的激励电压加到驱动线圈上时,振动管作往复周期振动,工业过程的流体介质流经传感器的振动管,就会在振管上产生科氏力效应,使两根振管扭转振动,安装在振管两端的拾振线圈将产生相位不同的两组信号,这两个信号差与流经传感器的流体质量流量成比例关系。计算机解算出流经振管的质量流量。不同的介质流经传感器时,振管的主振频率不同,据此解算出介质密度。安装在传感器器振管上的铂电阻可间接测量介质的温度。 质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。由于变送器是以单片机为核心的智能仪表,因此可根据上述三个基本量而导出十几种参数供用户使用。质量流量计组态灵活,功能强大,性能价格比高,是新一代流量仪表。 测量管道内质量流量的流量测量仪表。在被测流体处于压力、温度等参数变化很大的条件下,若仅测量体积流量,则会因为流体密度的变化带来很大的测量误差。在容积式和差压式流量计中,被测流体的密度可能变化30%,这会使流量产生30~40%的误差。随着自动化水平的提高,许多生产过程都对流量测量提出了新的要求。化学反应过程是受原料的质量(而不是体积)控制的。蒸气、空气流的加热、冷却效应也是与质量流量成比例的。产品质量的严格控制、精确的成本核算、飞机和导弹的燃料量控制,也都需要精确的质量流量测量。因此质量流量计是一种重要的流量测量仪表。 质量流量计可分为两类:一类是直接式,即直接输出质量流量;另一类为间接式或推导式,如应用超声流量计和密度计组合,对它们的输出再进行乘法运算以得出质量流量。 直接式质量流量计 直接式质量流量计有多种类型,如量热式、角动量式、陀螺式和双叶轮式等。 (1) 主要参数: 质量流量精度: ±0.002×流量±零点漂移 密度测量精度: ±0.003g/cm3 密度测量范围: 0.5~1.5g/cm3 温度测量范围: ±1°C (2) 传感器相关数据: 环境温度: -40~60°C

单片机的流量控制系统..

摘要 本文介绍了一种pwm结合数字pid算法在液体流量控制系统中的应用方案,系统以A VR单片机atnega32为核心,以比例电磁阀为控制对象,利用atnega32的PWM功能,采用数字PID调节实现液体流速闭坏控制,仿真结果表明采用PWM和数字PID控制液体流速具有良好的动态、稳定态,从而证明了这种设计的合理性和优越性。 关键词:A VR单片机;PWM;PID;比例电磁阀

目录 引言 (4) 第一章系统方案 (5) 1.1 方案整体思路 (5) 1.2 流程实现 (6) 1.3控制器算法与pwm波形输出 (7) 第二章系统硬件设计 (8) 2.1 总体设计框图及说明 (8) 2.2 部分外部电路设计 (8) 2.3 传感器的选择 (10) 第三章系统软件设计 (11) 3.1 程序结构说明 (11) 3.2 程序流程图及部分程序 (11) 第四章总结 (17) 致谢 (18) 参考文献 (19)

引言 流量是衡量设备的效率和经济性的重要指标。流量测量与控制是实现工业生产过程自动化的一项重要任务。 本课题的主要研究内容是对流量进行控制,主要由流量传感器采集流量信息,然后经过AD转换器将连续的模拟信号离散化后传给单片机,单片机在软件系统的控制下,根据预先的设置和预期的控制要求,通过步进电机来精确控制阀门的开度,实现对流量的精确控制。 流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。 随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行检测和控制。PC机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种流量控制解决方案。因此如何实现PC机与单片机之间的控制具有非常重要的现实意义。

网络监控流量及存储算法.doc

1080P、720P、4CI F、CIF所需要的理论带宽【转】 在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及 视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算 方法做以先容。 比特率是指每秒传送的比特 (bit)数。单位为 bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码 (压缩 )后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是 0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量 就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流 (DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率, 是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流 越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用 FTP上传文件到网上往,影响上传速度的 就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从 FTP服务器上文件下载到用户电脑,影响下传 速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数 =网络带宽至少大小; 注: 监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽 (将监控点的视频信息下载到监控中心 );例:

电信 2Mbps 的 ADSL宽带, 50 米红外摄像机理论上其上行带宽 是512kbps=64kb/s,其下行带宽是 2Mbps=256kb/。 例: 监控分布在 5 个不同的地方,各地方的摄像机的路数: n=10(20 路)1 个监控中心,远程监看及存储视频信息,存储时间为30 天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为 512Kbps,即每路摄像头所需的数据传 输带宽为 512Kbps,10 路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率 ) × 10(摄像机的路数 ) ≈ 5120Kbps=5Mbps(上行带宽 ) 即: 采用 CIF视频格式各地方监控所需的网络上行带宽至少为 5Mbps;D1 视频格式每路摄像头的比特率为 1.5Mbps,即每路摄像头所需的数据传输带宽为 1.5Mbps,10 路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率 ) × 10(摄像机的路数 )=15Mbps(上行带宽 )即: 采用 D1 视频格式各地方监控所需的网络上行带宽至少为 15Mbps;720P(100万像素 )的视频格式每路摄像头的比特率为 2Mbps,即每路摄像头所需的数据传输带宽为 2Mbps,10 路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率 ) × 10(摄像机的路数 )=20Mbps(上行带宽 ) 即: 采用 720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps;1080P(200 万像素 )的视频格式每路摄像头的比特率为 4Mbps,浙江监控批发网

ABR流量控制技术

第27卷第8期 Iio1.27 他8 计算机工程 Computer Engineering 2001年8月 August 2001 ·基金项目论文·文童编号:lflllD 3428 001 8—0蚪7—03 文献标识码:A 中图分类号:TP393 面向拥塞控制的显式速率流量控制机制 孔竞飞,吴介一,张孝林 (东南大学CINIS叶『心南京210096) 播要:研究和分析了基于速率的流量控制模型.针对已有屁式速率(EPRCA)机制存在的不是,提出了一种新的控制机 ~']eRFCM 通过广域 NWAN和局域网LAN中的仿真研究表明,在反映控制机制性能的瓣时参数振荡性和栩制的鲁棒性方面,EP~Cbl要优于EPRCA。 关键词:ATM网络;拥塞控制;流量控制 An Explicit Rate Flow C0ntr0l M echanism for Congestion Control K0NG JJngfel, WU Jieyi.蜀[王^NGXiaolin (cI s Ce~er ofSouthe~tUniversi ,Naniing 21 0096)

l Abstract】In this paper,a rat~based 11o~,contmI model is s d attd a n w mech~aism ERFCM is put lbrward for insuf1%iencs,of the emsting mechanisnls gueh EPRCA.Underthe staroundings ofW AN and LAX,"simuIatiotls sh w that p -0rman。亡ofERFCM a /i advantage ol&?r one of EPRCA attwo points ofo i】I ofI and robtLsti~itv 【K w0rds】ATM network,r,c ofI Unn control; F1ow control 在局域网LAN和广域网w 环境中,ATM (异步传输 模式)都是一个重要的协议,在变化着的阿络基本结构中,它将起到一个主要的作用。在相同的物理阿络中,它支持多种业务类型和比特率j这些业务具有不同的服务质量(QoS] 需求,如信元传输延迟(CTD)、延迟变化(cDV)班及信元丢 失率(CLR)等。然而,在未来的高速多媒体通信环境中,并不清楚哪种类型的服务和应用会占主导地位。因此,对于将来的多媒体服务,作为基础结构~gATM网络应能适应于不 同的通信比特率、服务种类、通信模式等对此,ATM论 坛业务量(truffic)管理规范4 1[1。定义了5种服务类型:常比特 速率(CB R]服务、可变比特速率[VBR)服务、可用比特速率(ABR)服务、未指定比特速率CUBR)服务和受保证帧速率

智能化流量控制系统设计要点

东北大学秦皇岛分校控制工程学院《过程控制系统》课程设计 设计题目:智能化流量控制系统设计 学专生:业: 班级学号: 指导教师: 设计时间:2013.7.1-2013.7.6

目录 一. 设计任务 (3) 二.前言 (3) 四.系统硬件设计 (5) 4.1设备的选型 (5) 4.1.1 控制器的选型 (5) 4.1.2 变频器的选型 (6) 4.1.3 流量传感器变送器的选型 (6) 4.2 硬件电路 (7) 五.软件设计 (8) 5.1控制规律的选择 (8) 5.2 MATLAB 仿真 (8) 5.2.1 传递函数的确定 (8) 5.2.2 5.2.3采用数字PID控制的系统框图 (9) 基于临界比例度法的PID参数整定 (9) 5.3 程序编写 (12) 六.结束语 (16) 七.参考文献 (17) 附页.Matlab 仿真程序及原始图表 (17)

一. 设计任务 1、系统构成:系统主要由流量传感器,PLC控制系统、对象、执行器(查找资料自己选 择)等组成。传感器、对象、控制器、执行器可查找资料自行选择,控制器选择PLC 为控制器。PLC类型自选。 2、写出流量测量与控制过程,绘制流量控制系统组成框图。 3、系统硬件电路设计自选。 4、编制流量测量控制程序:软件采用模块化程序结构设计,由流量采集程序、流量校准程序、流量控制程序等部分组成 二.前言 本课程设计来源于工业工程中对于流量的监测和控制过程,其目的是利用PLC来实现过程自动控制。目前,PLC使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制,应用领域极为广泛,涉及到所有与自动检测、自动化控制有关的工业及民用领域。PLC 通过模拟量I/O 模块和A/D、D/A 模块实现模拟量与数字量之间的转换,并对模拟量进行闭环控制。 三.系统控制方案设计 图3.1 控制系统工艺流程图

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源 微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。 1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

AF型质量流量仪是为了显示气体流速以及控制已设置的气体流速而设计的

Aalborg Instruments & Controls, Inc是世界上著名的气体质量流量计/控制气的生产厂家,其产品广泛用于微电子工艺、真空镀膜、材料科学、石油化工、医药、环保等领域 AF型质量流量控制器是为显示和控制气体流量而设计的。 设计性能: 1.不锈钢构造 2.最大压力500psig(34.5bars) 3.0~5Vdc或4~20mA信号 4.集成漏率1*10-9sml/sec (He) 5.精确度±1%F.S 6.备选总量计数器 7.具电路保护功能 工作原理: 测量的气体被分流到两个气体通道内,一支通过主要流通 管;另一支通过一根毛细感应管,两根流量管道的确保了气体流 动为粘滞流,流量的比例确保稳定不变 感应管里的两根高精度温度感应线圈被加热, 当气体流 动开始后,气体携带热量从上游线圈到下游线圈,结果使感应线圈电阻的变化同温度微分值成比例关系惠斯登桥用来检监测感应线圈的阻抗梯度对应的温度变化的线性关系,从而获得瞬间气流速率。 0~5Vdc,4~20mA输出信号的产生给出以被测量的气体的流速为基础的分子质量。 在AFC质量流量控制器里,气体流经一个带可调口径的比例电磁阀,闭环控制回路不断的监测气体的流出量,从而使气体的流速控制在设定值。 在一定范围内,流速不受温度和压力变化的影响。 AFC质量流量控制器内置一个允许气体流速在允许的范围内设定任何目标值的电磁阀,该电磁阀在通常的情况下是关闭以确保在停电时气体是关闭的。 AF质量流量控制器可控制的流量范围是10sccm~100LPM[N2],气体通过1/4”, 3/8”,可选择性的1/8”的压缩接头接通。 传感器电源输入端口受保险丝和电极性保护 漏率: 氦气最大值漏率为1*10-9smL/sec。 质量流量计系统: 整套质量流量计系统包含有控制模块、传感器、电缆,控制模块包含合适的电源供应, 3-1/2“的LED 数字显示面板和高精度的电位计.可选RS-232和RS-485标准外部接口。 在控制模块的前面板上的开关,选择LOCAL或REMOTE参考信号,类似的输出可以通过9针的快速连接器方便的获得.

流量控制器使用说明书

目录 一流量控制装置功能简介 (3) 二流量控制装置工作原理 (4) 三流量控制装置型号编制 (6) 四流量控制装置主要技术指标 (7) 五流量控制装置安装要求 (9) 六流量控制装置分体结构 (12) 七流量控制器电控部分操作说明 (13)

一、LZJH-1型流量自动控制器功能简介 流量自动控制器是由流量仪表和流量调节器组成。 图1 安装示意图 高压自动流量测控装置是工业自动化过程测控中重要执行元件,随着工业领域的自动化程度迅猛发展,正被越来越多的应用在工业生产领域中。我公司根据市场需求,参照国内外先进结构,采用先进的嵌入式微处理器技术和仪表控制技术,经与知名院校深入合作,共同研发出LZJH-1流量控制装置(简称控制器)。该控制器广泛用于油田配注、化工、科研、工业污水处理等自动测控方案中。 流量控制装置是集多功能为一体的控制装置,具有动态平衡,静态自锁功能,采用多级密封结构,, 适合应用在高压并且对于泄漏要求严格的场合,也可用于母液配比混合液体的场合,控制装置体积小、控制精度高、响应灵敏,特别适合对压力、流量、液位、温度生产过程的调节。 控制方案多元化,采用嵌入式微处理器控制、控制精度高。兼容多种信号输入方式:包括4~20mA、 0~10KHz脉冲信号、RS485信号;同时具有多种输出信号方式:包括4~20mA电流信号和遵循标志MODBUS 通讯协议的RS485信号。具有设备自检、故障自动提示、安全策略、误差自动调补、抗电磁干扰、断电自锁等功能。

二、流量控制装置工作原理 流量控制装置通过采样配套电磁流量计的实时瞬时流量信号、通过嵌入式微处理器处理和智能控制策略,自动完成管道设定流量的调整。在母液配比应用中,可通过同时采样母液流量和配比液流量,自动完成混合液的定量配比。当您将所需要的流量设定值或混合液配比参数通过人机交互部分输入嵌入式控制器中,流量控制装置便可通过比较设定值和流量计采样值,结合智能的闭环控制策略,自动控制阀门调整机构实现流量的精确调整。 流量控制装置的阀门采用升降式,为保正测控装置具有较高精度的,稳定的流量特性曲线,采用复杂的多级阀芯调节。升降执行机构采用精密丝杆、铜质蜗轮,特种电机、先进的微处理器组成,确保了控制器阀门无泄漏,流量控制精度在0.15~0.45m3/h,流量控制范围为0.5 ~10m3/h,流量控制误差在±2%。 中文液晶主显示界面显示管道中的实时瞬间流量;设定当前控制瞬时流量(控制总量或母液配比系数);流量控制装置所运行的模式(手动或自动);实时时间。同时使用4只LED灯指示系统工作,便于用户直观了解系统工作参数和状态。 流量控制装置是根据我国油田高压注水等实际使用情况,在大庆油田有关单位指导下,精心研制的,完全实现自动化均匀注水,按配注量注水。杜绝由于注水压力波动大,所引起的注水流量的严重失效,使得注水效果低下,直接影响到采收率的严重问题。 流量控制装置安装方式有水平和角式两种方式,而且具有多种规

微流控技术的起源和展望

微流控技术的起源和展望 George M. Whitesides 摘要:微流控技术用在几十微米尺度的管道中操控流体。它已逐渐发展成为全新的领域,其影响延伸到化学合成、生物分析、光学、甚至信息技术。但是,微流控领域依然处在早期发展阶段。即使作为基础科学和技术示范,有些问题也必须得到解决:选择和关注最初的应用,制定循环发展的策略,也包括商业化。这些问题的解决还需要想象和创新。 什么是微流控?微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10-9至10-18升,1立方毫米至l立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小[1]。微流控既利用了它最明显的特征——尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 作为一项技术,微流控似乎好的不真实:至少在分析领域的主要应用中,它表现出太多的优点和太少的缺点。但是微流控还没有发展成为广泛使用的技术。为什么呢?为什么不是每个生物化学实验室都贴上“芯片实验室”的标签呢?为什么不是每个病人都用微流控家用检测系统监测自己的病情呢?答案还不明确。微流控的优势令人信服难以错过,我相信微流控技术将成为分子分析的主流方式,也许分子合成也是这样。话虽如此,微流控发展成为一项主流的新技术还需要时间和大环境的支持,这个问题的解答不仅对微流控领域是重要的,对那些正在努力去争取成功的新技术也同样重要。 微流控技术从四个领域发展而来:分子分析、生物防御、分子生物学和微电子学。首先来看分子分析。微流控技术最早起源于微量分析方法——气相色谱法,高压液相色谱法,以及用毛细管形式彻底革新了化学分析的毛细电泳法。这些方

基于PLC 的流量控制系统

辽宁工业大学 电气控制与PLC技术课程设计(论文)题目:基于PLC的流量控制系统设计 院(系):电气工程学院 专业班级:自动化112 学号: 110302032

学生姓名:王毅 指导教师:(签字) 起止时间:2014.6.30~2014.7.11 本科生课程设计(论文) 课程设计(论文)任务及评语 自动化:电气工程学院教研室:

I 本科生课程设计(论文) 摘要 随着科技的飞速发展,自控系统的应用正在不断深入,同时代替传统控制检测技术日益更新。自动控制技术可谓无所不能。 本文提出一种对液体流量进行实时精确控制的设计方案。该方案以PLC控制为基础,由上位机、PL C、电动调节阀组成。它不仅适用于流量控制,在改变动作设备后同样适用于对温度、液位、速度、高度等模拟量的控制。 论文采用文字叙述与图表相结合的方式,逐步做出解释,从而得出具体结论。更清晰的展示了设计的全过程与每个细节之间的处理方式。 关键词:PLC;自动控制;流量控制 II 本科生课程设计(论文)

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成总体结构 (2) 2.2.1 控制方案比较和确定 (2) 2.2.2 流量控制系统的组成及原理图 (3) 2.2.3 水流量系统控制流程 (4) 第3章硬件设计 (5) 3.1PLCS7-200介绍 (5) 3.2主机CPU224 (6) 3.3变频器的选择 (8) 3.4水泵电机的选择 (9) 3.5流量变送器的选择 (10) 第4章软件设计 (11) 4.1PLC程序设计 (11) 4.2系统流程图 (11) 4.3程序 (13) 第5章课程设计总结 (16) 参考文献 (17) III 本科生课程设计(论文) 第1章绪论 PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它 采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系

色谱分析仪气体流量控制的操作

https://www.360docs.net/doc/9c4274571.html, HTYSP-H油色谱分析仪 色谱分析仪气体流量控制的操作 本仪器可以采用机械阀或EPC、EFC模块控制气路的流量或压力。 3.2.1机械阀控制流量的操作 载气气路先经稳压阀稳压,压力稳定在3.5kg/cm2左右(出厂时已调整好,用户不可自行调整!),然后经稳流阀输出流量恒定的载气。 调节“载气Ⅰ”或“载气Ⅱ”流量调节阀即可调节载气Ⅰ或Ⅱ的流量。

https://www.360docs.net/doc/9c4274571.html, HTYSP-H油色谱分析仪调节“柱前压”调节阀,压力表指示相应的柱前载气压力。 空气气路经稳压阀稳压,结合固定气阻输出一定流量的空气。在表压0.1Mpa时流量约为400ml/min。请参照仪器附带空气压力—流量曲线图。 空气压力—流量曲线示意图 氢气气路经稳压阀稳压,结合固定气阻输出一定流量的氢气。在表压0.1Mpa时流量约为40ml/min。请参照仪器附带氢气压力—流量曲线图。 氢气压力—流量曲线示意图

https://www.360docs.net/doc/9c4274571.html, HTYSP-H油色谱分析仪注:当装有选配的电子压力、流量测量模块时,可直接从仪器中读出压力和流量数值,无需再核对上述曲线。 3.2.2EPC&EFC模块控制流量的操作 本仪器可以选配EPC、EFC模块控制气路的流量或压力。 EPC、EFC模块操作均采用键盘或控制工作站数字设定。请参见相应说明。 相关资料下载:https://www.360docs.net/doc/9c4274571.html,/686/index.html 相关产品图集:https://www.360docs.net/doc/9c4274571.html,/686/index.html#content 产品视频介绍:https://www.360docs.net/doc/9c4274571.html,/686/index.html#video 产品说明书:https://www.360docs.net/doc/9c4274571.html,/686/file/686.pdf

基于单片机的流量控制系统设计

过程控制系统 课程设计 设计题目:基于单片机的流量控制系统设计 学生姓名: 专业:测控技术与仪器 班级学号: 指导教师 设计时间:2010.6.28-2008.7.11

《过程控制系统》课程设计任务书 专业测控技术与仪器班级姓名 设计题目:基于单片机的流量控制系统设计 一、设计实验条件 过程控制系统实验室实验系统 二、设计任务 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。(2)编制流量控制程序 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间: 2 周 2、设计时间安排: 熟悉实验设备、实验、收集资料:4天 设计计算、绘制技术图纸:4天 编写课程设计说明书:5天 答辩:1天

一,流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】 在天然气工业蓬勃发展的现在,天然气的计量引起了人们的特别关注,因为在天然气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、航天航空、军事领域等也都有广泛的应用。 二,系统方案 1、方案整体思路 液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。 本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。 2、实现流程 流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。 图1 流量过程控制组成框图

气体质量流量控制器和流量计工作原理

气体质量流量控制器和流量计工作原理 流量传感器采用毛细管传热温差量热法原理测量气体的质量流量(无需温度和压力补偿)。将传感器加热电桥测得的流量信号送入放大器放大,放大后的流量测量电压与设定电压进行比较,再将差值信号放大后去控制调节阀,通过闭环控制来控制通过的流量,并使之与设定的流量相等。分流器决定主通道的流量。左图为MFC和流量显示仪连接后的工作原理图: (将该地址复制粘贴到网叶地址栏里) 控制器输出的流量检测到的电压与流过通道的气体质量成正比。满量程检测输出电压为5VDC。气体质量流量控制器的检测范围为2~100%满刻度(量程比为50:1),流量分辨率为0.1%满刻度。 注意: 气体质量流量控制器的“阀控”线置于“清洗”位时也可以当成气体质量流量计使用。这时,流量检测输出电压的输出值可能达到10VDC以上。需要注意的是,一旦输出电压超过5VDC,流量检测电压和实际通过的流量不成线性对应关系。清洗时,流量显示是不准确的,而且还可能出现流量增大、显示减小的现象,但这些不会损坏质量流量控制器。 2、气体质量流量计和气体质量流量控制器结构

(将该地址复制粘贴到网叶地址栏里) 气体质量流量计含流量传感器、分流器通道和流量放大、线性化及温度补偿电路组成。增加电磁阀和PID控制电路就构成了流量控制器。 3、气体质量流量控制器和气体质量流量计的应用范围 MFC和MFM可广泛地应用于石油化工、半导体和集成电路、特种材料学科、医药、环保和真空等多种领域的科学研究和生产中,其典型应用有:电子工艺设备,如氧化、CVD、扩散、外延、等离子蚀刻、离子注入和溅射,以及微反应装置、配气和混气系统、镀膜设备、光纤熔炼、气相色谱仪以及其它分析仪器。 应用对象:质量流量控制器应用系统集成商、特殊气体厂商、真空元件供应商、真空系统集成商、特殊气体厂商、真空元件供应商、真空系统集成商、电池系统集成商、生化系统集成商、气体装配流水线集成商、大学实验室、气体公司、研

微流控技术

微流控技术及其应用 摘要:微流控技术广泛应用于生化分析、疾病诊断、微创外科手术、环境检测等领域。微通道结构设计与制造、微纳尺度流体的驱动与控制、微流控器件及系统的集成与封装是该领域的3大关键技术。本文综述了微流控技术在这3个方面的发展现状及在不同领域中的应用,展望了微流控技术的发展前景,指出多相微流体的介观传输理论及跨尺度流体的性质将是今后研究的重点与热点。 1、微流控技术简介: 微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术,可广泛应用于生化分析、免疫分析、微创外科手术、环境监测等众多领域。根据美国两院院士、哈佛大学乔治·怀特塞兹(George Whitesides)教授2006年刊登在国际顶级科学期刊《科学》上的文章中的定义,微流控(Microfluidics)是指针对极微量体积流体(10-9L~10-18L)进行操控的科学与技术。实现微流体操控的主要方法就是将流体限制在一个微米甚至纳米尺度的通道中,而这些通道的制作手段起源于制作微电子处理芯片的半导体工艺流程。最早提出微流控这个概念的是1990年在瑞士Ciba-Geigy公司做研究的Andreas Manz教授,他最初的设想是将微机电(MEMS)与分析化学相结合,从而做出一个类似芯片能将各种功能集成在一起的微型分析仪器。当时,这样的系统被称为微全分析系统,英文是Miniaturized totalanalysis systems,简称为MicroTAS或μTAS。1998年,微流控技术被评为世界十大科技进展之一,发展至今,微流控已经演变成一个十分独特的前沿科学领域。微流控技术还有另一个十分形象化的名字,芯片实验室(Labonachip),就好比将实验室里对样品的各种操作流程都集成在一块小芯片上。 2001年,英国皇家化学学会为此专门推出了《芯片实验室》(LabonChip)期刊,如今该期刊已经成为国际微流控领域的顶级期刊。 2、微流控技术应用 微流控芯片的显著特点:所需样品试剂量很小,分析速度快,易于阵列化从而能够实现高通量检测、系统集成化、微型化、自动化和便携式;在单细胞或单分子研究领域,微流控芯片有着明显的优势。此外,由于样品在微纳尺度下的特殊效应,使用微流控芯片也能够开展一些独特的前沿研究。其被用于航空航天、医学、农业、生物工程、材料加工、化工工业等众多领域。 2.1 生物医学领域的应用 微纳尺度下,流体间的传质、传热和反应过程高效、易控,主要是因为: 1)短程分子扩散有利于控制化学反应进程并且能够快速达到平衡状态; 2)相对较大的界面有利于促进界面反应; 3)反应发生时只需要少量热能,散热和加热过程都容易实现,能精确控制反应温度; 4)待分析的溶液或物质需求量极微小,可以节省贵重药品消耗或有毒物质的挥发。这些特点使微流控技术应用于萃取提纯口“、病毒及细胞或大分子的分离与检测以及疾病的快速诊断口方面具有显著的优势。 2.2层流微加工技术 层流微加工是利用微流体的层流特性,通过精确地控制化学反应试剂在微通道中的传输过程,在微通道中特定区域加工或合成化学物质的新型微加工技术。

相关文档
最新文档