因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题
因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题 姓名:

1.选择题

(1)方程(x -16)(x +8)=0的根是( )

A .x 1=-16,x 2=8

B .x 1=16,x 2=-8

C .x 1=16,x 2=8

D .x 1=-16,x 2=-8

(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )

A .x =

2

1 B .x =

2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( )

A .x 1=53,x 2=3

B .x =53

C .x 1=-53,x 2=-3

D .x 1=5

3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )

A .y 1=5,y 2=-2

B .y =5

C .y =-2

D .以上答案都不对

(5)方程(x -1)2-4(x +2)2=0的根为( )

A .x 1=1,x 2=-5

B .x 1=-1,x 2=-5

C .x 1=1,x 2=5

D .x 1=-1,x 2=5

(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4

(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )

A .5

B .5或11

C .6

D .11

(8)方程x 2-3|x -1|=1的不同解的个数是( )

A .0

B .1

C .2

D .3

2.填空题

(1)方程t (t +3)=28的解为_______.

(2)方程(2x +1)2+3(2x +1)=0的解为__________.

(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.

(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.

(5)方程x (x -5)=5 -x 的解为__________.

3.用因式分解法解下列方程:

(1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0;

(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0.

4.用适当方法解下列方程:

(1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0;

(5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9;

(7)(1+2)x 2-(1-2)x =0; (8)5x 2

-(52+1)x +10=0;

(9)2x 2-8x =7; (10)(x +5)2-2(x +5)-8=0.

5.解关于x 的方程:

(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;

(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.

6.已知x 2+3xy -4y 2=0(y ≠0),试求y

x y x +-的值.

7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.

8.请你用三种方法解方程:x (x +12)=864.

9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.

10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.

11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x

2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.

当y =1时,x 2-1=1,x 2=2,∴x =±2.

当y =4时,x 2-1=4,x 2=5,∴x =±5.

∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.

以上方法就叫换元法,达到了降次的目的,体现了转化的思想.

(1)运用上述方法解方程:x 4-3x 2-4=0.

(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗?

(完整版)因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、 2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷2222211111(1)(1)(1)(1)(1)234910 - --???--

因式分解练习题(公式法)

公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、 44411681a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+

题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷22222 11111(1)(1)(1)(1)(1)234910- --???--

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

因式分解公式法、十字相乘法教师版

2、运用公式法进行因式分解 【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±?+()()μ 补充:欧拉公式: 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。 解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()() 由此可得211120 23a a b m b +=-+==???????()()()

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

《公式法因式分解》教学设计

《公式法因式分解》教学设计 永年县第八中学——胡平亮 一、教学内容:冀教版七年级数学第十一章公式法分解因式 二、教学目标: 知识与技能 1、经历逆用平方差公式的过程. 2、会运用平方差公式,并能运用公式进行简单的分解因式. 过程与方法 1、在逆用平方差公式的过程中,培养符号感和推理能力. 2、培养学生观察、归纳、概括的能力. 情感与价值观要求: 在分解过程中发现规律,并能用符号表示,从而体会数学的简捷美;让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战;勇于探索的精神和善于观察、大胆创新的思维品质。 三、教学重点: 利用平方差公式进行分解因式 四、教学难点: 领会因式分解的解题步骤和分解因式的彻底性。 五、教学准备: 深研课标和教材,分析学情,制作课件 六、教学过程; 一、知识回顾 1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? (1)、(2x-1)2=4x2-4x+1 否 (2)、 3x2+9xy-3x=3x(x+3y-1) 是 (3)、4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 否 2、把下列各式进行因式分解

(1). a3b3-a2b-ab (2)(3x+y)(3x-y) (3)、(x+5)(x-5) 利用一组整式的乘法运算复习平方差公式,为探究运用平方差公式进行分解因式打下基础。 二、导入新课: 你能把多项式:x2 -25、9x2 -y2分解因式吗? 利用一组运用平方差公式分解因式的习题,引导学生利用逆向思维去探究如何分解 a2- b2类的二次二项式。学生从对比整式的乘法去探索分解因式方法,可以感受到这种互逆变形以及它们之间的联系。 三、探究与交流 a2- b2=(a+b)(a-b) (1)用语言怎样叙述公式? (2)公式有什么结构特征? (3)公式中的字母a、b可以表示什么?引导学生观察平方差公式的结构特征, 学生在互动交流中,既形成了对知识的全面认识,又培养了观察、分析能力以及合作交流的能力。 判断:下列多项式能不能运用平方差公式分解因式? (1) m2-1 (2)4m2-9 (3)(3)4m2+9 (4)(4)x2-25y + (5) -x2-25y2 (6) -x2-25y2 通过这一组判断,使学生加深理解和掌握平方差公式的结构特征,既突出了重点,也培养了学生的应用意识。 四、体验新知: (A)通过自学例1: 分解因式(1)25-16x2 (2)9a2 -1/4b2 引导学生得出分解因式的一般步骤,向学生渗透“化归”思想。 要让学生明确: (1)要先确定公式中的a和b; (2)学习规范的步骤书写。 (B)例2、分解因式9(m+n)2-(m-n)2

因式分解的常用方法及练习题

因式分解的常用方法 第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a -b) = a 2-b 2 (2) 完全平方公式:(a ±b)2 = a 2±2ab+b 2 (3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2) (4) 立方差公式:a 3-b 3=(a -b)(a 2+ab+b 2) (5)完全立方公式:(a±b)3=a 3±3a 2b +3ab 2±b 3 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2; (7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。 解:原式=)()(bn bm an am +++ =)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-22 分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 例4、分解因式:2222c b ab a -+- 解:原式=)()(22ay ax y x ++- 解:原式=222)2(c b ab a -+-

因式分解法解一元二次方程练习题及答案(汇编)

因式分解法解一元二次方程练习题 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;

解一元二次方程练习题汇编

一元二次方程练习题 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2 (21)3x +=; (3)2 (61)250x --=. (4)2 81(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2)21 (31)644 x +=; (3)2 6(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ 4. 填空 (1)28x x ++( )=(x + )2 . (2)22 3x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2 . 5. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程

1).210x x +-= 2).23610x x +-= 3).21 (1)2(1)02 x x ---+= 7. 方程22 103 x x - +=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. 12. 用适当的方法解方程 (1)2 3(1)12x +=; (2)2 410y y ++=; (3)2884x x -=; (4)2 310y y ++=. 13. 已知关于x 的一元二次方程2 2 (21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .

解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 5.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2 -5x=2. (2)x 2 +8x=9 (3)x 2 +12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

因式分解分类练习题(经典全面)

因式分解练习题(提取公因式) 平昌县得胜中学 任 璟(编) 专项训练一:确定下列各多项式的公因式。 1、ay ax + 2、36mx my - 3、2410a ab + 4、2 155a a + 5、2 2 x y xy - 6、2 2 129xyz x y - 7、()()m x y n x y -+- 8、()()2 x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。 1、22____()R r R r ππ+=+ 2、222(______)R r πππ+= 3、2222121211 ___()22 gt gt t t +=+ 4、2215255(_______)a ab a += 专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()2 2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121 () ___() ()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。 1、nx ny - 2、2a ab + 3、3246x x - 4、282m n mn + 5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+ 8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+ 11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +- 13、3222315520x y x y x y +- 14、432163256x x x --+ 专项训练五:把下列各式分解因式。 1、()()x a b y a b +-+ 2、5()2()x x y y x y -+- 3、6()4()q p q p p q +-+ 4、()()()()m n P q m n p q ++-+- 5、2()()a a b a b -+- 6、2()()x x y y x y --- 7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+ 9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+ 12、()()()a x a b a x c x a -+---

因式分解 公式法(一)

因式分解——公式法(一) 一、教学目标: (一)知识与技能: 1.使学生了解运用公式法分解因式的意义; 2.会用平方差公式进行因式分解; 3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式. (二)过程与方法: 1.发展学生的观察能力和逆向思维能力; 2.培养学生对平方差公式的运用能力。 (三)情感与态度: 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。 二、教学重点和难点: 1.教学重点:利用平方差公式分解因式. 2.教学难点:领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,?对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 三、教学方法:采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维. 四、教学用具:多媒体 五、教学过程: 一知识回顾: 1 什么叫多项式的分解因式? 2 分解因式和整式乘法有何关系? 3 我们学了什么方法进行因式分解?

练习1:根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么? 1.(2x-1)2=4x2-4x+1 2. 3x2+9xy-3x=3x(x+3y-1) 3.4x2-1-4xy+y2=(2x+1)(2x-1)-y(4x-y) 练习2把下列各式进行因式分解 (1). a3b3-a2b-ab (2). -9x2y+3xy2-6xy 二观察探讨,体验新知 在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= - (2)(a+b)(a-b) = () (3) x2-25 = (4) a2-b2= 知识探索 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 公式的结构特征:什么形式的多项式能用平方差公式进行分解 下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式。 (1) m2-1 (2)4m2-9 (3)4m2+9 (4)x2-25y 2

因式分解的方法练习题

分解因式 (1)nx ny - (2)2a ab + (3)3246x x - (4)282m n mn + (5)23222515x y x y - (6)12xyz-9x 2y 2 (7)3a 2y-3ay+6y (8)a 2b-5ab+9b (9)-x 2+xy-xz (10)-24x 2y-12xy 2+28y 3 (11)-3ma 3+6ma 2-12ma (12)56x 3yz+14x 2y 2z-21xy 2z 2 (13)15x 3y 2+5x 2y-20x 2y 3 (14)-16x 4-32x 3+56x 2 (15)(m+n)(p+q)-(m+n)(p-q) (16)2()()a a b a b -+- (17)2()()x x y y x y --- (18)()()p x y q y x --- (19)(2)(23)3(2)a b a b a a b +--+ (20)2()()()x x y x y x x y +--+ (21)(3)2(3)m a a -+- (22)()()()a b a b b a +--+ (23)()()()a x a b a x c x a -+--- (24)333(1)(1)x y x z --- (25)22()()ab a b a b a --+- (26)()()mx a b nx b a --- (27)(2)(23)5(2)(32)a b a b a b a b a ----- (28)(3)(3)()(3)a b a b a b b a +-+-- (29)2()()a x y b y x -+- (30)232()2()()x x y y x y x ----- (31)32 ()()()()x a x b a x b x --+--

解一元二次方程练习题公式法

解一元二次方程练习题——公式法 一.填空题。(每小题5分,共25分) 1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________. 2.方程a x2+bx+c=0(a≠0)有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.若方程3x2+bx+1=0无解,则b应满足的条件是________. 4.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________. 5.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________. 二.选择题。(每小题5分,共25分) 6.用公式法解方程4y2=12y+3,得到() A... D. 7.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个 B.1个 C.2个 D.3个 8.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是() A、k>-1 B、k>1 C、k≠0 D、k>-1且k≠0 9.下列方程中有两个相等的实数根的是() A、3x2-x-1=0; B、x2-2x-1=0; C、9x2=4(3x-1); D、x2+7x+15=0. 10.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(). A. 4或-2 B. -4或2 C. 4 D.-2 11.(20分)用公式法解方程 (1)x2+15x=-3x; (2)x2+x-6=0; (3)3x2-6x-2=0; (4)4x2-6x=0

公式法因式分解练习

运用公式法分解因式 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解. 例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4. 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止. 例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4. 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。 例5、 分解因式:(1)-x 2+(2x-3)2; (2)(x+y)2+4-4(x+y). 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1). 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每个因式都不能再分解为止。 例7、 分解因式:(x 2+4)2-16x 2. 练习: 1、多项式2244x xy y -+-分解因式的结果是( ) (A)2(2)x y - (B)2(2)x y -- (C)2(2)x y -- (D)2()x y + 2、 41x -的结果为( ) A.22(1)(1)x x -+ B.22(1)(1)x x +- C.2(1)(1)(1)x x x -++ D.3(1)(1)x x -+ 3、222516a kab a ++是一个完全平方式,那么k 值为( )

初中数学 因式分解练习题(公式法)

因式分解习题(二)公式法分解因式 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1、24x - 2、29y - 3、21a - 4、224x y - 5、2125b - 6、222x y z - 7、2240.019 m b - 8、2219 a x - 9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q - 13、2422a x b y - 14、41x - 15、4416a b - 16、4 4411681 a b m - 题型(二):把下列各式分解因式 1、22()()x p x q +-+ 2、 22(32)()m n m n +-- 3、2216()9()a b a b --+ 4、229()4()x y x y --+ 5、22()()a b c a b c ++-+- 6、224()a b c -+ 题型(三):把下列各式分解因式 1、53x x - 2、224ax ay - 3、322ab ab - 4、316x x - 5、2433ax ay - 6、2(25)4(52)x x x -+- 7、324x xy - 8、343322x y x - 9、4416ma mb - 10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1、证明:两个连续奇数的平方差是8的倍数。 2、计算⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷22222 11111(1)(1)(1)(1)(1)234910- --???--

解一元二次方程练习题配方法

. 解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() A.2 B.-2 C. D. 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数 10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 (3)x2+12x-15=0 (4) 4 1 x2-x-4=0 11.用配方法求解下列问题 (1)求2x2-7x+2的最小值; (2)求-3x2+5x+1的最大值。 一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0 1 42= - x2、2 )3 (2= - x

因式分解公式法

因 式 分 解 公式法 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。 1.利用平方差公式因式分解:()()b a b a b a -+=-2 2 ①条件:两个二次幂的差的形式; ②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式; ③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。 2.利用完全平方公式因式分解:()2 2 22b a b ab a ±=+± 注意: ①是关于某个字母(或式子)的二次三项式; ②其首尾两项是两个符号相同的平方形式; ③中间项恰是这两数乘积的2倍(或乘积2倍的相反数); ④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。 ⑤在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号. ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.

典型例题分析: 利用平方差公式: 例1. 用平方差公式分解因式: (1)2 2 )(9y x x -+-; (2)2233 1n m -.

例2.分解因式: (1)ab b a -5; (2))()(4 4 n m b n m a +-+ (3)2 2 2 2 )23()32(4y x m y x m ---; (4)b a b a 2418321822+-- 例3. 简算 (1) 226778- (2)22991001- 例4. 解方程:.36)321()321(2 2 =--+x x 【拓展提升】 例5. 分解因式:(1)8 8y x +-; (2) 2 2 2 16)4(x x -+. 例6. 1)12 ()12)(12)(12(32 3 2 +++++Λ的个位数字是 . 例7.若12 48 -能被60与70之间的两个整数整除,这两个数是 . 针对性训练: 1. 若)2)(2)(4(162 x x x x n -++=-,则n 的值是( ) A. 6 B. 4 C. 3 D. 2 2. 把多项式2 22 22 4)(b a b a -+分解因式的结果是( ) A. 222)4(ab b a ++ B. 2 22)4(ab b a ++ C. )4)(4(2 2 2 2 ab b a ab b a -+++ D. 22)()(b a b a -+ 3. 分解因式: (1)2 2536x -; (2)2201.094n m +- ; (3)624 9 8116x y -; (4)224)32(x y x --

因式分解法解一元二次方程练习题

因式分解法解一元二次方程练习题 姓名: 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2 -(52+1)x +10=0; (9)2x 2-8x =7; (10)(x +5)2-2(x +5)-8=0.

相关文档
最新文档