马蹄焰窑炉的一般寿命

马蹄焰窑炉的一般寿命

马蹄焰窑炉的使用寿命因多种因素而异,包括制造材料、工艺、操作方式、维护状况以及所处理的材料等。一般来说,如果操作得当,维护及时,使用高品质的材料,马蹄焰窑炉的使用寿命可能会达到数年甚至十年以上。

然而,如果操作不当或维护不及时,马蹄焰窑炉的使用寿命可能会大大缩短。例如,如果在使用过程中出现异常高温、灰尘积累、腐蚀等问题,都可能导致窑炉的损坏或寿命的减少。

此外,马蹄焰窑炉的使用寿命还与其生产厂家、品牌、型号等有关。不同厂家、品牌和型号的马蹄焰窑炉,其设计、制造工艺和材料可能会有所不同,从而影响其使用寿命。

总之,为了确保马蹄焰窑炉的使用寿命,建议在使用过程中遵守操作规程,定期进行维护和保养,注意保持适当的温度和气氛,并选择高品质的制造材料和品牌。

玻璃窑炉

国外玻璃窑炉设计现状 1引言 玻璃窑炉设计实际上是综合考虑客户对玻璃窑炉投资,窑炉寿命和运行与维护成本的需求;对玻璃窑炉技术选择,节能和排放问题的设想;以及环境保护,卫生安全等相关法律规定。然后,按照一定的步骤程序提交完整的设计方案,确保窑炉所有重要的性能指标的过程。 由于全球经济相互融合,外国耐火材料企业集团不断以合资、独资、控股等方式进入中国市场,中国耐火材料企业也要走出去。即使在国内,企业最终面临的竞争对手也必然是外国企业。我国虽于2006年9月取消了包括耐火材料等产品的出口退税政策,但是参与国际竞争对激励耐火材料企业提高工艺技术和生产效率,提高耐火原料资源的利用率,强化社会节约意识,控制资源消耗等均起到积极推动作用。如果企业在未知国际化市场资源的情况下,贸然参与竞争是危险的。为此,从合同管理、工程设计和计算机仿真设计三个方面,介绍国外玻璃窑炉设计现状,有助于国内企业开拓窑炉耐火材料出口渠道,稳步进入国际市场。 2玻璃窑炉设计合同管理 国外玻璃窑炉设计代表性的合同管理程序流程如图1所示,它表示出窑炉设计者必须处理的典型问题。 该管理流程有利于客户在招投标过程及合同签署前。获得所有供决策的信息,特别是涉及投标预算编制中有关设备、建筑材料和工程成本的详尽计算数值,尽管这类信息的收集要牵涉到合同签署后的一些程序。

合同管理要求工程文件清晰规范,所有文件诸如图纸、会议记录和概算必须归档便于查询。设计公司利用数据管理系统,集中存储一个工程的所有信息,通过内部电子通讯系统(局域网)等数据共享的管理方式,让专业人员随时查找工程设计数据、工程进度、专业衔接与改进方案,保证工程进展顺畅,避免差错的产生。 3玻璃窑炉的工程设计 玻璃窑炉工程技术因素如窑炉熔化率、能耗及其窑龄,财务因素如投资成本、风险和清偿期限,以及燃料污染程度与燃烧技术的选择等生态环保因素,它们相互关联、互为因果。窑炉工程设计因而需经历一个反复比较、筛选的过程。在国外,该工程设计的许多部分仍建立在经验的基础上。但是,数学模型和测试手段的发展对玻璃窑炉工程设计中工艺参数的检验作用正在增强。表1所列是国外玻璃窑炉设计中应用的有关方法。 客户生产需求理论设计与实验方法 玻璃质量经验,数模仿真,颗粒示踪,气泡示踪排放经验,数模仿真,实验 节能热平衡计算 窑龄经验,试验室试验,无损探伤成本比较经济核算每个玻璃窑炉的熔化系统设计和技术选择取决于客户对玻璃生产数量和质量的需要。通常,在该设计阶段开始利用数学模型进行检验。有关窑炉实际运行性能的详尽知识的积累是数模合理设定的关键,数学模型的精度通过对颗粒示踪方法在模型和实际窑池中结果的比较加以验证。 滞留时间是颗粒示踪方法结果之一,该参数具常规可靠性,能用于预先评估所能获得的玻璃质量。数学模型近年来己发展至预测玻璃中气泡的变化过程。需要指出的是数学模型不能用于设计改变很小的窑炉,玻璃窑炉运行中几个不确定变量的影响足以左右数模的计算精度。数模计算即趋势分析,利用数学模型可以研究确定玻璃窑炉设计显著改善所产生的重大变化。图2所示为数学模型仿真中典型的颗粒示踪路径,其滞留时间较短。 预测玻璃窑炉排放级别的数学模型仍在开发之中,这类数学模型将来对窑炉设计的支持作用会不断增

马蹄焰窑炉安全检查标准

1 目的 规范对公司窑炉进行日常巡检,以便及时发现问题,及时维修保养,发挥分公司的检查、监督、整改力度,确保窑炉安全运行、延长窑炉使用寿命。 2 适用范围 本标准适用于各生产公司窑炉检查。

3 窑炉炉体巡检 3.1 检查方法 3.1.1 目视和仪器检查 对于肉眼能看到的部位,可以用肉眼或者借助看火镜来观察此部位(砖和钢板)的情况,并定性地进行判断是否正常;当认为有异常时,可以借助测温计等测量设备进行定量检测,为进一步采取措施提供依据。 3.1.2 在线检测 对于安装有在线检测的监控点,可以根据测量的数据变化来判断相关部位是否有异常?每月要检查测温仪器的可靠性(包括稳固性)。 3.1.3 触摸与观察 对于冷却风系统,可以用手(戴棉纱手套)在风口感觉,或用木条/小钢筋捆绑约20×160mm布条做小旗,观察风口“风力”大小。在总管安装在线“U”型差压(水柱)计,就更加直观。 3.1.4 新炉时,就要画好编号标记;日常检查时,采取对应标记点的测量与扫描 标记点周围测量相结合的办法。 3.1.5 检查的记录 检查要有记录,要做好电子档案记录处理,每周比对发现差异、进行分析汇报。 3.2 巡检制度 为确保窑炉安全运行,各相关人员对自己管辖窑炉,要按表1的要求对窑炉进行四级检查。 表1:窑炉检查制度表(指形成记录的最低要求,要打印张贴在窑炉现场与窑炉控制室) 注①:残炉-----是指存在重大安全隐患的窑炉。对于残炉,管理人员应根据隐患的部位制定特别的检查规定(包括检查频率),并张贴在窑炉现场。 注②:重点部位-----指与玻璃液接触的部位和影响窑炉安全运行的部位,如池壁砖、加料口拐角砖、流液洞、碹顶、鼓泡砖、电极砖、池底热电偶砖、炉膛内火 焰、窑炉冷却系统(风、水或气)。 注③:全面检查-----指检查窑炉的各个部位,包括蓄热室的格孔、烟道、各走廊平台与栏杆影响窑炉安全运行的附属设备。

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介 1.熔化池结构 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 2.工作池 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 3.投料池 为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 4.流液洞 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 5.胸墙高度 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。 6.小炉 小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与

玻璃窑炉设计技术

玻璃窑炉设计技术 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。

单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650—850。大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。 配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计 一、单元窑熔化面积的确定 单元窑熔化面积可用公式 F= G/g 表示。式中 F———熔化面积,M2; g———熔化率,(t/M2〃d)。 熔化率反映单元窑的设计和生产管理水平,包括原料成分、水分、质量的控制和窑炉运行的控制水平等,同时还与纤维直径有关。一般拉制纺织纱的单元窑,g取 0.8—1.0 t/M2〃d,拉制粗直径纱时可取略大一些1.5 t/M2〃d。早期的技术资料表明当年的

马蹄焰窑炉设计说明书.

课程设计任务书 学生姓名: 专业班级: 指导教师:工作单位: 题目: 33 t/d蓄热式马蹄焰池窑的设计 初始条件: 1、产品的品种:陶瓷熔块 2、产量: 33 吨/天 3、玻璃的成分 陶瓷熔块成分(wt/%)表1 成分SiO2Al2O3CaO MgO Na2O K2O BaO B2O3Sb2O3Fe2O3 Wt% 52.6516.70 10.46 5.01 3.51 1.55 5.63 4.00 0.43 0.06 4、原料 所用原料及基本要求表2 原料原料化学组成(%) 外加 水分名称SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 其它烧失量 (%) 石英砂99.8 0.05 0.15 12 钾长石60 18.5 0.3 10.7 0.15 0.54 氢氧化铝65.3 34.57 方解石55.5 / 0.03 43.61 白云石30.5 21.5 0.05 47.93 纯碱/ / / / 58.48 / Na2CO3:99.98 41.5 硝酸钠/ / / / 36.46 / NaNO3:99.98 63.52 碳酸钡/ / / / / 0.07 BaCO3:99.98 22.23 硼酸/ / / / 0.1 H3BO3:99.98 44.29 澄清剂/ / / / / 0.3 Sb2O3:93.50 5、配合料的水分:4.51%,通过石英砂引入,不另加。 6、纯配合料熔化,不外加碎玻璃。 7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。 8、助燃空气预热温度:1198 ℃。 9、燃料:重油 重油的元素组成表3 元素组成(%) 低热值(kJ/kg) C H O N S A W 84 13.5 0.5 0.5 0.45 0.05 1.0 42361.45 10、重油雾化介质:压缩空气,温度80℃,用量0.5Bm3/kg油 11、空气过剩系数:α取1.1 12、窑型:蓄热式马蹄焰流液洞池窑

玻璃熔窑全氧燃烧技术及发展方向

“十四五”期间,对我国玻璃行业来说,面临着如何将“玻璃熔窑全氧燃烧技术”成果进一步产业化并为行业尽早实现节能减排和碳达峰碳中和,寻找可靠技术措施的重大工程技术问题。玻璃熔窑全氧燃烧技术最显著的特点一是节能减排,二是提高玻璃质量,目前只有使用重油、天然气等高热值燃料,生产优质玻璃的企业才有动力和需求采用全氧燃烧技术。通过近年的科研设计和生产实践,玻璃熔窑全氧燃烧技术已经在光伏玻璃、玻璃纤维、玻璃器皿、微晶玻璃等生产领域中广泛应用,其优异的提高玻璃质量、节能减排效果得到了充分验证,但广泛实施浮法玻璃全氧燃烧技术仍然面临着一些重大工程技术和经济问题,总的来说主要需要在以下几个方面开展技术创新: 1优化全氧熔窑三维仿真模拟体系 通过研究全氧燃烧玻璃熔窑火焰空间和玻璃液流场的三维数学模型,开发界面友好、操作方便、参数设置容易的全氧燃烧浮法玻璃熔窑三维仿真系统,使参与玻璃熔窑设计和仿真的工程技术人员只要输入熔窑结构、燃气布置和相关边界条件等参数,玻璃熔窑三维仿真系统将自动根据使用者提供的设计要求,完成CFD建模、求解和后处理三个步骤。图1为全氧燃烧数学模拟火焰空间温度分布图。

图1 全氧燃烧数学模拟火焰空间温度分布图 进一步形成玻璃原料COD值的快速测定、玻璃的Redox控制、熔体性能、澄清新工艺、火焰空间的数值模拟等理论与关键技术,为全氧燃烧条件下排除玻璃液中的微气泡,保证优质玻璃的熔制提供工艺指导。 2全氧浮法熔窑耐火材料国产化 大型全氧浮法熔窑池宽超过11 m,比国内最大的全氧玻壳、玻璃 纤维窑池宽30%以上。到目前为止,国内已经建成了600 t/d、800 t/d 规模的全氧燃烧平板玻璃生产线,主要耐火材料也都是国内配套,但要使窑炉达到高质量、长寿命,对大型全氧熔窑的结构安全、关键部位耐火材料的国产化还需要深入研究。通过总结成功经验,克服存在的不足,持续改进、不断推进全氧玻璃熔窑关键耐火材料的国产化进程。 全氧窑的长宽比是一项重要指标。大中型全氧窑的长宽比有两个指标,即熔化区长宽比和熔化部的长宽比。熔化区也可称之为熔化面积,其长度通常计算到末只喷枪中心线外1 m。熔化区长度加上澄清带长度就是熔化部的长度。全氧窑的澄清带长度较横焰窑短,这是由于纯氧燃

我国燃料现状及燃烧学未来任务与发展方向

我国燃料现状及燃烧学未来任务与发展方向 中国是当今世界上最大的发展中国家,发展经济,摆脱贫困,是中国政府和中国人民在相当长一段时期内的主要任务。20世纪70年代末以来,中国作为世界上发展最快的发展中国家,经济社会发展取得了举世瞩目的辉煌成就,成功地开辟了中国特色社会主义道路,为世界的发展和繁荣作出了重大贡献。 作为世界上最大的发展中国家,中国是一个能源生产和消费大国。能源生产量仅次于美国和俄罗斯,居世界第三位;基本能源消费占世界总消费量的l/10,仅次于美国,居世界第二位。能源供应持续增长,为经济社会发展提供了重要的支撑。能源消费的快速增长,为世界能源市场创造了广阔的发展空间。中国已经成为世界能源市场不可或缺的重要组成部分,对维护全球能源安全,正在发挥着越来越重要的积极作用。 中国又是一个以煤炭为主要能源的国家,上个世纪90年代以来,中国经济的持续高速发展带动了能源消费量的急剧上升。自1993年起,中国由能源净出口国变成净进口国,能源总消费已大于总供给,能源需求的对外依存度迅速增大。煤炭、电力、石油和天然气等能源在中国都存在缺口,其中,石油需求量的大增以及由其引起的结构性矛盾日益成为中国能源安全所面临的最大难题。 我国煤层气资源丰富,最新探明总储量是36.7万亿立方米,比六年前增加了5万亿立方米,是仅次于俄罗斯、加拿大的世界第三大煤层气储藏国。资源条件决定了煤层气在中国可以成为独立的产业,成为天然气工业的重要补充。 我国目前煤层气开发水平较低。据权威统计,我国目前煤矿抽采瓦斯仅23亿立方米,利用10亿多立方米,开发程度远不及美国、加拿大、澳大利亚等煤层气产业已成功实行了商业化运作的国家。美国虽然80年代才真正大规模开发煤层气,但目前开发利用已超500亿立方米,已占到天然气总量的1/10。 我国煤层气开发已积累了许多经验,经过10余年探索,井下瓦斯抽采技术已经形成体系,并在高瓦斯矿井全面应用,阳泉、淮南、水城、盘江、松藻、晋城、抚顺7个矿区,年抽采瓦斯量超过1亿立方米;地面钻井开采煤层气通过示范工程建设,已进入商业化开发阶段,高新技术始露锋芒。西方国家的技术和资金,看好中国的煤层气开发,逐步引入中国。目前已有16家外国企业进入中国煤层气开发领域,与中国企业签订了27份煤层气产品分成合同,总投入已达1.8亿美元。输气能力57.3亿立方米。 由于煤层气探明储量多,而且已经形成了较为成熟的勘探开发技

玻璃纤维无碱和中碱的区别

玻璃纤维无碱和中碱的区别 令狐采学 玻璃纤维是一种性能优异的无机非金属材料,它是以天然矿石为原料,按设计的配方进行配比后,进行高温熔制、拉丝、络纱、织布等工序最后形成各类产品。具有强度大,弹性模量高,伸长率低,电绝缘性好、耐腐蚀等优点,通常作为复合材料中的增强材料、电绝缘材料和绝热保温材料等,广泛应用于国民经济的各个领域。 玻璃纤维的分类方法很多。一般可从玻璃原料成分、单丝直径、纤维外观、生产方法及纤维特性等方面进行分类。以玻璃原料成分分类,是目前最为通俗的一种方法,主要用于连续玻璃纤维的分类。以不同的碱金属氧化物含量来区分,碱金属氧化物一般指氧化钠、氧化钾,由纯碱、芒硝、长石等物质引人。碱金属氧化物是普通玻璃的主要组分之一,其主要作用是降低玻璃的熔点。但玻璃中碱金属氧化物的含量愈高,它的化学稳定性、电绝缘性能和强度都会相应降低。因此,对不同用途的玻璃纤维,要采用不同含碱量的玻璃成分。从而经常采用玻璃纤维成分的含碱量,作为区别不同用途的连续玻璃纤维的标志。根据玻璃成分中的含碱量,可以把连续纤维分为如下几种:

无碱纤维(通称E玻璃):R2O含量小于0.8%:是一种铝硼硅酸盐成分。它的化学稳定性、电绝缘性能、强度都很好。 中碱纤维(C玻璃):R20的含量为11.9%-16.4%,是一种钠钙硅酸盐成分,因其含碱量高,不能作电绝缘 材料,但其化学稳定性和强度尚好。 高碱纤维:R2O含量等于或大于15%的玻璃成分。一般采用碎的平板玻璃、碎瓶子玻璃等作原料拉制而成。现在国家已经禁止生产此类产品。 无碱和中碱玻璃纤两类产品的产量占目前玻纤总产量的98%以上,是用途最广泛的两类产品,在玻纤业内,玻璃纤维就泛指无碱和中碱产品,下面简要从性能、生产工艺和应用领域方面对二者做简单对比。 1 性能比较 1.1力学性能 玻璃纤维纱线的强度取决于单纤维的强度,单纤维的强度与其化学组成相关。国际上都是以新生态纤维的强度来代表玻璃的强度,所谓新生态纤维是指玻璃熔体流经拉丝漏板漏嘴后刚形成的纤维。此时的纤维尚未遭受空气中水分的侵蚀,纤维表面微裂纹的数量和尺寸都极小,此时测得的强度较真实。表2给出了无碱、中碱2种玻璃的新生态纤维拉伸强度。 无碱玻璃的强度高于中碱玻璃。影响玻璃强度的因素很多,主要有化学成分、纤维直径、存放时间及环境等。对于实际生产中的玻璃纤维产品来说,其强度除与上述因素有关外还与玻

我国玻璃窑炉的节能

我国玻璃窑炉的节能 王辰亚 (中国节能协会玻璃窑炉专业委员会) 前言:各级领导的关心和重视,中国节能协会玻璃窑炉专业委员会的大力推动,使我国玻璃窑炉节能技术得到了广泛的推广应用,科学节能的经营管理得到了加强,全国玻璃窑炉节能已取得了实效,节能效果显著。 玻璃窑炉的节能,实际是玻璃工业全方位综合性系统工程实施的问题,缺一不可。是玻璃工业节能技术中的一个大课题,本文将试探性的加以论述,以达到抛砖引玉的目的。 一、我国玻璃工业窑炉能耗现况: 我国大约有4000 ~5500 座各种类型的玻璃窑炉,其中熔化面积80m2 以下的中小型炉数量大约占总量的80 %左右,使用燃料种类分:燃煤炉约占63 %,燃油炉约占29%,天然气炉、全电熔炉等约占8%。 2008 年全国玻璃产量大约为2000 ~3000 万吨。年耗用标准煤1700 ~2100 万吨。 其中平板玻璃产量为53192 万重量箱,所用能耗折合标准煤1000 万吨/年。平均能耗为7800 干焦/公斤玻璃液,窑炉热效率20 ~25%,比国际先进指标30%≦低5%~1 0 %。每年排放SO2约16万吨、烟尘1.2 万吨、NOx14 万吨。 玻璃熔窑在玻璃工厂中是消耗燃料最多的热工设备,一般,占全厂总能耗的80~85 %左右,目前我 国玻璃工业所用的主要能源是:煤、油、电和天然气等燃料。由于燃料价格几年来持续上涨,企业燃料成本逐年增加,效益锐减,在此形势下,玻璃工业根据我国能源蕴藏品种结构、分布、数量和价格等不得不做使用调整。使以前规划设计推行的使用清洁、高热值能源的思路发生了一定的变化。即近几年来企业欲争取较大效益。有不少燃油炉改成燃煤炉,以此带来不小的环境保护问题。当然这几年随着我国电力工业的发展,全氧炉、电助熔、全电熔炉有了较大的发展。(Emisshield 能用于哪种燃料??) 2008 年日用玻璃产量1445.7 万吨,如成品率平均为90%,年玻璃出料量应为1590 万吨,年耗标煤557 ~636 万吨。完成工业产值865.5 亿元、出口额2.1 亿美元,其单耗平均为350 ~400 公斤标准煤/吨玻璃液,比较好的为每吨玻璃液150 ~250 公斤标准煤(啤酒瓶、农药瓶、普通白料制品等),较差的多达900 ~1000 公斤标准煤,二者相差3~4倍之多。又如窑炉热有效利用率先进的为25 ~38 %,落后的只有12 ~22 %,之间相差3~26 个百分点,国外日用玻璃包装瓶熔窑单耗为110~130 kg 标煤/吨玻璃液左右,劳动生产率为200 ~370 吨/年人,熔化率2.5~3.8 吨/ m2·日。窑炉大都为日出料量180 ~250 吨。热效率在48 %左右。国内外差距较大。 我国改革开放以前,全国玻璃工业窑炉的炉型和技术等都比较落后,能耗很高,改革开放以后引进不少国外玻璃窑炉的先进软硬件,配合派人到国外学习参观,结合国情我们的科技工作者经过30 多年的引进消化吸收,采用众多新技术创新设计出我国高效、长寿命、节能新型窑炉,使我国玻璃工业窑炉节能技术有了长足的进步,但与国际最先进技术水平比,还有一定差距,以两大玻璃行业窑炉的主要技术指标进 行国内外对比,见表一。 2008 年全年平板玻璃产量为55493 万重量箱,同比增长2.35 %。 2008 年1~11月,我国平板玻璃产量为51390 .32 万重量箱,同比增长9.0 %。12 月产量为4102.09 万吨同比下降7.72 %。受国际金融危机的影响,平板玻璃全行业亏损,特别是下半年浮法生产线陆续放水停产,具有代表性的是11 月底福耀玻璃两条浮法线、南玻三条浮法线放水停产。2009 年形势依然严峻,据国家统计局最新数据显示1~2月份累计生产平板玻璃853733 万重量箱,比2008 年同期减少654 万重量箱,同比下降7.11 %。从3 月份开始不少大型工程上马,形势有所好转。 玻璃企业的能耗主要在玻璃的熔制过程中消耗,熔制玻璃的目的,是在高温下将多种固相的配合料经熔融转变为单一的均匀玻璃液,当然在实际生产中玻璃行业抓住了窑炉的节能就是抓住了行业节能的主 题。 玻璃的熔制过程是一个非常复杂的过程,它包括一系列物理的、化学的、物理化学的现象和反应。这些现象和反映的结

燃煤气马蹄焰玻璃窑炉小炉和喷火口的设计及工艺操作控制

燃煤气马蹄焰玻璃窑炉 小炉和喷火口的设计及工艺操作控制 朱柏杨 马蹄焰玻璃窑炉的小炉是窑炉的关键部位,它承担组织燃料产生火焰的任务,是窑炉火焰的初始燃烧部位;它还是连接熔化池和回收高温废气热回收的通道。小炉和喷火口的设计尺寸大小、角度和火焰喷出的速度对燃料燃烧和火焰形状有重要的影响,小炉、喷火口的不合理设计会使燃料燃烧不合理,会使火焰冲击胸墙和大碹,并造成燃料不完全燃烧和废气中氮氧化合物升高,对玻璃窑炉的节能环保运行不利。因此,如何设计好小炉和喷火口,或者对已经定型运行的马蹄焰窑炉如何合理组织小炉火焰的燃烧工艺,下面作如下几个方面的分析和探讨: 一、马蹄焰玻璃窑炉小炉和喷火口的设计: 燃料在玻璃窑炉大璇内的燃烧属于扩散式燃烧,助燃空气从舌拱上部和燃气在舌拱下部喷入小炉的速度、厚度及与喷出的交角、燃气与空气的温度、燃气与空气在小炉的合理配比程度等等;首先取决于小炉和喷火口的原始工艺计算和设计布置,而后续的工艺操作控制管理水平决定了出小炉和喷火口火焰形状、燃料在大璇内的燃烧状况,进而影响到火焰对玻璃熔池的热辐射和玻璃配合料的熔制。 目前小炉和喷火口的设计仍以实践经验设计为主,设计和使用管理人员应能用燃烧理论、火焰传热理论去分析、应用和总结实践经验,下面是一些经验设计数据: 1、燃煤气小炉下倾角一般在18°—25°范围内选用,燃油小炉一般选用22°—25°,燃烧焦炉煤气、碳氢化合物含量较高的混合煤气和天然气的小炉下倾角可以大些。在实际生产行中使用重油和石油焦粉的喷火口处的烧嘴砖喷火口枪有5°左右的上仰角,在采用天然气和焦炉煤气时的仰角还要更大些,其目的是让火焰与玻璃液面平行,烧嘴砖一般安装在距喷火口砖0~600mm的位置。 2、小炉喷火焰出口速度(或喷火口面积),小炉喷出口速度一般参照小炉喷出口处相应温度的空气速度来进行计算比较合适。同时,小炉内煤气火焰的初期着火燃烧点应控制在小炉长度的1/2~2/3,火焰在喷火口的速度控制在8~10m/s之间,对于碳氢化合物含量较高的混合煤气,小炉的设计宽度以取较大值为好。 3、小炉和喷火口宽度的选择:马蹄焰池窑要求有一定的火焰覆盖面积,马蹄形火

窑炉各关键部位的作用

玻璃窑炉各关键部位的作用 一、玻璃窑炉的加料口 玻璃池窑将加料池发展成为预熔池。预熔池内的温度一般能保持在1100~1300℃,配合料内各组分之间的硅酸盐反应在预熔池内已经开始,料堆表面已经开始熔融。已初步熔化的料堆,当它进入熔化池后,其熔化速度可以加快。 在熔化池面积一定时,熔化速度加快了,相对来说,其澄消时间就延长了。因此,能提高熔化率、改善玻璃质量、降低热耗的作用;池内粉料飞扬的情况大大减少,格子体堵塞情况大大改善。 二、玻璃窑炉窑坎的作用 窑坎是放在窑池深层的挡墙,墙高为池深的1/2以上,有的可以达到池深的3/4;窑坎是控制玻璃液流,提高熔化率的技术措施。 窑坎作用是:迫使熔化部玻璃液呈一薄层全部流经窑池上层,经高温加热后再进入流液洞。这样就提高了玻璃液的温度,有利于气泡的排除,加快澄清速度,从而改善玻璃液质量。 设置窑坎后,玻璃液在窑块处产生回旋,可延迟玻璃液在熔化部停留时间;可阻挡池底脏料流往澄清部。 三、玻璃窑炉流液洞的作用 流液洞是把熔化部和冷却部的玻璃液连通起来的位于池窑底部的涵洞,是由一套特制的优质耐火材料砌筑成的,一般选用优质材质牌号为YAZS41#W无缩孔氧电熔砖,它的一般设置在澄清池的最下端,一般设计成长方形,常用马蹄焰窑炉的流溢洞长度设计范围为

400~00mm,高度为200~300mm。 流液洞的作用:熔化部玻璃液流到流液洞附近时,受到流液洞上面的桥墙阻挡,大部分玻璃液被挡住而往回流动,只有熔化好的沉入深层的玻璃液才能通过流液洞进入冷却部,因为熔化好的玻璃液密度大,下降到了底层,有力地阻挡了浮渣、泡沫及未熔化好的玻璃液,起到了选择玻璃液的作用;由于流液洞截面(洞口)很小,又处于窑池深层,故能保证玻璃液的质量,扩大了熔化部利用面积,提高了熔窑熔化能力;可以减少冷却部向熔化部的回流,如设计得合理还可以消除回流,减少或消除波璃液二次加热的能耗,有利于节能;由于洞口在玻璃液深处,加之对流液洞桥墙和盖板砖进行冷却,使通过流液洞进入冷却部的玻璃液温度大大降低,洞口位置、尺寸及冷却程度不同,玻璃液温度也不同,起到了对玻璃液的调温作用。 四、玻璃窑炉蓄热室的作用 当窑内高温废气通过小炉通道进入蓄热室时,将蓄热室内的格子体加热,此时格子体的温度逐渐升高,积蓄一定的热量;换火后,助燃空气(煤气)由下而上,经蓄热室底烟道进入蓄热室,蓄热室内的格子体用积蓄的热量预热空气(煤气),此时格子体的温度逐渐降低。 蓄热室的工作是周期性的,一个周期内是格子体的加热期,另一个周期内是格子体的冷却期。 因此蓄热室的作用是:利用格子砖作为蓄热体,将废气所含的热量积蓄起来,换火后用积蓄的热量将空气和煤气预热到一定温度。一般空气可以预热到1000℃~1350℃;煤气可以预热到1000℃~1150℃。

玻璃窑炉

玻璃熔窑编辑本段回目录 正文编辑本段回目录 玻璃制造中用于熔制玻璃配合料的热工设备。将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求的玻璃液。 玻璃制造有5000年历史。以木柴为燃料、在泥罐中熔融玻璃配合料的制造方法延续了很长时间。1867年德国西门子兄弟建造了连续式燃煤池窑。1945年后,玻璃熔窑迅速发展。 热工过程玻璃熔窑内除有燃烧反应和产生高温外,还有热量传递、动量传递和质量传递。①热量传递:包括在火焰空间内和玻璃液中由温度差引起的火焰空间热交换、玻璃液内热交换、蓄热室内热交换和窑墙与外界环境的热交换。②动量传递:由压强差引起的不可压缩气体流动、可压缩气体流动、气体射流和玻璃液流动。③质量传递:燃烧过程中由气相浓度差引起的气相扩散和玻璃液浓度差引起的液相扩散。 类型玻璃熔窑有坩埚窑和池窑两大类。它们均包括玻璃熔制、热源供给、余热回收和排烟供气4个部分。 坩埚窑窑膛内放置单只或多只坩埚。坩埚窑(图1)中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。坩埚材质以粘土居多,也有用铂的。形状有开口和横口(闭口)两种。开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。 玻璃熔窑 池窑窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。池窑有间歇式和连续式两种。间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。熔制过程完成后,从取料口取料,大多采用手工或半机械成型。适用于生产特种玻璃。绝大多数池窑属于连续式(图2),各个熔制阶段在窑的不同部位进行。各部位的温度制度是稳定的。配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,

马蹄焰玻璃窑炉窑压的控制

马蹄焰玻璃窑炉窑压的控制 朱柏杨 窑压是玻璃窑炉工艺操作参数中非常重要的参数之一,不论窑炉规模的大小,均要求窑内各点保持微正压,这对生产高质量的玻璃液起到很大的作用。窑压过大,既不利于玻璃的熔化,又增大了对大璇炉体耐火材料的冲刷侵蚀,降低玻璃窑炉的使用寿命;窑压过小,又会造成玻璃液表面黏度增大,配合料在熔化池熔化产生的气泡难以排出,易产生麻点和气泡,同样不利于玻璃的熔化和澄清。 一、窑炉窑压在生产中操作中维持微正压的重要性: 1、熔化池的窑压控制较高会使玻璃液的澄清困难,并造成窑炉火焰空间耐火材料尤其是硅砖的损坏,这会影响窑炉的使用寿命,长期处于过高窑压的运行状态,会危及窑炉的安全,这点在司炉工操作中必须密切注意,虽然正压操作是合理的,但要求在实际司炉生产中是采取微正压(5pa)。 2、玻璃在熔制过程中,如果窑内压力处于负压操作状态,则窑外冷空气进入窑内造成以下问题:由于观察孔和加料口处与玻璃液面位置,冷空气的吸入会大大降低液面温度,尤其在加料口更会降低配合料的预熔效果,同时降低窑炉的熔化率。因此,窑内压力应保持在微正压或零压,以防止冷空气进入。 3、窑压过低,如低到玻璃液面显负压时,会降低了玻璃的温度,增加了热量损失,同时改变了炉内温度熔化制度影响配合料熔化,由于冷空气的吸入,干扰了火焰正常的状态与热点,由此造成火焰的不稳定,会使窑内温度场不稳定,还会使玻璃液的熔化带来很大的困难。所以,窑炉过低的负压操作会极大降低玻璃的熔化效果,并进一步的给澄清均化造成困难,使产品质量下降,对加料口电熔耐火材料的使用寿命影响也大。 4、窑内正压如果太大,会影响玻璃液的澄清,并造成烟气喷出,致使窑温下降,烟道温度上升,能耗增加。不仅增加了热损失,加剧耐火材料的侵蚀,降低熔炉的使用寿命,而且影响玻璃的澄清,还使燃料的混合燃烧过程变慢,熔化能力下降。如果澄清部的窑压过大,会直接影响到玻璃制品的品质,玻璃窑炉窑压的控制一般要求熔化池玻璃液面处在微正压状态下运行。 二、微正压的观察与检测点: 1、窑炉采用微正压操作,一般以加料区域作为观察点:一是加料口的负压对窑炉影响最大,二是加料口的位置易于观察。在司炉实际操作时,应控制在能观察到加料口的废气流有少量的外泄,而且流速缓慢的状态为合适。在窑炉的自控系统中,也广泛采用窑压的显示和控制仪表,实现自动控制能更稳定窑压,提高玻璃的熔化质量。 2、窑压的检测位置:用一根直径为ф8~ф14mm、长度为1.2m的中空的不锈钢钢管插入窑炉两侧胸墙靠近澄清池部位的观察孔里面(马蹄焰窑炉一般都在两侧胸墙留有窥视孔),对外的部分用一根软管接到检测范围±20Pa的动窜式压力表上,就可以直接读数了。 三、影响马蹄焰窑压变化的因素和窑压的调节调整操作:

玻璃窑炉富氧燃烧技术

玻璃窑炉富氧燃烧技术 富氧燃烧新技术在马蹄焰玻璃窑炉上的应用探讨 一、膜法富氧原理: 膜法富氧技术是利用高分子材料的一些本征特性,如对不同气体分子具有不同的选择渗透性能,以及高分子材料的特殊加工性能,科技人员将一些特殊的高分子材料研究加工成为具有工业应用价值的气体分离膜和膜原件。 选用高分子材料,经特殊工艺加工成复合膜和膜原件,可以将空气中的氧从21%富集到30%,且具有超高气体透量(与玻璃态高分子膜相比),单位面积/单位时间/单位压力可产富氧(30%)4Nm3/m2?h?bar,与深冷法制氧和变压吸附法制氧(折合成相同浓度)相比,膜法的制氧成本最低。 二、富氧燃烧原理: 富氧燃烧目的就在于使燃料充分燃烧,并有效地充分利用燃烧生成的数量。燃烧的工艺与炉窑效率有着至关重要的关系。燃烧是由于燃料中可燃分子与氧分子之间发生高能碰撞而引起的,所以氧的供给情况决定了燃烧过程完成的是否充分。在常规空气助燃的燃烧系统中,这种高能碰撞作用受到占空气成份近五分之四不助燃的氮分子阻碍,减少了氧分子与燃料可燃分子之间的碰撞机会,直接影响燃烧效率的提高,不仅如此,氮还在炉窑中吸收大量的热量在废气中排掉造成热损失,浪费能源。采用比常规空气含氧量高的空气助燃称富氧燃烧,它有提高火焰温度、加快燃烧速度、降低燃料燃点温度、增加热量利用率的特点。 三、马蹄焰玻璃窑炉描述: 马蹄焰玻璃窑炉以价格低廉的发生炉煤气(油或天燃气)为燃料,不但提高了熔化质量,且大大节约了燃料成本。该炉型设有合理的蓄热室结构,提高了热能利用率和工作效率。在蓄热室设计时,是让烟气直接通过蓄热室进入烟道,而蓄热室是一个用耐火材料砌成的空心格子的加热室。当发生炉煤气和空气通过蓄热室时预热空气和煤气,

玻璃马蹄焰窑炉结构设计

第二章结构设计 熔化部设计 熔化率K值确定 瓶罐玻璃池窑设计K值在—为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取(m2·d)。理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在以上,而我国却在左右,偏低的原因:(1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K= t/(m2·d)。 熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑

长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在—%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm[6]。 表2-1 中国池窑熔化池池宽

水玻璃制作工艺全

工业硅酸钠工艺规程 1.目的 为了对生产过程进行控制及便于操作,以保证生产出合格的硅酸钠产品。 2.范围 适用于泡花碱车间马蹄焰窑炉硅酸钠产品生产过程。 3.产品说明 名称 化学名称: 硅酸钠又称水玻璃 俗名: 泡花碱 英文名称: Sodium Silcate 化学式: Na2O?nSiO2 (其中n为模数) 说明:模数在3以上的称为“中性”水玻璃,模数在3以下的称为“碱性”水玻璃。性质 物理性质 外观 固体水玻璃: 淡兰色、青绿色、天蓝色或黄绿色玻璃状物。 液体水玻璃: 无色透明或带浅灰色粘稠状液体。

当杂质含量极少时,玻璃状无水固体硅酸纳是无色透明的玻璃体。随着杂质含量的增加,玻璃体出现颜色。杂志中铁的氧化物使其呈现淡棕或深棕色,甚至是黑色。颜色的深浅又随模数的减小而加深。 密度: 随着模数的降低而增大。当模数从下降到1时,密度从增大到。 熔点: 无固定熔点, "中性"水玻璃大约在550℃左右软化。 对急冷急热非常敏感,受到这种作用时,立即裂成不规则的小碎块。 溶解度: 固体水玻璃在水中溶解度随下列因素有关 a 与压强有关,压强升高,溶解速度增大。 b在相同的压强下,随水玻璃模数增大,溶解速度而减少。 c与固体水玻璃的粒度有关,粒度越大,所用的溶解时间越长。 模数:硅酸纳中的二氧化硅与氧化纳的摩尔比称为模数。模数既显示硅酸纳的组成,又影响硅酸纳的物理、化学性质。 模数与质量百分比的关系如下式: M=SiO2%∕Na2O%× 式中M为模数,为换算系数(Na2O与SiO2分子量之比)。 化学性质 无论是块状或粉状固体无水硅酸纳,对酸都很难起起作用。但易被氢氟酸分解,生成挥发性的SiF4和碱金属氟化物。苛性碱能溶解固体硅酸钠,特别对细粉状物的反应更快。 a 水玻璃的水溶液能发生强烈的水解反应而使溶液呈碱性。

蓄热式马蹄焰玻璃窑炉节能新措施

作为高耗能行业,玻璃窑炉的节能一直是行业内重要研究的课题,对玻璃窑炉节能途径的研究更是涉及多个领域。玻璃工业生产几十年来,国内外技术人员在节能方面作了大量的工作,开发出了许多窑炉节能的新工艺、新技术、新材料,收到明显的节能效果,作者根据多年经验,结合国内外近年的研究和应用实践,围绕蓄热式马蹄焰玻璃窑炉的节能,总结了以下几个方面的节 能新措施。 一、配合料制作 各种玻璃原料熔制成质量符合生产要求的玻璃液,一般都要经历两个均质化的过程,一是玻璃的各种粉状原料在制备配合料的过程中,通过混合机进行均匀混合,二是将制备好的玻璃配合料投入池炉的熔化池,在很高的温度下进行一系列物理、化学、和物理化学的反应,最后熔制成熔化良好、组成稳定、质地均匀,符合生产成型要求的玻璃液,前一个玻璃配合料的均匀混合,是为后一个把配合料熔制成均质的玻璃液创造了有利条件,许多企业在控制原料粒度、水分以及配合料粒化等措施实现窑炉节能方面作了大量的工作。 二、玻璃熔制工艺的改进和优化 1、开发节能型玻璃配方,制定合理的玻璃配方,采用低温易熔玻璃成份和添加有效助熔成份,不仅可以减少玻璃的化学反应热和形成热,还可以降低熔化温度,减少窑炉的热消耗。 2、玻璃COD值的控制和最佳澄清工艺 玻璃的澄清过程是玻璃熔化过程中非常重要的一环,也是节能和生产优质玻璃的关键环节。玻璃的澄清过程是一个复杂的物理化学过程,澄清过程完善与否和配合料的组成、熔制工艺制度、窑内气氛的组成与窑压、气泡中气体的性质及使用的

澄清剂等因素有关,其中硫酸盐、硝酸盐等是最常用的化学澄清剂,确定包括化学澄清剂在内的配合料的氧化还原数和各种玻璃产品中Fe2+/Fe3+比值的行业规范和标准,以指导该项技术在玻璃行业中的推广应用,从而达到稳定生产优质玻璃之目的。 三、窑炉设计结构 随着计算机技术的飞速发展,通过数字和物理仿真,模仿玻璃窑炉实际工作状态,通过分析窑炉结构对工作状态的影响,设计出更加合理的窑炉结构,从而实现节能。在结构上可以考虑以下几个方面: 1.增大蓄熔比,一般超过50/1,具体做法一是加高蓄热室或采用三通道双回程蓄热室;二是采用高蓄热室效率的八角筒型砖或十字型格子砖,以增加有效蓄热面积,尽量提高空气预热温度至1300℃以上,这样可以提高燃料的燃烧速度,节约燃料以 达到节能效果,提高蓄熔比要注意蓄热室的构筑系数,高度方向与长度方向和尺寸比例要合理,优良的蓄热室结构,提高了蓄热效果,减少了散热量,可以充分回收和利用热能,可大大提高窑炉的热效率。 2.燃烧器在窑炉前端横向排列,小炉设计合理,喷火口采用扁平式,燃烧完全, 火焰覆盖面积大。 3.加料口采用预熔池结构,加强预熔效果,同时采用密封式投料技术。 4.采用深澄清池倾斜流液洞结构和小工作部机构,减少玻璃液回流和工作部散热。 5.窑炉进行全保温:蓄热室墙、碹、小炉、大碹、池壁、池底、胸墙采用全保温,蓄热室墙、小炉、胸墙、大碹应增加保温涂料,以减少窑体散热。 6.在熔化部池底设置窑坎,通过窑坎稳定窑池中投料回流和成型回流,避免因 熔化温度的波动而造成玻璃液的质量不均,同时提高了玻璃的澄清效果和均化质量,减少了熔化池底层往回流动的玻璃液量,降低能耗。

马蹄焰玻璃窑炉熔化质量的控制

0引言 熔化质量是玻璃制品质量的保证,对不同的玻璃制品,玻璃熔化质量和均化质量的要求有些差别。对于一般的容器玻璃生产来说,只要玻璃产品没有炸裂纹、残存应力小、外观尺寸正确就能满足质量要求,允许有少量的气泡、结石等缺陷,需要在大小和数量上满足企业的内控质量标准要求,对玻璃熔化的均匀性要求不是很严格。目前,瓶罐玻璃生产企业竞争压力比较大,没有质量就没有竞争力,要想提高产品质量就得提高玻璃熔化质量和均化质量,质量好、高档的玻璃制品对玻璃中线道和结石、密集型气泡、熔化均匀性均有严格的要求,有的熔化质量要求超过光学玻璃。通常日用玻璃器皿生产线产量规模较平板玻璃窑炉要小一些,大多采用马蹄焰玻璃窑炉生产。因此,对于产品质量的控制,既有与大多数玻璃企业相同的方法,也有针对窑型不同而采用不同控制的方法。 1提高配合料配制质量 (1)要严格原料进厂质量把关,加强原料的存放和使用管理,不合格的原料不能用于配料生产中。 (2)配料系统运行要稳定,称量、混合和输送设备运行指标要满足性能要求,加强设备维护保养和巡回检查,避免配料系统在运 行中出现异常。严格配料系统中称量静态精度和动态精度的控制, 称量、混合和输送环节的生产流程要满足工艺技术要求。 (3)优化配方。按照配方制成的配合料不但考虑成本,也要考虑熔化情况,也就是要考虑配合料熔化成玻璃液的总时间,熔化澄

清时间短的配方可以降低熔化温度,提高熔化率。在不影响玻璃产品性能的情况下,需要适当调整玻璃成分,进一步优化配方,提高熔化率,提高玻璃熔化质量。 (4)严格原料颗粒级配。原料颗粒度最主要控制的是铝硅质原料,硅酸盐形成只占玻璃总熔化时间的9%~13%,而难熔的石英颗粒熔解时间占玻璃总熔化时间的87%~91%。硅质原料粒度过粗难以熔化,但过细容易结成料团,在混合时难以搅拌均匀,而且过细的原料颗粒在熔化时会产生微气泡,造成澄清困难,延长澄清时间,严重时玻璃制品中出现“满天星”气泡缺陷。石英砂粒度为0.25~0.38 mm(40~60目)的大于90%为好,一般要求0.83 mm(20目)全通过,0.109 mm(140目)以下的颗粒不要超过5%。在北方地区,要避免含水石英砂冬季冰结成块,必要时在使用前要过筛。 (5)适当增加碎玻璃比例。玻璃在熔制过程中投入一定比例的碎玻璃作为助熔剂可以加速配合料的熔化,提高玻璃的熔化率。比较理想的碎玻璃比例为30%左右。 (6)使用玻璃物化性质指标进行生产控制。在玻璃生产中,玻璃成分稳定是提高玻璃产品质量的重要前提。目前配合料制备过程中原料、称量、混合、输送环节配料精度还不是很理想,大多处于不稳定状态,对玻璃成分波动性的控制也不是很理想,完全依靠传统的容量分析法化验玻璃成分难以及时和有效地控制生产过程,用玻璃物理性质测量数据控制玻璃生产是很有必要的。

相关主题
相关文档
最新文档