玻璃马蹄焰窑炉结构设计

玻璃马蹄焰窑炉结构设计
玻璃马蹄焰窑炉结构设计

第二章结构设计

2.1 熔化部设计

2.1.1 熔化率K 值确定

瓶罐玻璃池窑设计K 值在2.2 —2.6t/m 2.d 为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/ (m i ? d)。理由如下:

目前国外燃油瓶罐玻璃窑炉熔化率均在2.2 以上,而我国却在2.0 左右,偏低的原因: ( 1)整个池窑缺少有助于强化熔融的配套设计。

( 2)操作管理,设备,材料等使得窑后期生产条件恶化。

由于这些影响熔化能力的因素,现在瓶罐玻璃K 值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/ (nbd)。2.1.2 熔化池设计

(1)确定来了熔化率K值:熔化部面积100/2.5=40m2。

(2)熔化池的长、宽、深:L X B X H=8000m沐5000mr? 1200mm

本设计取长宽比值为1.6 。

长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应》4m。

在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取

0.9~1.2 m )。窑池宽度约为2~7m。

长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。

综上,本次选用L=8m ,B=5m。

窑池深度一般根据经验确定。池深一般在900—1200m为宜。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200 —1360 E之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380C时,需要

提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃

气氛。当Fe2O3含量在0.25 —0.3%范围内时,池深800—1200m的玻璃球窑,其垂直温降约为

15—30r /100mm]。

表2-1中国池窑熔化池池宽

注:池底保温时,表1-2中池深值增加20%-30%。

故熔化池深度预先取:H=1.2m。

熔化池的深度,在本设计中我们一改以往国内设计的传统经验即:熔化区与澄清区池深一致的设计观点,改为更科学有效的加深澄清区,加深幅度为200mm,加深到1400mm即H=1400m,后面会进行

复核。同时加设窑坎和鼓泡装置。

2.1.3火焰空间

本次设计:采用B火=5400mm B熔=24 KJ/m 3? h。

本次设计:采用火焰高度为1500mm火焰空间宽度为5400mm煊升高1/8,为675mm火焰空间长度为

窑炉长度8000mm

从理论上解释:扩大火焰空间,有利于燃料完全燃烧,稳定火焰,在窑体保温的情况下扩大火焰空间对该部位的散热损失,影响极小,相反,由于燃料完全燃烧,使得燃料在窑池空间内的燃烧技术效率提高也即有更多的热量用于加热熔池和玻璃液。

其次,以气流动力流型来考虑,也要求在火焰与大碹之间有一股循环气流来保护大碹,并有助于把火焰流股压向液面。

本设计采用大的火焰空间结构,因为尽量大的火焰空间适合燃油火焰的刚性好,不发飘的特点,有利于充分燃烧。所以在窑宽5000mn的基础上,两边总共加宽400mni即这样可以保证在高的熔化率的

同时降低熔化部的热负荷。

2.1.4加料口的设计

投料时熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界线的稳定,最终会影响到产品的质量和产量

加料口是马蹄焰玻璃池窑的重要部位之一。熔化工艺和所选用的加料机对加料口的要求,

其设计必须能使配合料呈薄层或小堆状均匀稳定地进入熔化池,形成一个便于熔化作业调节的“圈式”配合料流型,均布在熔化部玻璃表面,加料口是池窑结构上的薄弱环节,容易损坏, 设计时应合理加大、加长配合料进入熔化池的通道,以减少玻璃液因接触耐火材料的损坏。同时,还要对火焰有较好的密封,防止火焰对加料口上部材料造成损坏并减少滋流热量损失

[3]

设一个加料池,单侧加料,加料口呈斜喇叭形,向前墙倾斜10° ,向后墙倾斜3°,预熔池长1600mm配以悬挂式密封加料机,既减少了料粉飞扬,又减少了辐射热损失,同时还加速了配合料的熔化。

(1)采用单侧加料

与采用两侧加料相比,可相应减少窑头仓,使配合料的输送和贮存更为简单,同时也减少加料口的热损失,降低投资成本[15]。

(2).加料池

加料池采用大的预熔池,使配合料在预熔池中的到充分加热,提高熔制效率,梯形的池型有助于配合料形成“圈式”料流。从而提高熔融效果,提高配合料在窑炉中的路程距离,得到更多来自火焰的热量,提高熔化率,能量的利用率和熔化效果,j加料口采用内宽外窄

型,内开口1300mm外开口800mm

2.1.5窑坎与鼓泡设计

窑坎高为1/2D熔=600mm宽400mm用二层200mn厚的砖错缝。

窑坎设置在熔池中鼓泡点(窑炉的2/3处)以后766.7mm处,窑坎高度600mm为双层砖铺排,总宽度为400mm熔化区内底部玻璃液通过窑坎是有一个爬升过程。这样增强了热量的交换,使玻璃液温度升高,黏度降低,有助于玻璃液中气泡的排出。此外,减少澄清区玻璃液回流量,降低热损失。

2.2分隔装置设计

2.2.1火焰空间分隔装置

火焰空间的分隔采用全分隔结构(两道墙),全分隔能消除熔化部温度的波动对工作池的影响,这样比较稳定的控制了工作池内玻璃液的温度,保证了制瓶机成型温度的稳定。

2.2.2玻璃液分隔装置

用倾斜式流液洞,熔化部与工作部两道墙完全分隔流液洞尺寸

流液洞长X宽乂高=1200X 400X 300mm

2.3冷却部的设计(工作池)

一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm[8]。工作池面积

占熔化面积20-25%。

本次设计:矩形工作池,长X宽乂高= 1200X 5000X 600mm

工作池面积:6.0m2,占熔化部面积的15%

现在的工作池正在朝着小面积浅工作池发展,工作池由于与熔化池相对独立,所以其形状不受其他因素影响,一般马蹄焰池窑工作部占熔化面积的1 0—1 5%,深度一般为0.6~0.9m。

小面积的工作池设计,池深较浅,静压小,从而减少了玻璃液的回流,保证玻璃液的质量。

2.4热源供给部分的设计(小炉)

本次设计综合考虑改进:

第一,小炉长度取3m小炉下倾角为23°;小炉底的下倾角为18°。

第二,小炉底下操作空间尺寸,由于该处的操作环境差,故取大一点的数据,当然也不

能太大,取4.0m;小炉底外表面到操作走台的高度,以操作员走路不低头为准,取

1.8m。

第三,小炉口的尺寸,小炉出口煊的股跨比最好为1/8,小炉口出口煊的煊砖厚度为0.4m,小炉出口煊的长度为0.6m。

综合来说:

(1)油喷嘴安装在小炉口下面,喷嘴中心离液面高度约为200mm油枪上倾5 0。

(2)油喷嘴一般距池墙外壁为400mm小炉口安装2支油喷嘴时,喷嘴直径为4.0mm, 油喷嘴间距为600mm。

(3)蓄热式马蹄焰池窑空气出口速度为8m/s, —般空气的平均预热温度以1300 E为考虑。回火速度为13m/s;喷口的总面积占熔化池面积的3%空气出口面积为0.2m。

(4)首先小炉口要扁而宽,宽的小炉口可以在熔化区形成一宽而热量集中的火焰覆盖面,有利于对于配合料的加热。马蹄焰空气出口宽高比取4.2,出口宽取1500mm,高取

357mm油喷嘴下倾角为25% 补充来说,为使空气与油雾混合良好,可使小炉地板下斜

5°,同时适当加长水平通道,水平通道长度为2750mm[6]。

(5)再次,小炉中心线与熔化池中心线要有一定的夹角3~6度。这样可以避免火焰冲刷胸墙,也有利于火焰的转向。最后,小炉通道后部用竖向缝与蓄热室分开。这

[17]

样可以确保窑炉与蓄热室这两部分结构的热膨胀不受阻碍

2.5余热回收部分的设计(蓄热室)

本次设计:采取在国内外普遍使用的多通道箱型蓄热式,使空气获得较高的预热温度,死角较少,也可选用最适宜的耐火材料,经济实惠。先进蓄热室首先要具有高的蓄熔比和高的预热温度,高的余热回收效率。为了实现这些目标设计中采用了各项性能指标优越的八角筒形格子砖,增加了格子体高度使,使通道内气体保持了最有利的速度。

蓄熔比为51:1左右,格子体体积/熔化面积=3.07m3/m2。格子体体积为122.8 m3,细长比2.56,采用八角筒形状为格子体,格子体主要尺寸:4180X 3200X 9600mm格孔尺寸160

x 160mm

经验设计:

蓄熔比: 2 2

51:1,F=51X 40=2040m F=2040 m

格子体当量直径d G=[4 x (160 x 160)]/[2 x (160+160)]=160 mm

单位格子体受热表面积为:14.94 m 2

格子体体积为:V=2040/14.94=136.455 m

细长比取H/ . LB =2.56 H/ , LB =20.56 H X LB=136.55

所以:H=9.64 m LB=14.17 m

长宽比1.3 宽=3.2m=3200 mm

排13块格子体即:3120 mm,预留80 mm膨胀。

所以实际蓄热室宽为3200 mm

长=4.32m=4320 mm布17块格子体即:4080,预留100 mm膨胀

所以实际蓄热室长为:4180 mn格子体为间歇层错位码砌。格子体砖高120 mm所以格子体

为80层,格子体高度为9.6 m。⑹

2.6排烟供气部分的设计

为使窑炉作业连续、正常、有效的进行,设置了马蹄焰池窑排烟供气部分,它包括:支烟道、总烟道、换向设备闸板及烟囱等⑹。

由于烟道内的烟气温度较低(烟气出蓄热室的温度约为600C左右,到烟囱根的温度约

为400C左右),因此烟道内墙、底和碹均采用粘土质耐火砖砌筑。眼到底,墙和碹都进行保温,地下水位高的地方或室外烟道还应做防水层。

玻璃熔炉的烟囱现在多用钢筋混凝土浇注,内衬粘土质耐火砖。

烟囱高度采用40m,玻璃池窑采用高度<50m的砖烟囱。

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年 6 月 4 日起到2012 年 6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 设计计算说明书一套,窑炉图纸两张。

玻璃马蹄焰池窑课程设计说明书

玻璃马蹄焰池窑课程设 计说明书 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

玻璃窑炉及设计课程设计说明书题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日 目录

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 1.1设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 1.2简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,

玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响到玻璃

马蹄焰池窑设计

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从2012 年6 月4 日起到2012 年6 月17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕:

马蹄焰窑炉安全检查标准

1 目的 规范对公司窑炉进行日常巡检,以便及时发现问题,及时维修保养,发挥分公司的检查、监督、整改力度,确保窑炉安全运行、延长窑炉使用寿命。 2 适用范围 本标准适用于各生产公司窑炉检查。

3 窑炉炉体巡检 3.1 检查方法 3.1.1 目视和仪器检查 对于肉眼能看到的部位,可以用肉眼或者借助看火镜来观察此部位(砖和钢板)的情况,并定性地进行判断是否正常;当认为有异常时,可以借助测温计等测量设备进行定量检测,为进一步采取措施提供依据。 3.1.2 在线检测 对于安装有在线检测的监控点,可以根据测量的数据变化来判断相关部位是否有异常?每月要检查测温仪器的可靠性(包括稳固性)。 3.1.3 触摸与观察 对于冷却风系统,可以用手(戴棉纱手套)在风口感觉,或用木条/小钢筋捆绑约20×160mm布条做小旗,观察风口“风力”大小。在总管安装在线“U”型差压(水柱)计,就更加直观。 3.1.4 新炉时,就要画好编号标记;日常检查时,采取对应标记点的测量与扫描 标记点周围测量相结合的办法。 3.1.5 检查的记录 检查要有记录,要做好电子档案记录处理,每周比对发现差异、进行分析汇报。 3.2 巡检制度 为确保窑炉安全运行,各相关人员对自己管辖窑炉,要按表1的要求对窑炉进行四级检查。 表1:窑炉检查制度表(指形成记录的最低要求,要打印张贴在窑炉现场与窑炉控制室) 注①:残炉-----是指存在重大安全隐患的窑炉。对于残炉,管理人员应根据隐患的部位制定特别的检查规定(包括检查频率),并张贴在窑炉现场。 注②:重点部位-----指与玻璃液接触的部位和影响窑炉安全运行的部位,如池壁砖、加料口拐角砖、流液洞、碹顶、鼓泡砖、电极砖、池底热电偶砖、炉膛内火 焰、窑炉冷却系统(风、水或气)。 注③:全面检查-----指检查窑炉的各个部位,包括蓄热室的格孔、烟道、各走廊平台与栏杆影响窑炉安全运行的附属设备。

“挑战杯”详细介绍

“挑战杯”竞赛 第一部分:为什么要参加“挑战杯” 学习钻研的机会—— 参加“挑战杯”,可以在与同学合作中互相学习激发灵感,更能得到名师指点延伸,令你常常有茅塞顿开的欣喜,使你拥有更好的陶然书海,求索真知的机会。 发掘潜力的舞台—— “挑战杯”的宗旨就是重在挑战,它所考验的就是你的勇气和灵感。只要你踏上征途,必会有所收获。探索过程可能漫长而艰苦,也可能漫长而曲折,但这正是你吸取教训,完善自我,获得宝贵科研经验的有效途径。在大功告成之时,你会欣喜地发现,除了成功之外,你更大的收获是否发掘了自己无穷的潜力! 明天腾飞的准备—— 参赛者的获奖情况将存入个人档案,并通告研究生招生办公室和毕业分配办公室。同时,经专家组评选的优秀作品将送交参加全国“挑战杯”竞赛,为校争光,为己添彩。参赛作品中确有实际价值的作品,我校会积极对外推介,使作品能够真正转化为现实的经济与社会效益。一句话,“挑战杯”将会一个学生描绘多彩明天的重要一笔。它将给我们充分的自由空间发挥我们的想象,开拓我们的思维,实践我们的梦想,最终证明我们的价值!第二部分什么是“挑战杯”竞赛? “挑战杯”全国大学生系列科技学术竞赛是由共青团中央、

教育部、中国科协、全国学联主办,国内著名大学和新闻单位联合发起和组织开展的大学生课外科技文化活动中的一项具有导向性、示范性和群众性的全国性竞赛活动。 到目前为止,“挑战杯”竞赛在中国共有两个并列项目,一个是“挑战杯”全国大学生创业计划竞赛;另一个是“挑战杯”大学生活课外学术科技学术作品竞赛。这两个项目的全国竞赛交叉轮流开展,每个项目每两年举办一届。 “挑战杯”全国大学生课外学术科技作品竞赛简介 这项活动坚持“崇尚科学、追求真知、勤奋学习、锐意创新、迎接挑战”的宗旨,自1989年以来先后在清华大学、浙江大学、武汉大学等国内著名大学举办过十届,近几届参与高校、关注媒体的数来数量都在不断地增加。党和国家领导人对竞赛也是十分重视,原中共中央总书记、国家主席江泽民亲自题写“挑战杯”杯名,李鹏、吴邦国等也为竞赛题词,苏步青、朱光亚等著名科学家也纷纷寄语活动,被誉为中国大学生科技的“奥林匹克”。“挑战杯”竞赛在较高层次展示各高校的育人成果并推动高效与社会间的交流,已成为学生课外文化活动中的一项主导型活动,成为高校与社会交流与合作的重要窗口,成为促进高校科技成果向现实生产力转化的有效方式,成为培养跨世纪高素质人才的重要途径,也是企业界接触和物色人才、引进科技成果的最佳机会,越来越受到广大学生的欢迎和重视。随着竞赛的发展,其内涵和水平都有了长足的进步,并得到社会的广泛关注,声名远播,

玻璃马蹄焰窑炉介绍

玻璃窑炉马蹄焰池窑简介 1.熔化池结构 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 2.工作池 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 3.投料池 为了获得稳定的玻璃质量,一般在池壁两侧设置一对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 4.流液洞 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 5.胸墙高度 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。 6.小炉 小炉是球窑的关键部位,小炉喷出口角度和喷出的速度对燃料燃烧和火焰形状有重要的影响。不合理的设计会使火焰冲击胸墙和大碹,并造成不完全燃烧。燃料在球窑内的燃烧属于扩散式燃烧,助燃空气从小炉口喷出的速度、厚度及与

玻璃马池焰窑炉课程设计说明书

目录 1.绪论 (1) 2. 计算内容 (4) 2.2 熔化率的选取 (4) 2.3熔窑基本结构尺寸的确定 (4) 2.4 窑体主要部位所用材料的选择和厚度的确定 (6) 2.5 燃料燃烧计算 (7) 2.6燃料消耗量的计算 (8) 2.7 小炉结构的确定与计算 (10) 2.8蓄热室的设计 (11) 2.9 窑体主要部位所用材料的选择和厚度的确定 (12) 3.主要技术经济指标 (12) 4.对本人设计的评述 (14) 参考文献 (14)

1.绪论 课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识解决实际问题,进一步提高设计运算,使用专业资料等能力。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力,创新能力和综合能力,逐步掌握窑炉及其他热工设备设计的基础知识和技能,并对所学窑炉热工设备理论知识进行验证和深化,为将来从事生产、设计、研究及教学奠定良好的基础,同时为毕业论文打下坚实的基础。 1.1设计依据 设计内容:年产12000吨高白料酒瓶燃油蓄热式马蹄焰池窑 (1)原始数据: a)产品规格:青白酒瓶容量500mL, 重量400g/只 b)行列机年工作时间及机时利用率:313 天,95% c)机速:QD6行列机青白酒瓶38只/分钟 d)产品合格率:90% e)玻璃熔化温度1430℃ f)玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g)重油组成(质量分数%),见表1﹣1 1.2 述玻璃窑炉的发展历史及今后的发展动向 玻璃窑炉是熔制玻璃的热工设备,利用燃料的化学能、电能或其它能源产生热量,造成可控的高温环境,使玻璃配合料在其中经传热、传质和动量传递过程,完成物理和化学变化,经过熔化、澄清、均化和冷却等阶段,为生产提供一定数量和质量的玻璃液。 我国的玻璃窑炉古已有之,其经历了一个漫长的发展史,通过燃料和技术的发展提高,玻璃窑炉现在已经有了较大的进步。我国的玻璃窑炉基本上都为火焰池窑,其基本结构为:玻璃熔制、热源供给、余热回收、排烟供气四部分。目前我国玻璃窑炉的主体要燃料有煤、重油、发生炉煤气、天然气,其中最普遍采用的是煤和重油,为节能降耗减少污染,也有许多窑炉采用发生炉煤气和天然气,如下表1-2介绍了我国玻璃窑炉的发展史:

玻璃马蹄焰池窑课程设计说明书

玻璃窑炉及设计课程设计说明书 题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日

目录 1绪论 (2) 设计依据: (2) 简述玻璃窑炉的发展历史及今后的发展动向 (2) 对所选窑炉类型的论证 (3) 有关工艺问题的论证 (4) 2.设计计算内容 (5) 日出料量的计算 (5) 熔化率的选取 (5) 熔化部面积计算 (5) 冷却部面积的计算 (6) 窑池长度、宽度的确定 (6) 池窑深度的确定 (7) 熔窑基本结构尺寸的确定 (7) 窑体结构设计 (7) 火焰空间 (8) 流液洞 (8) 投料口 (9) 燃料燃烧计算 (9) 理论空气需要量及燃烧产物量的计算 (9) 理论烟气量的计算 (9) 燃料消耗量的计算 (10) 全窑热平衡热支出主要有三项 (10) 窑炉热量收入 (10) 校核各项经济指标 (11) 熔化热效率η熔 (11) 小炉结构的确定与计算 (11) 初定小炉尺寸 (12) 小炉喷嘴 (12) 小炉口材质 (12) 蓄热室的设计 (12) 窑体主要部位所用材料的选择和厚度的确定 (13) 3.主要技术经济指标 (13) 4.对本人设计的评述 (14) 参考文献 (15)

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,国际先进水平为相当于150~200公斤标煤/吨成品);熔化率低(一般在1。5~2吨玻璃液/平方米熔化面积·天,国际先进水平为3~3。6吨工字钢玻璃液/平方米熔化面积·天),周期熔化率低(国际可超过10000吨玻璃液/窑炉运行周期,国内在2400~6200吨玻璃液/窑炉运行周期)这也与我们企业的产品结构、窑炉熔化面积的大小、生产线的合理配置有关;在能源结构方面,我们目前主要选用煤和油,热利用率低且污染严重,而目前国际上则普遍采用天然气和电等清洁能源,热利用率高污染少。即使用油为燃料的企业,大部分都采用电助熔和纯氧燃烧技术,以提高热效率和熔化率减少污染。在窑炉寿命方面,我们的窑炉一般在4~6年,而国际先进水平都在10年左右,有少数的窑炉寿命超过12年。当然在采用耐火材料和一次性投资造价较高,但算总账可能比4~5年搞一次窑炉停产大修的投入还要低

玻璃窑炉马蹄焰池窑简介

玻璃窑炉马蹄焰池窑简介 1.结构尺寸 (1)熔化面积。 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。 (2)熔池长宽比。 长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。而采用低热值燃料的球窑应选择较小的长宽比。一般长宽比选用范围为1.4—2.0。

(3)池深。 池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 (3)工作池。 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 (4)投料池。 为了获得稳定的玻璃质量,一般在池壁两侧设置一

对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 (5)流液洞。 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 (6)胸墙高度。 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

马蹄焰窑炉设计说明书.

课程设计任务书 学生姓名: 专业班级: 指导教师:工作单位: 题目: 33 t/d蓄热式马蹄焰池窑的设计 初始条件: 1、产品的品种:陶瓷熔块 2、产量: 33 吨/天 3、玻璃的成分 陶瓷熔块成分(wt/%)表1 成分SiO2Al2O3CaO MgO Na2O K2O BaO B2O3Sb2O3Fe2O3 Wt% 52.6516.70 10.46 5.01 3.51 1.55 5.63 4.00 0.43 0.06 4、原料 所用原料及基本要求表2 原料原料化学组成(%) 外加 水分名称SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 其它烧失量 (%) 石英砂99.8 0.05 0.15 12 钾长石60 18.5 0.3 10.7 0.15 0.54 氢氧化铝65.3 34.57 方解石55.5 / 0.03 43.61 白云石30.5 21.5 0.05 47.93 纯碱/ / / / 58.48 / Na2CO3:99.98 41.5 硝酸钠/ / / / 36.46 / NaNO3:99.98 63.52 碳酸钡/ / / / / 0.07 BaCO3:99.98 22.23 硼酸/ / / / 0.1 H3BO3:99.98 44.29 澄清剂/ / / / / 0.3 Sb2O3:93.50 5、配合料的水分:4.51%,通过石英砂引入,不另加。 6、纯配合料熔化,不外加碎玻璃。 7、玻璃的熔化温度:1509 ℃;熔化部火焰空间温度: 1559 ℃。 8、助燃空气预热温度:1198 ℃。 9、燃料:重油 重油的元素组成表3 元素组成(%) 低热值(kJ/kg) C H O N S A W 84 13.5 0.5 0.5 0.45 0.05 1.0 42361.45 10、重油雾化介质:压缩空气,温度80℃,用量0.5Bm3/kg油 11、空气过剩系数:α取1.1 12、窑型:蓄热式马蹄焰流液洞池窑

玻璃马蹄焰池窑课程设计说明书

玻璃窑炉及设计 课程设计说明书 题目:年产26000吨高白料酒瓶燃油蓄热式马蹄焰池窑设计 学生姓名: 学号: 院(系): 专业: 指导教师: 2012 年6月29日

目录 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向 1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔化部面积 2.4熔窑基本结构尺寸的确定 2.5燃料燃烧计算 2.6燃料消耗量的计算 2.7小炉结构的确定与计算 2.8蓄热室的设计 2.9窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 5. 参考文献

1.绪论 课程设计是培养学生运用《玻璃窑炉及设计》课程的理论和专业知识解决实际问题,进一步提高设计运算,使用专业资料等能力。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力,创新能力和综合能力,逐步掌握窑炉及其他热工设备设计的基础知识和技能,并对所学窑炉热工设备理论知识进行验证和深化,为将来从事生产、设计、研究及教学奠定良好的基础,同时为毕业论文打下坚实的基础。 1.1设计依据 (1)设计内容:年产26000吨高白料酒瓶燃油蓄热式马蹄焰池窑 (2)原始数据: a)产品规格:高白酒瓶容量550mL, 重量450g/只 b)行列机年工作时间及机时利用率:335 天,95% c)机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 d)产品合格率:90% e)玻璃熔化温度1430℃ f)玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g)重油组成(质量分数%),见表1 ﹣1 表1-1 重油组成 1.2 述玻璃窑炉的发展历史及今后的发展动向 玻璃窑炉是熔制玻璃的热工设备,利用燃料的化学能、电能或其它能源产生热量,造成可控的高温环境,使玻璃配合料在其中经传热、传质和动量传递过程,完成物理和化学变化,经过熔化、澄清、均化和冷却等阶段,为生产提供一定数量和质量的玻璃液。 我国的玻璃窑炉古已有之,其经历了一个漫长的发展史,通过燃料和技术的发展提高,玻璃窑炉现在已经有了较大的进步。我国的玻璃窑炉基本上都为火焰池窑,其基本结构为:玻璃熔制、热源供给、余热回收、排烟供气四部分。目前我国玻璃窑炉的主体要燃料有煤、重油、发生炉煤气、天然气,其中最普遍采用的是煤和重油,为节能降耗减少污染,也有许多窑炉采用发生炉煤气和天然气,如下表-2介绍了我国玻璃窑炉的发展史:

窑炉设计说明书end-

景德镇陶瓷学院 《窑炉课程设计》说明书 题目:日产12000平米玻化砖发生炉煤气辊道窑设计 学号: 姓名: 院(系):材料科学与工程学院 专业: 指导教师: 二○一零年七月二日

目录 1 前言 .............................................................................3 2 设计任务书 .......................................................................4 3 窑体主要尺寸的确定................................................................5 3.1 窑内宽的确定................................................................5 3.2 窑体长度的确定..............................................................5 3.2.1 窑体长度的确定........................................................5 3.2.2 窑体各带长度的确定....................................................5 3.3 窑内高的确定................................................................6 4 烧成制度的确定....................................................................6 5 工作系统的确定....................................................................7 5.1 排烟系统....................................................................7 5.2 燃烧系统....................................................................7 5.2.1 烧嘴的设置............................................................7 5.2.2 发生炉煤气输送装置....................................................7 5.3 冷却系统....................................................................7 5.3.1急冷通风系统..........................................................7 5.3.2 缓冷通风系统..........................................................7 5.3.3 快冷通风系统..........................................................8 5.4传动系统....................................................................8 5.4.1 辊子材质的选择........................................................8 5.4.2 辊子直径与长度的确定..................................................8 5.4.3 辊距的确定............................................................8 5.4.4 传动系统的选择........................................................8 5.4.5 传动过程..............................................................9 5.4.6 传动过程联接方式......................................................9 5.5 窑体附属结构................................................................9 5.5.1 事故处理孔............................................................9 5.5.2 测温测压孔及观察孔....................................................9 5.5.3 膨胀缝.............................................................. 10 5.5.4 挡墙................................................................ 10 5.6 窑体加固钢架结构形式...................................................... 10 6 燃料燃烧计算 ................................................................... 10 6.1 空气量 ................................................................... 10 6.1.1 理论空气量的计算.................................................... 10 6.1.2 实际空气量的计算.................................................... 11 6.2 烟气量 ................................................................... 11 6.2.1 理论烟气量的计算.................................................... 11 6.2.2 实际烟气量的计算.................................................... 11 6.3 燃烧温度.................................................................. 11 7 窑体材料及厚度的确定............................................................ 11 8 热平衡计算 ..................................................................... 13 8.1 预热带及烧成带热平衡计算.................................................. 13

工程设计训练窑炉结构设计部分

1.设计题目 2.设计依据 课程设计任务书 3.相关政策、法规 《中华人民共和国环境保护法》 《中华人民共和国大气污染防治法》; 《中华人民共和国环境噪声防治法》; 《中华人民共和国环境影响评价法》; 《工业炉窑大气污染物排放标准》GB9078-1996 《玻璃工业污染物排放标准-容器玻璃》; 《建筑陶瓷厂节能设计规范》GB50543-2009 《平板玻璃厂节能设计规范》GB50527-2009 《工业炉砌筑工程施工及验收规范》GB 50211-2004 《玻璃窑炉节能监测》GB/T 25328—2010 《工业炉窑保温技术通则》GB/T 16618-1996 《玻璃窑用硅砖》 YB/T 147—2007 玻璃池窑热平衡测定与计算方法 玻璃窑用大型粘土质砖 玻璃窑用镁砖 玻璃窑用低气孔粘土砖 玻璃窑用熔铸锆刚玉耐火制品 玻璃窑用烧结AZS 4.物料平衡计算 要求计算过程精确到小数点后2位,计算结果列表 主要内容: (1)配料计算 (2)去气产物计算 5.热平衡计算 (1)燃料燃烧计算,根据燃油的成分计算理论空气消耗量、烟气量 (2)生成硅酸盐热耗 (3)玻璃形成过程热平衡 (4)燃料消耗量计算(经验计算) 6.窑炉结构设计 6.1玻璃池窑的设计内容 (1)确立池窑出料量 即每天应熔化的玻璃重量(t/d) (2)选择窑型,火焰流动形成,玻璃液和火焰分隔方式,余热回收分式等。(3)确定熔化工艺制度 确定玻璃液最高温度,窑墙的最高温度,成型温度。 (4)确定熔化率(K): (5)确定热耗(kcal/kg玻璃液) (6)确定池窑各主要尺寸 a.熔化池面积

F熔=产量/熔化率 b.确立熔化池长宽比即:L:B 从而确定熔化池长度和宽度 c.工作池的尺寸确定工作池面积与熔池面积的比值,而后算出工作池的面积和形状。 d.池深根据经验确定 e.火焰空间尺寸包括火焰空间的宽度,胸墙的高度,大碹的喧高 f.加料口尺寸包括加料口数量、位置、形状宽度和高度 g.流液洞尺寸包括流液洞形式,位置,长度,宽度和高度 (7)燃料的燃烧计算及耗热量计算 a.燃烧计算计算理论及实际空气量及烟气生成量 b.根据经验公式计算池窑燃料消耗量 (8)设计小炉尺寸 a.计算小炉喷出气体量确定喷出速度和温度 b.计算小炉喷火口面积,确定形状和尺寸 c.确定小炉上倾角和下倾角 d.确定小炉水平通道的截面尺寸 e.决定小炉间距 f.确定燃烧装置的位置 (9)蓄热室的设计 a.确定预热温度,格子砖材料和蓄热面积。 b.选择格子砖排列方式,确定格子孔尺寸,计算格子砖体积及蓄热室的长度,宽度和高度。 c.确定蓄热室上部和下部烟道尺寸 (10)工却部设计 a.确定工作部面积及尺寸 b.确定工作部火焰空间尺寸。 (11)出料口设计 确定出料口的尺寸及个数 (12)烟道尺寸 烟通尺寸包括:总烟道、交换烟道、支烟道的尺寸及结构形式。 (13)烟囟的设计 烟囟的高度和直径 (14)选择各部耐火材料及保温材料 6.2.窑型选择 6.2.1窑的分类 1、按熔化池大小分大、中、小型池窑 2、按火焰走向不同分为:横火焰马蹄焰和纵火焰池炉 3、按照回收装置分蓄热式换热式 4、按分隔装置分:熔化池和工作池火焰空间全分隔的双室池窑和半分隔的单室池窑,还可按玻璃液分隔装置的不同,分为流液洞池窑或无流洞池窑。 6.2.2马蹄焰池窑的特点: 1、蓄热式池窑

马蹄焰窑炉的司炉操作要点

马蹄焰窑炉的司炉操作要点 摘要:马蹄焰窑炉的整个运行中,司炉操作是重中之重,特别是窑炉投产之初的工艺摸索及工艺参数的设定,笔者参加过多次马蹄焰窑炉投产之初的司炉操作设计,再此进行总结,以供从事相关专业的人员进行交流切磋。 关键词:马蹄焰窑炉操作要点 一、前言 马蹄焰窑炉是玻璃窑炉的一种,因其结构与其他玻璃窑炉有着明显的不同,其主要构成有烟道、蓄热室、小炉、熔化池、流液洞、工作池、(料道、马弗炉)等,简要示意如下: 马蹄焰窑炉结构示意图 二、马蹄焰窑炉的司炉操作要点说明 1.燃烧火焰状态的调整 窑炉投产运行以后,加料使玻璃液面达到规定的高度,开始调整燃烧火焰的状态。 首先调整窑压,以加料口观察为基准调节总烟道闸板,使窑压处于理想的微正压(5Pa)状态。调整喷枪,使火焰覆盖面积大而稳定。调整过程中及时在工作池上方观察孔判断熔化池火焰状态。燃烧火焰应满足明亮但不透明;贴近液面处的火焰不发卷、不发黑,而且流股平稳;火焰尾部能顺利转向,而没有明显上飘现象。 通过蓄热室换向操作,观察调整的状态要稳定一致 2.窑炉熔化温度的测量 一般窑炉为监控熔化温度,在窑炉的不同部位设置不同的测温装置,通过显示和操作实现控制。 (1)在加料口近侧设置辐射温度计,测量火焰的温度。此温度测量值因受火焰直接影响有不稳定现象,但应大致稳定在一定的范围内。这一温度值表明火焰的燃烧状态,并影响配合料的熔化效果。 (2)在窑炉中后部安装另一辐射高温计,测量窑炉中部低层空间的温度。这一温度值应相对稳定。熔化池的控制温度可依此作为参考。这一温度的高低和变化直接影响玻璃液的澄清和均化过程。 在半分隔玻璃窑炉中,这一温度值同时影响工作池的温度,对玻璃的均化和产品的质量具有实际意义。 (3)在窑炉后2/3碹顶的中央安装热电隅测温装置,测量窑内空间上部温度。依此作为全窑温度的测量控制点。此温度因受火焰干扰较小,温度较为稳定。实测的结果显示温度值略低于玻璃液面实际温度。 另外,这一温度也反映碹顶硅砖的工作温度,大碹的安全情况依此温度实施监控。在实际操作中,调节火焰和设定温度时不允许超出1600℃,以免对大碹造成危险的损害。 还应注意的是,若燃烧火焰发飘会影响热电隅的测温情况。窑炉控制温度会虚假偏高,并且不稳定。这对窑炉的整个工作状况不利,应及时调整窑炉的火焰状态使之符合要求。 3.窑炉熔化温度的设定 在逐步升温并调整燃烧火焰达到理想状态的过程中,观察加料口配合料的熔

课程设计作业-马蹄焰池窑

蓄热式马蹄焰池窑(烧油)的热工计算 一、原始资料 1、产品:翠绿料机制玻璃瓶罐。 2、出料量:每天熔化玻璃60吨。 5、碎玻璃数量:占配合料量的50%。 6、配合料水分:靠石英砂和纯碱的外加水分带入,不另加水。 7、玻璃熔化温度:1400℃。 8、工作部玻璃液平均温度:1300℃。 10、雾化介质:用压缩空气,预热到120℃,用量为0.6m/公斤油。 11、喷嘴砖孔吸入的空气量:0.5m3/公斤油。 12、助燃空气预热温度:1050℃。 13、空气过剩系数a:取1.2。

14、火焰空气内表面温度:熔化部1450℃,工作部1350℃。 池深方向玻璃液温降:窑池上部为2℃/cm,窑池下部为1℃/cm。池墙、池底内表面温度按玻璃液温度(1250℃)取用。 17、熔化部窑顶处压力:2米汞柱。 二、玻璃形成过程耗热计算: 100公斤湿粉料中形成氧化物的量

1、生成硅酸盐耗热(以1公斤湿粉料计;单位是千卡/公斤或千焦); 由CaCO3生成CaSiO3的反应耗热量q1 q1=367G cao=367*0.082=30.1千卡/公斤*4.184=125.91KJ 由Na2CO3生成Na2SiO3的反应耗热量q2 q2=227.3G Na2O=227.3*(0.1114+0.00331)=25.98千卡/公斤*4.184=108.71KJ 由硝酸钠生成硅酸钠的反应耗热量q3 q3=0 由硫酸钡生成BaSiO3的反应耗热量q4 q4=0 一公斤湿粉料生成硅酸盐耗热q硅 q硅= q1+ q2+ q3+ q4=234.62kj=58.23千卡/公斤

2.配合料用量计算 在配合料中,粉料占50%,碎玻璃占50%。 1公斤粉料需加碎玻璃量50/50=1公斤。 1公斤粉料加上碎玻璃1公斤,得: 1-0.01*24.52+1=1.79公斤玻璃液。 熔成1公斤玻璃液需要的粉料和碎玻璃分别为: G 粉=1/1.79=0.56公斤 G 碎=1/1.79=0.56公斤。 熔成1公斤玻璃液需要的配合料量为 G 料=G 粉+G 碎=0.56+0.56=1.12公斤。 3.玻璃形成过程的热平衡(以1公斤玻璃液计,单位是千卡/公斤,从0℃算起) 支出热量 (1) 加热玻璃液到1400℃耗热 G*玻 1400C *溶t =1*0.3145*400=440.3千卡 (2) 加热去气产物到1400℃耗热 0.01V 去. 玻 1400C .G 粉.t 熔=0.01*19.249*0.845*0.48*1400=109.3千卡 (3) 生成硅酸盐耗热 q 硅.G 粉=58.23*0.56=32.61千卡 (4) 形成玻璃耗热 83G 粉(1-0.01V 去)=83*0.845*(1-0.01*19.249)=36.87千卡 (5)蒸发水分耗热 595G 水G 粉=595*0.09264*0.56=30.33千卡 共计支出热量:440.3+109.3+32.61+36.87+30.33=649.41千卡 收入热量 由粉料和碎玻璃在玻璃形成过程 粉G 粉C 粉t +碎G 碎 20C 碎t =0.845*0.23*20+0.333*0.1807*20=5千卡熔化1公斤玻璃液在玻璃 形成过程中的耗热量为: q 玻=支出热量-收入热量=649.41-5=644.41千卡 三、燃料燃烧计算

相关文档
最新文档