多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统是无人机的核心部分,由多个器件组成,各具不同功能。下面将分别介绍多旋翼无人机动力系统中各个器件的功能。

1. 电机(Motor)

电机是多旋翼无人机动力系统的关键组件之一,主要负责提供动力。电机通过转动螺旋桨产生的推力,使无人机能够在空中飞行。根据无人机的大小和载重要求,电机的功率和转速可以有所不同。

2. 螺旋桨(Propeller)

螺旋桨是将电机的动力转化为推力的装置。它通过旋转产生气流,从而推动无人机向前飞行或保持平衡。螺旋桨的形状和材料也会影响无人机的性能和稳定性。

3. 电调(Electronic Speed Controller,ESC)

电调是无人机动力系统中的控制装置,用于调节电机的转速和功率。通过接收飞控系统发送的指令,电调可以控制电机的转速,从而控制无人机的飞行姿态和速度。

4. 电池(Battery)

电池是无人机动力系统的能量来源,提供给电机和其他电子设备所需的电能。电池的容量和电压决定了无人机的续航能力和飞行时间。不同类型的电池(如锂电池、聚合物电池等)具有不同的特性和适

用场景。

5. 电源管理系统(Power Distribution Board,PDB)

电源管理系统用于管理和分配电能,将电池的电能供给给各个部件。它通常包括电源输入接口、分配电路和电源输出接口等。通过电源管理系统,可以确保各个部件能够正常工作,并提供电流和电压保护功能。

6. 电源滤波器(Power Filter)

电源滤波器用于过滤电源中的干扰和噪音,保证无人机系统能够正常运行。它可以减少电源波动对其他电子设备的影响,并提高系统的稳定性和可靠性。

7. 传感器(Sensors)

传感器在无人机动力系统中起到感知和监测的作用。常见的传感器包括加速度计、陀螺仪、罗盘等。它们可以测量无人机的姿态、速度、方向等参数,并将这些信息传输给飞控系统,从而实现无人机的自动控制和稳定飞行。

8. 电源保护模块(Power Protection Module)

电源保护模块用于保护电池和其他电子设备免受过充、过放等电源问题的损害。它可以监测电池的电压和电流,当电池电量过低或电流过大时,会自动切断电源,避免损坏电池或其他部件。

多旋翼无人机动力系统中的各个器件各司其职,共同协作,确保无人机能够稳定、高效地运行。电机提供动力,螺旋桨将动力转化为推力,电调控制电机的转速,电池提供能量,电源管理系统分配电能,电源滤波器过滤噪音干扰,传感器感知环境,电源保护模块保护电池和其他设备。这些器件共同构成了多旋翼无人机动力系统的核心。

多旋翼无人机系统组成6

6. 电池 多旋翼无人机上用的电池为锂聚合物电池 ( Li-polymer,又称高分子锂电池),一般简称为锂电。锂聚合物电池具有能量密度高、小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。在形状上,锂聚合物电池具有超薄化特征,可以配合各种产品的需要,制作成各种形状与容量的电池,外包装为铝塑包装,有别于液态锂电的金属外壳,内部质量隐患可立即通过外包装变形而显示出来,比如鼓胀。 下面就以一块22.2V,10000mAh航拍动力电池为例说明,它一般是由6片额定电压为3.7V、容量10000mAh锂电芯串联而成,即常说的6S1P。也可以是6S2P,即由12片5000mAh的电池并联加串联组成的。这里要说明的是,6S1P要比6S2P 安全系数要高,因为1P要比2P的结构简单一倍,当然1P价格也要更高。 图2.21 22.2V,10000mAh航拍电池 无人机用锂电中,单片电芯电压3.7V是额定电压,是从平均工作电压获得。单片锂电芯的买际电压为2.75-4.2V,锂电上标示的电容量是4.2V放电至2.75V 所获得的电量,例如容量为10000mAh的电池如果以10000mA的电流放电可持续放电1小时,如果以5000mA电流放电则可以持续放电2小时。锂电必须保持在2.75-4.2V这个电压范围内使用。如电压低于2.75V则属于过度放电,锂电会膨胀,内部的化学液体会结晶,这些结晶有可能会刺穿内部结构层造成短路,甚至会让锂电电压变为零。充电时单片电压高于4.2V属于过度充电,内部化学反应过于激烈,锂电会鼓气膨胀,若继续充电会膨胀、燃烧。所以一定要用符合安全标准的正规充电器对电池进行充电,同时严禁对充电器进行私自改装,这可能会造成很严重的后果。

多旋翼无人机基础知识二

多旋翼无人机的组成 1.光流定位系统 光流(optic flow),从本质上说,就是我们在三维空间中视觉感应可以 感觉到的运动模式,即光线的流动。例如,当我们坐在车上的时候往窗外观看,可以看到外面的物体,树木,房屋不断的后退运动,这种运动模式是物体表面 在一个视角下由视觉感应器(人眼或者摄像头等)感应到的物体与背景之间的 相对位移。光流系统不但可以提供物体相对的位移速度,还可以提供一定的角 度信息。而相对位移的速度信息可以通过积分获得相对位置信息 2. 全球卫星导航系统 GPS系统是美国从上世纪70年代开始研制并组建的卫星系统,可以利 用导航卫星进行目标的测距和测速,具备在全球任何位置进行实时的三维导航 定位的能力,是目前应用最广泛的精密导航定位系统 北斗系统是中国为了实现区域及全球卫星导航定位系统的自主权与主 导地位而建设的一套卫星定位系统,用于航空航天、交通运输、资源勘探、安 防监管等导航定位服务。北斗系统采用5颗静止同步轨道卫星和30颗非同步轨道卫星组成,是中国独立自主研制建设的新一代卫星导航系统。 GLONASS是俄罗斯在前苏联时期建立的卫星定位系统,但由于缺乏资 金维护,目前系统的可用卫星从最初的24颗卫星减少到2015年的17颗可用在轨卫星,导致系统的可用性和定位精度逐步的下降。 欧盟的伽利略导航卫星系统是由欧洲自主、独立的民用全球卫星导航 系统,不过目前为止该系统还只是计划方案,计划总共包含27颗工作卫星,3 颗为候补卫星,此外还包含2个地面控制中心,但由于该计划由欧盟共同经营,同时与内部私企合营,各部分利益难以平衡,计划实施则一再推迟,目前还无 法独立使用。

多旋翼无人机基础知识

无人机,也称无人飞行器,英文Unmannedaerial vehicle(UAV) 无人飞行器是一种配置了数据处理系统、传感器、自动控制系统和通讯系统等必要机载设备的飞行器。 无人机技术是一项设计多个技术领域的综合系统,它对通讯技术、传感器技术、人工智能技术、图像处理技术模式识别技术、现代控制理论都有较深的运用和较高的要求。 无人飞行器与它所配套的地面站测控系统、存储、托运、发射、回收、信息处理等维护保障部分一起形成了一套完整的系统,同城无人飞行器系统Unmannedaerial system(UAS) 1.1无人机的种类 固定翼无人飞行器采用电动或者燃料发动机产生向前拉力或推力,飞行器依靠固定翼的翼形上下边产生的大气动压强差产生的升力维持飞行器的控制。 无人飞艇采用充气囊结构作为飞行器的升力来源,充气囊一般充有比空气目的小的氢气或氦气。

旋翼无人飞行器,其配备有多个朝正上方安装的螺旋桨,由螺旋桨的动力系统产生向下的气流,并对飞行器产生升力。 扑翼无人飞行器是基于仿生学原理,配合活动机翼能否模拟飞鸟的翅膀上下扑动的动作而产生升力和向前的推力。 伞翼无人飞行器采用伞型机翼作为飞行器升力的主要来源。 1.2无人机的分类与管理 在中国无人机驾驶航空器体系中,按照无人机的基本起飞重量指标可以分为四个等级 1. 微型无人机,空机质量小于等于7千克 2. 轻型无人机,空机质量大于7千克,但小于等于116千克,并且全马力飞行中,矫正空速度100公里/小时,升限小鱼3000米 3. 小型无人机,空机质量小于等于5700千克,除微型及小型无人机以外的其他无人机 4. 大型无人机,空机质量大于5700千克的无人机 中国的空域目前归属于军队管理,民用航空领域则由民航总局向军队申请划分空域及航道。 民航总局针对私人飞行器的管理专设“中国航空器拥有者及驾驶员协会AircraftOwners and Pilots Association Of China - AOPA”, 中国民航领域对飞行器主要管理分为三个层次等级进行管理。 第一等级:室内飞行的无人机,视距内飞行的微型无人机,及非人口稠密区域的试验无人机,这等级的飞行器由拥有者自行管理,自行负责。

多旋翼无人机动力系统各器件的功能

多旋翼无人机动力系统各器件的功能 多旋翼无人机动力系统是无人机的核心部分,由多个器件组成,各具不同功能。下面将分别介绍多旋翼无人机动力系统中各个器件的功能。 1. 电机(Motor) 电机是多旋翼无人机动力系统的关键组件之一,主要负责提供动力。电机通过转动螺旋桨产生的推力,使无人机能够在空中飞行。根据无人机的大小和载重要求,电机的功率和转速可以有所不同。 2. 螺旋桨(Propeller) 螺旋桨是将电机的动力转化为推力的装置。它通过旋转产生气流,从而推动无人机向前飞行或保持平衡。螺旋桨的形状和材料也会影响无人机的性能和稳定性。 3. 电调(Electronic Speed Controller,ESC) 电调是无人机动力系统中的控制装置,用于调节电机的转速和功率。通过接收飞控系统发送的指令,电调可以控制电机的转速,从而控制无人机的飞行姿态和速度。 4. 电池(Battery) 电池是无人机动力系统的能量来源,提供给电机和其他电子设备所需的电能。电池的容量和电压决定了无人机的续航能力和飞行时间。不同类型的电池(如锂电池、聚合物电池等)具有不同的特性和适

用场景。 5. 电源管理系统(Power Distribution Board,PDB) 电源管理系统用于管理和分配电能,将电池的电能供给给各个部件。它通常包括电源输入接口、分配电路和电源输出接口等。通过电源管理系统,可以确保各个部件能够正常工作,并提供电流和电压保护功能。 6. 电源滤波器(Power Filter) 电源滤波器用于过滤电源中的干扰和噪音,保证无人机系统能够正常运行。它可以减少电源波动对其他电子设备的影响,并提高系统的稳定性和可靠性。 7. 传感器(Sensors) 传感器在无人机动力系统中起到感知和监测的作用。常见的传感器包括加速度计、陀螺仪、罗盘等。它们可以测量无人机的姿态、速度、方向等参数,并将这些信息传输给飞控系统,从而实现无人机的自动控制和稳定飞行。 8. 电源保护模块(Power Protection Module) 电源保护模块用于保护电池和其他电子设备免受过充、过放等电源问题的损害。它可以监测电池的电压和电流,当电池电量过低或电流过大时,会自动切断电源,避免损坏电池或其他部件。

多旋翼无人机组成结构

多旋翼无人机组成结构 无人机技术是近年来发展最快的技术之一,其中多旋翼无人机是应用最广泛的一种。多旋翼无人机的组成结构十分重要,它直接影响着无人机的性能和使用效果。本文将详细介绍多旋翼无人机的组成结构,包括机身、电机、螺旋桨、控制系统等方面。 一、机身 多旋翼无人机的机身是由框架、电池、电调、传感器等组成的。机身的结构设计应该考虑到机身的重量、强度、稳定性和可靠性等因素。机身的材料一般为碳纤维、玻璃钢、铝合金等轻质高强度材料。机身的重量直接影响着无人机的飞行时间和稳定性,因此应该尽可能的轻量化,同时又要保证足够的强度和稳定性。 二、电机 多旋翼无人机的电机是用来驱动螺旋桨旋转的,它的功率和质量决定了无人机的飞行性能。电机的性能主要由转速、功率、效率和响应速度等指标来衡量。一般来说,转速越高,功率越大,效率越高,响应速度越快的电机越适合用在多旋翼无人机上。 三、螺旋桨 多旋翼无人机的螺旋桨是用来产生推力和提供稳定性的,它的选择应该考虑到螺旋桨的直径、旋翼数、材料和形状等因素。螺旋桨的直径越大,推力越大,但是也会增加空气阻力和重量,影响无人机的飞行时间和稳定性。旋翼数越多,无人机的稳定性越好,但是也会增加复杂性和重量。螺旋桨的材料一般为碳纤维、玻璃钢等

轻质高强度材料,形状则应该考虑到空气动力学的因素。 四、控制系统 多旋翼无人机的控制系统是用来控制无人机运动的,它的设计应该考虑到控制精度、响应速度、稳定性和可靠性等因素。控制系统一般由飞行控制器、遥控器、传感器等组成。飞行控制器是无人机的大脑,它负责处理传感器数据、控制电机转速和角度等。遥控器是用来控制无人机飞行的,它通过无线信号将指令传输给飞行控制器。传感器是用来感知无人机周围环境的,包括陀螺仪、加速度计、罗盘和气压计等。 综上所述,多旋翼无人机的组成结构是十分复杂的,需要考虑到机身、电机、螺旋桨和控制系统等方面的因素。只有在这些因素协调一致的情况下,才能保证无人机的飞行稳定性和使用效果。未来随着无人机技术的不断发展,多旋翼无人机的组成结构也将不断优化和改进,为人类带来更多的便利和创新。

多旋翼无人机的控制原理

多旋翼无人机的控制原理 多旋翼无人机是由多个电动机和旋翼组成的飞行器,它的控制原理包括飞行器姿态控制、定位导航控制和飞行速度控制。 飞行器姿态控制是通过控制每个旋翼的转速来控制飞行器的姿态,以实现稳定的飞行。在飞行过程中,通过改变旋翼转速可以改变飞行器的姿态,如前后倾斜、左右倾斜、俯仰和偏航等。通过精确调整不同旋翼的转速,可以达到控制飞行器姿态的目的。一般情况下,多旋翼无人机使用四个旋翼,即四旋翼结构,其中两个对角旋翼旋转方向相同,另外两个对角旋翼旋转方向相反。通过不同旋翼的转速组合和调整,可以使飞行器保持平衡姿态。 定位导航控制是为了让飞行器能够按照预定的航线进行自主飞行。无人机一般通过全球定位系统(GPS)等定位设备获取自身的位置信息,并结合惯性测量单元(IMU)获取飞行器的姿态信息,以实现精确定位和导航。根据设定的目标点,飞行控制系统会计算飞行器当前位置与目标点之间的距离和角度偏差,然后根据这些偏差调整飞行器的转向和姿态,达到自动飞行的目的。此外,飞行器还可以通过使用避障传感器等装置来避免与障碍物碰撞,确保安全飞行。 飞行速度控制是为了控制飞行器的速度,使其能够按照要求的速度进行飞行。控制飞行器的速度可以通过改变旋翼的转速来实现。增加旋翼的转速可以使飞行器加速,减小转速则可以使飞行器减速。在控制飞行速度时,需要考虑飞行器的姿态和环境因素(如风速、气流等),以实现精确的速度控制。

多旋翼无人机的控制原理是通过调整旋翼的转速来实现姿态控制、定位导航控制和飞行速度控制。通过合理设计控制系统和传感器装置,飞行器可以实现自主飞行、稳定飞行和精确控制的能力。这使得无人机在各种应用领域都有着广泛的应用前景,如农业植保、物流配送、环境监测等。当然,无人机的控制原理还可以根据具体需求进行改进和优化,以实现更高的飞行性能和控制精度。

无人机技术基础 多旋翼无人机结构和布局

《无人机技术基础》 教案

一、多旋翼无人机结构 多旋翼无人机组成一般包括机架起落架、电机和电调、电池、螺旋桨、飞控系统、遥控装置、GPS模块、任务设备和数据链路。 1. 机架 机架按材质一般可以分为以下几种类型: (1)塑胶机架 主要特点是具有一定的刚度、强度和可弯曲度。 (2)玻璃纤维机架 主要特点是强度比较高,重量轻。 (3)碳纤维机架 其特点是价格要贵一些,但重量要轻一些。 2.起落架 作为整个机身在起飞和降落时候的缓冲,也是为了保护机载设备。 3.电机 电机是多旋翼无人机的动力机构,提供升力,推力等。 4.电子调速器 电子调速器,将飞控的控制信号,转变为电流信号,用于控制电机转速。 5.电池 电池是电动多旋翼无人机的供电装置,给电机和机载电子设备供电。 6.螺旋桨 螺旋桨安装在电机上,多旋翼无人机安装的都是不可变总距的螺旋桨,主要指标有螺距和尺寸。 7.飞控系统 飞控系统是多旋翼无人机的核心设备,它包括陀螺仪、加速度计、电路控制板、各外设接口。飞控的主要功能有: (1)处理来自遥控器或自动控制的信号。 (2)控制电调。 (3)通过控制电调的输出信号保持多旋翼无人机的稳定。 8.遥控装置 包括遥控器和接收机,接收机装在机上。 9.GPS模块 测量多旋翼无人机当前的经纬度、高度、航迹方向、地速等信息。 10.任务设备 目前最多的就是云台,云台作为相机或摄像机的增稳设备。 11.数据链路 数据链路包括数传和图传。数传就是数字传输,图传就是图像传输。 二、多旋翼无人机布局

多旋翼按形状分为:十型,X型,H型,Y型,上下布局等等。 1.十字型布局 特点:十型多旋翼是最早出现的一种气动布局,只需改变少量电机转速 就可实现。 2.X型布局 特点:X型多旋翼是目前最常见的,相比于十型多旋翼,前后左右动作时加减速的电机较多,控制比较迅速和有力。 3.H型布局 特点:其特点在于比较易于设计成水平折叠结构,看起来比X型厚重,又拥有与X型相当的特点,结构简单,方便控制。 4.上下布局 特点:上下分布多用于体积受到限制,但是对载重量又有较大需求的场合。 5.其它布局 如8轴16旋翼,6轴18旋翼,4轴16旋翼等等。 第二页(共2页)

多旋翼无人机知识手册

版培训教材多旋翼无人机知识手册 翎航智能科技工作室

前言 随着多旋翼无人机的应用日趋广泛,多旋翼无人机的入门门槛越来越低,“到手飞〞、个人航拍机等对操作人员的要求几乎是零,对毫无根本常识与经历的人来说也可以操作。但这些都为人身与财产平安埋下了巨大的隐患,出于以上考虑,本教材阐述了多旋翼无人机的根本原理、总结了飞行过程中的考前须知、操作方法、以及如何躲避风险。这是一本适合飞行初学者的教材,旨在普及航空知识、与飞行常识等根本理论,根据经历提出在飞行中应该注意的问题与如何躲避风险、应急处置等。 本教材的材料有些基于无人机方面的书籍,有些那么基于航模飞行的经历,很多都是十分难得的第一手资料,因此可以作为飞行初学者的根底教程,也可以作为以拓宽知识面、开拓思路为主要目的的广阔无人机爱好者的学习资料。 由于水平有限,时间仓促,书中疏漏之处在所难免,敬请读者朋友批评指正,以使我们在再版时修订。 作者

目录 前言 .............................................................................. - 2 -目录 .............................................................................. - 3 -第一章绪论..................................................................... - 4 -第二章系统组成及原理..................................................... - 6 -第三章飞行器................................................................ - 16 -第四章操作方法实例 ...................................................... - 23 -第五章其他细节............................................................. - 41 -第六章多旋翼无人机的作用及意义 ................................... - 49 -第七章及多旋翼无人机有关的航空法规及航空气象 ............. - 50 -总结.............................................................................. - 61 -参考文献........................................................................ - 62 -

多旋翼无人机避障技术研究与展望

多旋翼无人机避障技术研究与展望 目前,多旋翼无人机避障技术主要包括传感器、算法和控制系统三个方面。传感器包 括视觉传感器、激光传感器、超声波传感器等。这些传感器可以获取周围环境的信息,如 地形、障碍物等,从而实现无人机的动态避障。视觉传感器可以通过图像处理技术来检测 和识别障碍物,但受光线和环境条件的限制,其应用范围较窄。激光传感器可以通过测量 反射光的时间来获取目标距离,并根据这些数据生成场地地图,以实现避障路径规划。超 声波传感器可以测量声波的往返时间来计算目标距离,但其测量范围较短,适用性有限。 算法是多旋翼无人机避障技术的核心,包括了避障路径规划和避障控制两个方面。避 障路径规划算法可以根据传感器获取的环境信息和无人机的飞行状态,计算出一条安全的、无碰撞的路径。常用的避障路径规划算法包括局部路径规划和全局路径规划。局部路径规 划主要处理即时避障,如避免撞击运动中的障碍物。全局路径规划则考虑整个飞行任务, 在复杂的环境中寻找最优路径。避障控制算法用于调整无人机的姿态和速度,使其按照规 划好的路径安全飞行。 控制系统是多旋翼无人机避障技术的实际应用和实现基础,主要包括无人机的动力系统、导航系统和通信系统等。动力系统负责提供无人机的驱动力和能量。导航系统用于定 位和航迹控制,以实现精确的飞行和避障。通信系统用于无人机与地面控制站的信息交互,以实现远程控制和遥测。 未来,多旋翼无人机避障技术有以下几个发展方向。传感器技术的发展将不断提升无 人机的环境感知能力,如更高分辨率的摄像头、更强大的激光传感器等。算法的发展将更 加注重避障的效率和准确性,如更快速和更精确的路径规划算法等。控制系统的发展将更 加注重无人机的稳定性和安全性,如智能飞控系统和红外传感器等。 多旋翼无人机避障技术是当前研究的重点和热点之一。随着传感器、算法和控制系统 的不断发展和完善,相信多旋翼无人机的自主飞行和应用将迎来更广阔的发展前景。

多旋翼控制原理

多旋翼控制原理 力的来源 飞行原理从根上说的话就是系统运动力的来源是什么?在基本组成部分介绍了无人机的动力系统:电调-电机-螺旋桨。 给人最直观的感受就是电机带动螺旋桨转,产生升力。 螺旋桨旋转产生升力的原因,在很多年前伯努利就给出了解释,简单说就是流速大,压强小;流速小,压强大,也就是伯努利定理。

可以看到螺旋桨的桨面并不是平的,旋转时桨面上下的空气流速不一直,会产生向上的推力。 飞行原理 上面我们知道了飞行动力的来源,下面我们来详细介绍下多旋翼无人机的飞行原理。 以四轴飞行器为例。四轴飞行器系统采用位于机臂末端的电机带动螺旋桨旋转产生反作用力方式实现飞行器的控制。单个螺旋桨向下吹动空气产生垂直向上的反作用力,及与旋转方向相反的空气摩擦阻力。 螺旋桨分为正桨和反桨,正桨逆时针旋转向下吹风,反桨顺时针旋转向下吹风。以正桨为例,其旋转时受力如图:

如图所示,红色为螺旋桨逆时针旋转方向,黑色F1 为垂直向上的反作用力, F2 为空气摩擦阻力。 安螺旋桨布局位置不同四旋翼无人机可分为“十”和“X”型结构,以“X”型结构为例,下面分析“X”型结构的飞行原理。 四轴飞行器系统可通过同时调节电机的转速,实现三维空间六自由度的飞行。以四旋翼飞行器质点为原点,机头前方为x 轴正方向,机头右方为y 轴正方向,机体垂直向下为z 轴正方向,满足右手定则建立机体坐标系。

四轴飞行器系统的基本运动可分为绕x 轴的横滚运动、绕y 轴的俯仰运动、绕z 轴的偏航运动以及沿z 轴方向的升降运动。 横滚运动 四轴飞行器系统通过同时加大 1 号和 4 号电机的转速、减小 2 号和 3 号电机的转速,产生x 轴两侧的升力差,在理想情况下,2、3 号电机减小的百分比与1、4 号电机增大的百分比相等,以此来保证飞行器系统垂直方向的合力为0,同时产生沿x 轴方向的水平分力,产生横滚角度α。

相关主题
相关文档
最新文档