无线电频谱和波段划分

无线电频谱和波段划分
无线电频谱和波段划分

政府、运营商

到会单位:工信部科技司、电信研究院

一、GSM900/1800 双频段数字蜂窝移动台

核准频率范围:

Tx:885~915MHz/1710~1785MHz

Rx:930~960MHz/1805~1880MHz

说明:

1800MHz移动台传导杂散发射值:

1.710~1.755GHz≤-36dBm 1.755~1

2.75GHz≤-30dBm

二、GSM900/1800 双频段数字蜂窝基站.

核准频率范围:

Tx::930~960MHz/1805~1880MHz

Rx::885~915MHz/1710~1785MHz

说明:1800MHz基站传导杂散发射限值:

1805~1850MHz ≤-36dBm/30/100kHz

1852~1855MHz ≤-30dBm/30kHz

1855~1860MHz ≤-30dBm/100kHz

1860~1870MHz ≤-30dBm/300kHz

1870~1880MHz ≤-30dBm/1MHz

1880~12.75GHz ≤-30dBm/3MHz

1710~1755MHz ≤-98dBm/100kHz

三、GSM直放机

核准频率范围:

下行:930~960MHz/1805~1880MHz

上行:885~915MHz/1710~1785MHz

说明:

上行885~909MHz、909~915MHz;

下行930~954MHz、954~960MHz分别测试。

其带外也是分别指885~909MHz、909~915MHz;930~954MHz、954~960MHz的带外。

四、800MHz CDMA数字蜂窝移动台

准频率范围:

Tx:825~835MHz

Rx:870~880MHz

五、800MHz CDMA数字蜂窝基站

核准频率范围:

Tx:870~880MHz

Rx:825~835MHz

说明:

关于800MHz频段CDMA系统基站在带外各频段杂散发射的核准限值:

频率范围测试带宽极限值检波方式

9kHz~150kHz 1kHz -36dBm 峰值

150kHz~30MHz 10kHz -36dBm 峰值

30MHz~1GHz 100kHz -36dBm 峰值

1GHz~12.75GHz 1MHz -36dBm 峰值

806MHz~821MHz 100kHz -67dBm 有效值

885MHz~915MHz 100kHz -67dBm 有效值

930MHz~960MHz 100kHz -47dBm 峰值

1.7GHz~1.92GHz 100kHz -47dBm 峰值

3.4GHz~3.53GHz 100kHz -47dBm 峰值

发射工作频带两边各加上1MHz过渡带内的噪声电

平 100kHz -22dBm 有效值

六、800MHz CDMA直放机

核准频率范围:

上行:825~835MHz

下行:870~880MHz

说明:

800MHz频段CDMA系统直放机在带外各频段杂散发射的核准限值

频率范围测试带宽极限值检波方式

9kHz~150kHz 1kHz -36dBm 峰值

150kHz~30MHz 10kHz -36dBm 峰值

30MHz~1GHz 100kHz -36dBm 峰值

1GHz~12.75GHz 1MHz -30dBm 峰值

806MHz~821MHz 100kHz -67dBm 有效值

885MHz~915MHz 100kHz -67dBm 有效值

930MHz~960MHz 100kHz -47dBm 峰值

1.7GHz~1.92GHz 100kHz -47dBm 峰值

3.4GHz~3.53GHz 100kHz -47dBm 峰值

发射工作频带两边各加上1MHz过渡带内的噪声电

平 100kHz -22dBm 有效值

七、调频收发信机

核准频率范围:

调频收发信机使用的频率范围为:

31~35MHz、138~167MHz、351~358MHz、358~361MHz 、361~368MHz、372~379MHz、379~382MHz 382~389MHz 、403~420MHz、450~470MHz。

八、无线寻呼发射机

核准频率范围:

138~167MHz、279~281MHz

九、模拟集群基站和移动台

核准频率范围:

移动台:351~358MHz、372~379MHz、806~821MHz

基站:361~368MHz、382~389MHz、851~866MHz

十、数字集群基站和移动台

核准频率范围:

TX:851~866MHz

RX:806~821MHz

移动台:TX:806~821MHz RX:851~866MHz

说明:

1. 数字集群包括TETRA和iDEN两种体制。

2. 数字集群基站及移动台在测试时要由生产厂商提供提供专门的测试软件来配合测试,控制被测设备进入测试状态。如不能提供测试软件的要提供被测设备的控制代码以进行测试。

十一、点对点扩频通信设备

核准频率范围:

336~344MHz 2.4~2.4835GHz 5.725~5.850GHz

说明:需提供天线方向图和天线增益。

十二、LMDS宽带无线接入通信设备

核准频率范围:

上行:25.757~26.765GHz

下行:24.507~25.515GHz

说明:中心站与外围站按两个型号进行测试,需分别提供样品。

十三、3.5GHz无线接入通信设备

核准频率范围:

上行:3400~3430MHz

下行:3500~3530MHz

说明:

中心站与外围站按两个型号进行测试,需分别提供样品。

十四、2.4GHz短距离微功率设备

核准频率范围:

2.4~2.4835GHz

核准频率范围:

223.025MHz~235.000MHz、821MHz~870MHz

十七、数字微波接力通信机

核准频率范围:

1.5GHz频段:1427~1525MHz

4.0GHz频段:3600~4200MHz

5.0GHz频段:4400~5000MHz

6.0GHz频段:5925~6425MHz(L) 6425~7110MHz(U)

7.0GHz频段:7125~7425MHz(L) 7425~7725MHz(U)

8.0GHz频段:7725~8275MHz(L) 8275~8500MHz(M)

11.0GHz频段:10700~11700MHz

13.0GHz频段:12750~13250MHz

14.0GHz频段:14249~14501MHz

15.0GHz频段:14500~15350MHz

18.0GHz频段:17700~19700MHz

23.0GHz频段:21200~23600MHz

说明:

1. 1~30GHz微波接力设备的频段范围、信道划分、设备容量及射频波道配

2. 设备申请时要注明其调制方式、工作频段、输出功率、设备容量等信息。

十八、PHS无线接入系统

核准频率范围:1900~1915MHz

说明:

PHS无线接入系统(包括基站、手机及中继站等设备)在测试时一定要设置为测试模式。十九、DECT无线接入系统

核准频率范围:

1905~1920MHz

核准频率范围:

模拟无绳电话:45~45.475MHz/48~48.475MHz

数字无绳电话:1915~1920MHz 、2.4~2.4835GHz 二十一、海事卫星地球站

核准频率范围:

TX:1626.5~1646.5MHz

RX:1525.0~1545.0MHz

二十二、短波单边带设备

核准频率范围:

1.6~29.999MHz

二十四、调频广播发射机

核准频率范围:

87~108MHz

二十五、中波调幅广播设备

核准频率范围:

535~1606.5kHz.

二十六、电视发射设备

VHF频段:48.5MHz~72.5MHz

76MHz~84MHz

167MHz~223MHz

UHF频段:470MHz~566MHz

606MHz~806MHz

二十七、多路微波分配系统

核准频率范围:2535~2599MHz

GSM900频率划分与频点说明

其他说明:

(1) EGSM频段为GSM的扩展频段。能扩展频段的公司为中国移动公司;目前部分省(市)移动公司已将使用频率扩展到EGSM频段;

(2)目前国家无线电管理委员会核准的GSM频率范围是上行:885~915MHZ,下行:930~960MHZ。

DCS1800频率划分与频点说明

其他说明:

(1)早期移动频段的上行、下行的划分带宽为10MHZ(上行1710~1720MHZ,下行1805~1815MHZ),后将频段扩展为20MHZ。

(2)虽然早期在频段规划中的全频段为上行1710~1785MHZ下行1805~1880MHZ,但在3G的频段划分中将1755~1785MHZ,1850~1880MHZ重新划分为3G的扩展频段。

IS95 CDMA频率划分

其他说明:

(1)下行频率与上行频率一一对应,因IS95中工作频率带宽为1.23MHZ,故采用的频点间隔为41,考虑到频带保护,规划用频点为283、242、201、160、119、78和37。

我国3G的频率划分(信部无[2002]479号)

其他说明:

PHS频段划分

其他说明:

WLAN频段划分

无线电频谱和波段划分

段号频段名称频段范围

(含上限,不含下限)波段名称波长范围

(含上限,不含下限)

1极低频(ELF)3~30赫(Hz)极长波100~10兆米

2超低频(SLF)30~300赫(Hz)超长波10~1兆米

3特低频(ULF)300~3000赫(Hz)特长波100~10万米

4甚低频(VLF)3~30千赫(KHz)甚长波10~1万米

5低频(LF)30~300千赫(KHz)长波10~1千米

6中频(MF)300~3000千赫(KHz)中波10~1百米

7高频(HF)3~30兆赫(MHz)短波100~10米

8甚高频(VHF)30~300兆赫(MHz)超短波10~1米

9特高频(UHF)300~3000兆赫(MHz)分米波微波10~1分米10超高频(SHF)3~30吉赫(GHz)厘米波10~1厘米

11极高频(EHF)30~300吉赫(GHz)毫米波10~1毫米

12至高频300~3000吉赫(GHz)丝米波10~1丝米

无线电通信技术的应用现状与发展趋势

无线电通信技术的应用现状与发展趋势 发表时间:2018-12-18T11:43:54.620Z 来源:《基层建设》2018年第31期作者:张斌 [导读] 摘要:随着经济社会的快速发展,加快了信息化的脚步,在社会的各个领域无线通信技术也被广泛的使用,它让人们的生活效率更高、质量更好、内容更充实。 陕西烽火电子股份有限公司陕西宝鸡 721006 摘要:随着经济社会的快速发展,加快了信息化的脚步,在社会的各个领域无线通信技术也被广泛的使用,它让人们的生活效率更高、质量更好、内容更充实。无线电通信技术和有线电通信相比,具有不用架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等优点,备受市场的青睐。现在人们生活的方方面面都离不开无线通信技术。无线电通信在高科技信息化时代拥有更大的发展机会。本文主要从无线电波的来源开始,对无线电通信技术目前的情况及其发展进行了论述。 关键词:无线电通信技术;应用;现状;趋势 随着当前无线电通信过程中的各个发展阶段,其在发展中的各种应用使得其成为当前信息技术发展过程中的主要手段和应用过程。随着当前人们对信息技术的要求不断增加,无线电通信技术的普及已成为社会发展的必然趋势,其在发展过程中的普及化只是一个时间问题。在通信方法随着当前科学技术不断的变化过程中,无线电通信技术愈来愈成为当前社会发展过程中的主要通信手段,拥有者广阔的市场。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这就使得我们在研究和开发的过程中对其展开全方位的施工方式,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。 1.无线通信技术 无线通信技术包括无线基站、无线终端、应用管理服务器三部分组成,按照传输距离可以分为基于IEEE802.15 的无线个域网(WPAN)、基于IEEE802.11 的无线局域网(WLAN)、基于IEEE802.16 的无线城域网(WMAN)、基于IEEE802.20 的无线广域网(WWAN)等四类。无线通信技术按照不同的要求,可以划分为不同的类型。例如,按照移动性可以划分为移动接入式和固定接入式;按照带宽可以分为宽带无线接入和窄带无线接入;按照传输距离可以分为长距离无线接入和短距离无线接入等。 2.无线通信技术的历史 随着经济和社会的不断发展,对信息化技术的要求越来越高。无线通讯技术的创新不断涌现,并在社会中得到广泛应用。从而促进人们生活方式、工作方式、沟通方式、管理方式等发生重大改变,对人们生活质量的提高起到了很大的促进作用。通信技术从固定方式发展到移动方式,在移动通信发展过程中,大致经历了五个重要阶段: 第一阶段:20世纪20年代初至50年代初,移动通信技术主要应用于军用装备,这个阶段的移动通信设备是采用短波频及电子管技术,在50年代初,才出现了150MHZ VHF 单工汽车公用移动电话系统MTS。 第二阶段:20世纪50年代到60年代,这个时期的移动通信设备器件已开始向半导体过渡,频段扩展至UHF450MHZ,并形成了移动环境中的专用系统。同时,也很好的解决了移动通信网络与公用电话网的融合问题。 第三阶段:20世纪70年代初至80年代初,这个阶段提出了蜂窝移动通信系统,并在70年代末开始进行AMPS试验。频段扩展至800MHZ。 第四阶段:20世纪80年代初至90年代中,是第二代数字移动通信大发展时期,移动通信技术开始逐步向个人通信业务方向转变; 第五阶段:20世纪90年代中至今,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信技术开始兴起并应用,全球移动通信技术标准化工作加速推进,样机研制和现场试验蓬勃发展,第二代至第三代移动通信的平滑过渡,数据通信与多媒体业务需求不断增加。 3.无线电通信技术的发展现状 现今,无线通信产业两个重要特点是:1.大众移动通信发展十分强劲,新技术应用更新不断加快。但在一些国家和地区,存在发展不均衡问题。2.无线宽带通信技术的研究、应用不断发展。 全球移动市场呈总体增长,不均衡增长的趋势。北美、欧洲等发达国家的新增用户日益减少;而在亚洲、非洲等地区的发展中国家,用户数增长迅猛。从数据新业务市场的增长来看,韩国、日本呈现爆发态势,已成为全球移动通信发展的新热点。移动通信仍是发展最为迅速的领域,移动通信用户超过30亿人,四大3G标准(WCDMA、CDMA2000、TD - SCDMA、WiMAX)演进技术不断出现,商用进程加速,全球有10亿人被3G网络覆盖。光通信已成为电信业务传输的主要手段,近年来得到了高速发展。在超长距离传输方面,也已达到了4000km无中继的技术水平。源于移动电话对固定电话的巨大冲击,固网主导运营商开始寻求各种形式的FMC(Fixed Mobility Convergence,固定移动融合)整合服务。IMS(IP多媒体子系统)为网络融合提供了一个统一的结构,极大地促进了网络融合的进程,三网融合进程加速。 4 无线电通信技术的发展趋势 3.1 不同通信技术相互补充与融合 无线通信技术的种类使得他们在一些方面存在着很多的差异,主要表现在覆盖范围、使用领域、传输速率、技术水平等方面,但是也都有自身的优势和不足。因此,把不同的无线通信技术有机地融合起来,构成一体化的无线通信网络,达到优势互补的目的,从而提高无线通信技术的服务水平与服务领域,为人类社会带来更多的便捷。 3.2 无线通信技术和宽带无线接入技术有效结合 将这两个相结合,能够扩大无线通信技术的覆盖范围,并极大提高无线通信技术的数据传输速率。宽带无线接入技术基本应用于固定环境中的高速接入。要实现两种技术的融合,开发商应充分结合二者的技术特性以及应用范围,实现二者的有机结合,达到优势互补、资源整合的目的。 3.3 无线通信技术和网络NGN的有机融合 就NGN技术的发展趋势而言,固定网络会朝着信息化、高宽带化的信息通信方向发展。因此,基于这一发展背景,无线通信技术的相关传输方式便会得到广泛地应用,从而促进NGN技术的发展。实现系统化的技术整合,促进固定无线通信技术一体化的形成,充分发挥出不同无线通信技术的优势作用。不过,这个发展趋势要经历极为漫长的过程,需要在技术、资金、人力方面的投入。

无线电通信波段划分

波段划分 最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cm。当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。 在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点。 为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C 即Compromise,英语“结合”一词的字头)。 在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头)。 “不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收。结果这一波段的雷达不能在雨中和有雾的天气使用。战后设计的雷达为了避免这一吸收峰,通常使用比K波段波长略长(Ka,即英语K-above的缩写,意为在K波段之上)和略短(Ku,即英语K-under的缩写,意为在K波段之下)的波段。 最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。 该系统十分繁琐、而且使用不便。终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下。 原P波段= 现A/B 波段 原L波段= 现C/D 波段 原S波段= 现E/F 波段 原C波段= 现G/H 波段 原X波段= 现I/J 波段 原K波段= 现K 波段 我国现用微波分波段代号 波段代号标称波长(cm)频率波长(cm)波长范围(cm) L 22 1-2 30-15 S 10 2-4 15-7.5 C 5 4-8 7.5-3.75 X 3 8-12 3.75-2.5 Ku 2 12-18 2.5-1.67 K 1.25 18-27 1.67-1.11 Ka 0.8 27-40 1.11-0.75 U 0.6 40-60 0.75-0.5 V 0.4 60-80 0.5-0.375 W 0.3 80-100 0.375-0.3

认知无线电中频谱感知技术研究+Matlab仿真

毕业设计(论文)题目:认知无线电中频谱感知技术研究专业: 学生姓名: 班级学号: 指导教师: 指导单位: 日期:年月日至年月日

摘要 无线业务的持续增长带来频谱需求的不断增加,无线通信的发展面临着前所未有的挑战。无线电频谱资源一般是由政府统一授权分配使用,这种固定分配频谱的管理方式常常会出现频谱资源分配不均,甚至浪费的情形,这与日益严重的频谱短缺问题相互矛盾。认知无线电技术作为一种智能频谱共享技术有效的缓解了这一矛盾。它通过感知时域、频域和空域等频谱环境,自动搜寻已授权频段的空闲频谱并合理利用,达到提高现有频谱利用率的目的。频谱感知技术是决定认知无线电能否实现的关键技术之一。 本文首先介绍了认知无线电的基本概念,对认知无线电在 WRAN 系统、UWB 系统及 WLAN 系统等领域的应用分别进行了讨论。在此基础上,针对实现认知无线电的关键技术从理论上进行了探索,分析了影响认知网络正常工作的相关因素及认知网络对授权用户正常工作所形成的干扰。从理论上推导了在实现认知无线电系统所必须面对的弱信号低噪声比恶劣环境下,信号检测的相关方法和技术,并进行了数字滤波器的算法分析,指出了窗函数的选择原则。接着详细讨论了频谱检测技术中基于发射机检测的三种方法:匹配滤波器检测法、能量检测法和循环平稳特性检测法。为了检验其正确性,借助 Matlab 工具,在Matlab 平台下对能量检测和循环特性检测法进行了建模仿真,比较分析了这两种方法的检测性能。研究结果表明:在低信噪比的情况下,能量检测法检测正确率较低,检测性能远不如循环特征检测。 其次还详细的分析认知无线电的国内外研究现状及关键技术。详细阐述了频谱感知技术的研究现状和概念,并指出了目前频谱感知研究工作中受到关注的一些主要问题,围绕这些问题进行了深入研究。 关键词:感知无线电;频谱感知;匹配滤波器感知;能量感知;合作式感知;

无线电通信

无线电通信 1.电磁波 电磁波是同相且互相垂直的电场与磁场在空间中衍生发射的震荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性,如图4-1所示。电磁波在空间中以波的形式移动,其传播方向垂直于电场和磁场。电磁波在真空中速率固定,速度为光速,即3×108 m/s。 电磁波频率低时,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有被辐射出去,只能借助有形的导电体才能传递;电磁波频率高时,可以在自由空间中传递,也可以被束缚在有形的导电体内传递。在自由空间中传递的原因是在高频率的电振荡中,磁电互变非常快,能量不可能全部返回原电路,于是,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,成为一种辐射。 2.无线电通信 利用电磁波的辐射和传播,经过自由空间传送信息的通信方式统称无线电通信,也称无线通信。利用无线电通信可以传送电话、电报、数据、图像及广播、电视节目等通信业务。自1895年意大利的G.马可尼(Guglielmo Marconi)开创无线电通信的先河以来,该技术在短波/超短波通信、微波通信、卫星通信和移动通信等各种业务领域中得到广泛应用。 3. 无线电波的传播方式及频率波段的应用 无线通信是一种利用无线电波在空中传播信息的通信方式。无线电波通过发射天线向外辐射出去,天线就是波源。无线电波中的电磁场随着时间的变化而变化,从而把辐射的能量传播至远方。 (1)传播方式。无线电波常见的传播方式有以下几种: ①波导方式。当电磁波的频率在30 kHz以下(波长在10 km以上)时,大地犹如一个导体,电磁波不能进入电离层,因此,电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导方式。 ②地波方式。沿地球表面传播的无线电波称为地波(或地表波)。这种传播方式比较稳定,受天气影响小。

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线电通信波段划分

精心整理波段划分 最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cm。当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。 在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表座标上的某点。 为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C 即Compromise,英语“结合”一词的字头)。 “ (Ka K “以往”

我国的频率划分方法

ExtremelyLowFrequency(ELF) 0KHz to 3KHz VeryLowFrequency(VLF) 3KHz to 30KHz RadioNavigation&Maritime/AeronauticalMobile 9KHz to 540KHz LowFrequency(LF) 30KHz to 300KHz MediumFrequency(MF) 300KHz to 3MHz AMRadioBroadcast 540KHz to 1630KHz HighFrequency(HF) 3MHz to 30MHz ShortwaveBroadcastRadio 5.95MHz to 26.1MHz VeryHighFrequency(VHF) 30MHz to 300MHz LowBand:TVBand1-Channels2-6 54MHz to 88MHz L-band C-band X-band Ku-band Ka-band X-Rays

业余无线电各波段的传播规律

智慧科技智掌全局https://www.360docs.net/doc/622773955.html, 业余无线电各波段的传播规律 业余无线电频段从低频到高频被划分成许多不连续的波段,常用的有HF频段、VHF频段和UHF频段,频率再高的微波频段只用于业余卫星通讯和微波通讯实验。今天小编就和你简要的介绍一下常用的业余无线电波段的传播规律。 一、160m频段(1.80~2.00MHz) 这是业余无线电台允许使用的最低频段。这个波段的传播规律跟中波很相似,白天主要是靠地面波进行近距离的通讯,晚上可以通过电离层D层反射进行远距离通讯,最佳的通讯时机是通讯双方都处于日出日落的交界时间。在冬天的傍晚或黎明时分,是用160m频段进行远距离通讯的时候。由于这个频段频率比较低,需要架设庞大的天线,电离层对它的衰减也比较大,需要较大的功率才能达到远距离的通讯,因此,操作的人较少,并且多用CW进行联络。 二、80m频段(3.50~3.90MHz) 这个频段的传播规律与160m频段相似,主要是以F层和E层混合传播为主。夏天和白天由于D层和E层的电子密度高,这个频段以下的电波会被吸收掉而不能经电离层反射,白天只能进行100~200km 距离的通讯。同时,在夏天经常发生雷电,使频段上有很大的噪音,弱小的信号不能被听到。在冬季的傍晚或黎明时分,进行远距离通讯

智慧科技智掌全局https://www.360docs.net/doc/622773955.html, 的效果比160m频段好,通联到远距离电台的机会也大。这个波段的天线也是比较庞大,但比起160m频段的天线已经缩小了许多,况且现在也有许多缩短型的产品天线,使这个波段架设天线的难度减低。一般简易架设多用水平半波偶极天线,缩短型的产品无线多为垂直接地型的天线,有大的架设场地和充足的资金就可以在几十米的铁塔上架设起庞大的八木定向天线!效果好的天线是既要架得高,又要长度够。 三、40m频段(7.00~7.10MHz) 这是个短波初学者的入门频段之一,也是最拥挤热闹的频段。这个频段操作范围比较窄,但几乎全年全天大多可以进行QSO,白天,可以进行几百公里的通联,在傍晚或黎明时分是开通远距离通讯的好机会,这时各国的许多电台在狭窄的频段内互相拥挤,加上本身频段的严重杂音,汇集成一幅繁华的市井图。在深夜时分,常常是洲际通讯的好时机,因此,常在这个波段狩猎珍稀电台的HAM有个“夜猫子”的美称。国内较多HAM在7.050~7.070MHz之间用L**进行通联,许多省还在某些频点上设立固定的本地网络。这个频率的天线无论是简单的偶极天线、垂直接地天线或者复杂的八木旋转定向天线都能享受其中的乐趣,甚至有人把缩短型鞭状天线夹在汽车上,在上下班途中进行穿洲过省的通联。 四、20m频段(14.00~14.350MHz)

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

无线电频率划分与使用

1.频段划分及主要用途 名称甚低频低频中频高频甚高频超高频特高频 极高 频 符号VLF LF MF HF VHF UHF SHF EHF 频率3-30KH z 30-30 0KHz 0.3-3 MHz 3-30M Hz 30-300MHz 0.3-3GHz 3-30GHz 30-30 0GHz 波段超长波长波中波短波米波分米波厘米波 毫米 波 波长1KKm-1 00Km 10Km- 1Km 1Km-1 00m 100m- 10m 10m-1m 1m-0.1m 10cm-1cm 10mm- 1mm 传 播特性空间波 为主 地波 为主 地波 与天 波 天波 与地 波 空间波空间波空间波 空间 波 主要用途海岸潜 艇通 信;远 距离通 信;超 远距离 导航 越洋 通信; 中距 离通 信;地 下岩 层通 信;远 距离 导航 船用 通信; 业余 无线 电通 信;移 动通 信;中 距离 导航 远距 离短 波通 信;国 际定 点通 信 电离层散 射 (30-60MH z);流星 余迹通信; 人造电离 层通信 (30-144M Hz);对空 间飞行体 通信;移动 通信 小容量微波 中继通信; (352-420MH z);对流层 散射通信 (700-10000 MHz);中容 量微波通信 (1700-2400 MHz) 大容量微波 中继通信 (3600-4200 MHz);大容 量微波中继 通信 (5850-8500 MHz);数字 通信;卫星通 信;国际海事 卫星通信 (1500-1600 MHz) 再入 大气 层时 的通 信;波 导通 信 2.我国陆地移动无线电业务频率划分 29.7-48.5MHz 156.8375-167MHz 566-606MHz 64.5-72.5MHz(广播为主, 与广播业务公用)167-223MHz(以广播业务为 主,固定、移动业务为次) 798-960MHz(与广播公用) 72.5-74.6MHz 223-235MHz 1427-1535MHz 75.4-76MHz 335.4-399.9MHz 1668.4-2690MHz 137-144MHz 406.1-420MHz 4400-5000MHz

无线电波段划分及传播方式

无线电波段划分及传播方式 频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。 无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段。根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。 光速÷频率=波长 无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波 短波 1,000,000~10,000 10,000~1,000 1,000~100 100~~10 10~1

0.1~0.01 0.01~0.001 甚低频 低频 中频 高频 甚高频 特高频 超高频 极高频 3~30KHz 30~300KHz 300~3,000KHz 3~30MHz 30~300MHz 300~3,000MHz 3~30GHz 30~300GHz 超短波米波 分米波 厘米波

电波主要传播方式 电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。 任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种: 地表传播 对有些电波来说,地球本身就是一个障碍物。当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。那些走直线的电波就过不去了。只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。地面波传播无线电波沿着地球表面的传播方式,称为地面波传播。其特点是信号比较稳定,但电波频率愈高,地面波随距离的增加衰减愈快。因此,这种传播方式主要适用于长波和中波波段。天波传播声音碰到墙壁或高山就会反射回来形成回声,光线射到镜面上也会反射。无线电波也能够反射。在大气层中,从几十公里至几百公里的高空有几层“电离层”形成了一种天然的反射体,就象一只悬空的金属盖,电波射到“电离层’

认知无线电频谱分配的博弈论方法

《认知无线电频谱分配的博弈论方法》总结 张烨,龚晓峰 2009 摘要:问题:认知无线电中频谱分配问题备受关注,分配给用户的频谱资源却在时间或空间上存在不同程度的闲置。分析:为了提高频谱分配,需要涉及大量策略选择问题,可以利用博弈论的相关原理进行分析研究。解决问题方法:建立合适的认知无线电频谱分配问题的博弈论框架,从而促进无线通信的发展。 1、提出问题:无线通信技术不断发展,人们对无线通信需求不断增长,适用于无线通信的 频谱资源变得日益紧张,提高频谱利用率是当前亟待解决的问题。 2、分析问题: 2.1认知无线电技术:通过对周围环境的感知,动态改变传输功率、载频、调制方式等传输参数以适应运行环境的变化,从而提高频谱利用率[。 2.2认知无线电的频谱分配技术 2.2.1问题:在认知无线电中,频谱分配是根据需要接入系统的节点数目及其 QoS 要求将频谱分配给一个或多个指定节点。 2.2.2分析:(1)因此需要一种更为有效的频谱分配方法从而在各地区和各时间段里有效地利用空闲频谱,提高频谱利用率。频谱分配策略的选择直接决定系统容量、频谱利用率以及能否满足用户因不同业务而不断变化的需求。 (2)认知无线电的频谱分配原则:1)保证灵活性。2)应能提高系统性能。3)应尽量减小信令开销和计算量。

2.3.1问题:图论模型和定价拍卖模型都有很大的局限性,无法更好推动认知无线电频谱分配问题。 2.3.2分析:在频谱分配算法设计过程中,设计了大量的策略选择问题,因此需要提出新的频谱分配模型。 2.3.3解决方法:对于涉及策略选择的频谱分配问题,可以利用博弈论对相关的自适应算法进行分析。在分析过程中,主要需要确定以下四个方面的问题:(1) 算法是否具有稳 定状态;(2) 这些稳定状态是什么;(3) 这些稳定状态是否满足需要;(4) 算法收敛到稳定状态所需要的约束条件 图(1)认知无线电博弈论分析流程 1)论证算法具有稳定状态。在多数博弈论模型里,分布式算法的稳定状态为纳什均衡。 一般情况下,判断一个博弈过程中存在纳什均衡的充分条件:a、参与者集合是有限的;b、行动集合是封闭的,有界的凸集;c、效用函数是在行动空间上的连续的、拟凹函数。 补充1、纳什均衡:若一个行动向量满足:ui(a)≥uibi,a-i)?i∈N,bi∈Ai,则向量 a 被称为纳什均衡。也就是说,在参与者集合里,如果没有一个参与者能够靠自身行动的改变来提高自身收益时,整个参与者集合对应的行动向量就称为纳什均衡。 补充2、实际应用中,绝大多数算法都满足这些条件,即多数认知无线电的算法都有一个默认的稳定状态。 2)判定稳定状态。通过遍历一个博弈过程中所有可能的行动向量来判定一个博弈过程中 所有的稳定状态。 3)确定稳定状态是否满足需求。在找到纳什均衡点后,还应该确定此纳什均衡点是否为 我们所需要的。 3).1举例模型:一个具有中心接收机的单一簇 DS-SS 网络,除了中心接收机外,网络中的所有节点调整它们的发射功率,使得信号与加性干扰噪声比达到最大。所有者参与者的效用函数方程: ( ui(p)=hipi/??(1/k) k∈N\i∑hpkk+σ] (1) 其中,参与者集合是簇中除了中心接收机外的节点;行动集合是所有可能的功率等级(假设可选的功率等级有限);所有参与者的效用函数由式(1)给出;pi 是节

分析无线电通信技术的发展现状及创新

龙源期刊网 https://www.360docs.net/doc/622773955.html, 分析无线电通信技术的发展现状及创新 作者:邓恒 来源:《锋绘》2018年第06期 摘要:无线电通信技术自成立以来发展迅速。尽管中国的无线电通信技术发展较晚,但随着近年来该领域的投资增加,发展趋势有所提高。无线电通信技术使人们能够在没有地理和时间限制的情况下进行通信,这大大缩小了人与人之间的距离,为生活提供了极大的便本文主要阐述了无线电通信技术仪表的发展,优缺点,分析了其发展现状,最后提出了未来创新发展的战略。 关键词:无电线;通信技术;创新 无线电技术的原理基本上是将信号转换成无线电波进行传输,以确保信号的及时性和准确性,以满足人们的通信需求。随着技术的不断发展,应用了更先进的技术,使无线技术的使用更加成熟,为人们提供的服务越来越好。 1 无线电通信技术的分析 1.1 无线电通信技术的发展 在19世纪60年代,英国物理学家马克斯韦尔建立了电磁场理论并预测了电磁波的存在。1895年,俄罗斯物理学家发明了无线电并宣布了无线电通信技术的诞生,于1901年,英国和纽芬兰进行了2,700公里的长途无线通信,而无线电技术正式进入了人们的生活。目前,计算机技术将微电子技术、光电技术和超远程信息管理技术相结合,创造出在制造、气象、军事和其他领域中发挥重要作用的现代无线电通信技术。 1.2 无线电通信技术的优势 首先,在应用无线电通信技术之前,地理限制是人们沟通的最大障碍。沟通越多,沟通就越困难。无线电技术克服了地理限制,允许不同地区的人们以语音、文本、视频和数据的形式进行通信。其次,沟通的稳定性很高。无线电波不易影响环境因素影响,使通信过程非常顺畅。最后,无线电移动性非常好,人们可以随时进行通信。 1.3 无线电通信技术的不足 与其他通信方法相比,无线技术也具有一些缺点。同时,外界可以轻易拦截无线电信号,造成重要信息或机密性的丢失,影响人们的信息安全,甚至对企业、军队和政府造成重大损害。因此,由于現代无线电通信技术的缺点,目前研究最佳通信方法以提高无线电通信技术的机密性和可靠性已成为热门话题。

无线电频率管理及划分

无线电频率管理及划分 无线电移动业务大致分为陆地移动、水上移动、航空移动三类。其中,陆地移动业务应用最广泛。 我国根据国际无线电规则频率划分,将陆地移动业务频率分别分配用于专用无线电通信系统(网络)或公众无线电通信系统(网络)。 专用无线电移动通信系统大量应用于军队、公安、急救等部门,也广泛应用于生产调度、内部通信等。如150MHz、350MHz、450MHz对讲机和800MHz集群通信系统等。 目前,我国公众移动通信系统由中国移动、中国联通两大基础电信运营商建设运营,其中中国移动拥有全球网络规模和用户规模最大的GSM网,中国联通拥有一个GSM和一个CDMA网。目前为公众移动通信系统划分的频率有: CDMA:825MHz~835MHz或者870MHz~880MHz; GSM:885MHz~915MHz或者930MHz~960MHz,1710MHz~1755MHz/1805MHz~1850MHz; 上述频率共计2×89MHz。 中国移动GSM网拥有2×54MHz频率,中国联通GSM网拥有2×15MHz频率、CDMA网拥有2×4MHz 频率。 到目前为止,上述3个公众移动通信网共使用频率2×68MHz,拥有用户5亿,仍然具有持续发展能力。 在宽带无线接入系统频率规划和管理方面,目前为宽带无线接入应用划分了4个频段,即2.4GHz、3.5GHz、5.8GHz、26GHz。 其中: 2.4GHz频段使用范围是2400MHz~248 3.5MHz,TDD时分双工;最大辐射功率100mW;鼓励无线电局域网WiFi(802.11b)应用;在工业、科学、医疗设备使用频段,多种无线电业务可共用,免无线电台发射执照。 5.8GHz频段使用范围是5725MHz~5850MHz,TDD时分双工;最大辐射功率500mW;基站需领取无线电发射执照;鼓励带宽更高的无线局域网如802.11a应用;主要由基础电信业务运营商使用。 3.5GHz频段使用范围是3400MHz~3430MHz/3500MHz~3530MHz,FDD频分双工;已通过招标评选方式将频率分配给基础电信运营商,用于建立宽带无线接入系统。

无线电波段划分

无线电波段划分1.基本波段划分 无线电波段一般分为: 名称简写简称频率波长 长波LW 低频30-300KHz 10-1 Km 中波MW 中频300-3000KHz 1000-100M 短波SW 高频3-30MHz 100-10M 超短波VHF 甚高频30-300MHz 10-1M 微波I UHF 特高频300-3000MHz 1-0.1M 微波II SHF 超高频3-30GHz 0.1-0.01M 2.无线电广播波段划分 名称简称频率 长波Sw 150-200 KHz 中波Mw 535-1605 KHZ 短波 120m SW 120m 2300-2490 KHz 短波 90m SW 90m 3200-3400 KHz 短波 75m SW 75m 3900-4000 KHz 短波 60m Sw 60m 4750-5060 KHz 短波 49m Sw 49m 5950-6200 KHz 短波 41m Sw 41m 7100-7300 KHz 短波 31m Sw 31m 9500-9775 KHz

短波 25m Sw 25m 11700-11975 KHz 短波 19m Sw 19m 15100-15450 KHz 短波 16m Sw 16m 17700-17900 KHz 短波 13m Sw 13m 21450-21750 KHz 短波 11m Sw 11m 25600-26100 KHz 调频广播Fm 87-108 MHz 3.电视广播波段划分 广播电视频段分为无线电视广播和有线电视广播,其有线频段具有增补频道。VHF -- I波段VHF --I I 波段VHF -- I I I 波段 channel 1 48.5-56.5 MHz FM 87-108 MHz channel 6 167-175 MHz channel 2 56.5-64.5 MHz channel 7 175-183 MHz channel 3 64.5-72.5 MHz channel 8 183-191 MHz channel 4 76-84 MHz channel 9 191-199 MHz channel 5 84-92 MHz channel 10 199-207 MHz channel 11 207-215 MHz channel 12 215-223 MHz 4.固定通讯业务波段划分 波段号频率 波段 号 频率 波段 号 频率 Band 1 14-200 KHz Band 13 9.04-9.50MHz Band 25 23.35-25.07MHz

数据通信认知无线电系统的频谱分配方法

《数据通信原理》课程设计设计题目:一种认知无线电系统的频谱分配方法 姓名 学号 学院 专业班级

目录 绪论 (3) 1.认知无线电网络的简介 (4) 1.1认知无线电 (4) 1.1.1. 认知无线电的概述 (4) 1.1.2. 认知无线电的特性 (5) 1.2.频谱决策 (6) 1.2.1. 频谱决策的概述 (6) 1.2.2. 频谱分配的概述 (6) 1.3. 二分图最佳匹配(Kuhn-Munkras)算法 (7) 2.系统模型和问题描述 (7) 2.1. 系统模型 (7) 2.2. 问题描述 (7) 3. 基于Kuhn-Munkras算法的频谱分配方法 (9) 3.1.Kuhn-Munkras 算法的描述 (9) 3.2.频谱分配方法的流程 (9) 4. 仿真和性能分析 (10) 4.1. 仿真环境设置 (10) 4.2.仿真结果 (10) 4.3. Kuhn-Munkras算法与多小区动态频谱分配方法比较 (12) 4.3.1.多小区动态频谱分配方法 (12) 4.3.2.频谱分配方法比较 (12) 5.总结 (13) 参考文献 (14)

一种认知无线电系统的频谱分配方法 摘要:认知无线电网络为移动用户重构无线架构和动态频谱接入技术提供高带宽。对于无线频谱资源的相对的稀缺,频谱分配成为认知无线电频谱资源的关键,为适应认知无线电网络的时变特性,频谱分配算法必须有较快的收敛速度。该文提出了一种基于二分图最佳匹配(Kuhn-Munkra)算法的认知无线电频谱分配方法。该方法利用二分图最佳匹配(Kuhn-Munkras)算法可以实现最佳匹配并且收敛速度快的特性。根据不同的用户在不同信道上所产生的效益的差异性,利用认知无线电有效地提升频谱资源的利用率,实现认知用户和信道的最佳匹配,频谱的灵活分配。 关键词:认知无线电,频谱资源,频谱分配,最佳匹配 Abstract Cognitive radio networks will provide high bandwidth to mobile users via heterogeneous wireless architectures and dynamic spectrum access techniques. Radio spectrum resources for the relative scarcity of spectrum allocation as the key cognitive radio spectrum, cognitive radio network to meet the time-varying characteristics of the spectrum allocation algorithm must have fast convergence speed. The paper proposes a bipartite graph based on the best match (Kuhn-Munkra) algorithm cognitive radio spectrum allocation.Bipartite graph of the decision to use the best match (Kuhn-Munkras) algorithm can achieve the best match and the fast convergence characteristics.According to the

相关文档
最新文档