经济数学不定积分习题及答案

经济数学不定积分习题及答案
经济数学不定积分习题及答案

第五章 不定积分

习题 5-1

1. 1. 验证在(-∞,+∞) 内, 221

sin , cos 2, cos 2x x x

-- 都是同一函

数的原函数.

解 221

(sin )'(cos 2)'(cos )'sin 22x x x x

=-=-=因为

221

sin ,cos 2,cos sin 22x x x x --所以都是的原函数.

2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x

e e e e e e ---+-+都是

的原函数.

解 2222[()]'[()]'=2()x x x x x x

e e e e e e ---+=-+因为

2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数

3.已知一个函数的导数是2

11

x -,并且当x = 1时, 该函数值是32π

,求这个函数.

解 设所求函数为f (x ), 则由题意知

'()f x =

'(arcsin )x =

因为

'()()d arcsin f x f x x x C

===+?所以

又当x = 1时,

3

(1)2f π

=,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+.

3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程.

解 设曲线方程为 ()y f x =, 则由题意知''()2y f x x == 因为

2

()'2x x = 所以 2'()d 2d y f x x x x x C

=

==+?

?

又因为曲线过点(1, 2), 代入上式, 得C = 1

故所求曲线方程为 2

1y x =+.

5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程.

解 设y = cos x 积分曲线方程为 ()y f x =

因为

'

(sin )cos x x = 所以 ()cos d sin f x x x x C

==+?

又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

()sin 1f x x =+ 与 ()sin 1f x x =-.

6. 已知 f (x ) = k tan2x 的一个原函数是2

ln cos 23x ,求常数k .

解 因为2

ln cos 23x 是f (x )的一个原函数 所以 '2214(ln cos 2)(2sin 2)tan 2()

33cos 23x x x f x x =??-=-=

4

tan 2tan 234

.

3x k x

k -==-即 故

7. 已知 1(1)d x f x x xe C

++=+?

, 求函数f (x ).

解 因为由不定积分的性质, 有

'

111(1)d (1)(1)x x x f x x f x e xe x e +++??+=+=+=+?????

所以, 令t = x+1,有

(),().t x f t te f x xe ==即

8. 设f (x ) 是(-∞,+∞)内的连续的奇函数, F (x )是它的一个原函数, 证明: F (x )是偶函数.

证 由已知F (x )是f (x )的一个原函数, 则'()()F x f x =

又因为f (x ) 是(-∞,+∞)内的连续的奇函数, 则

[]''()()()()

F x F x f x f x -=--=--=

于是

[]

'

()[()]'F x F x =-

即()()F x F x C =-+,故F (x )是偶函数.

9.设1

sin ()f x x 是的原函数, 求'()f x .

解 因为 1

sin ()f x x 是的原函数, 则

'

22

11111sin cos ()cos ()f x x x x x x ?

?=?-=-?= ???

'322321111

()cos (sin )()

1111

(2cos sin ).

f x x x x x x

x x x x =?--?-=-所以

习题 5-2

1. 求下列不定积分:

2

3

242

22

(1) (21)d (2)

(2)

(3) 1)d (4) d

331

(5) d (6) d

11

x x x

x

x x

x

x x x

x x x x

+-

-

+-

++

++

?

??

??

2

3

2

62

(7) (13)d (8) d

3

cos2

(9) cos d (10) d

2sin cos

1sin

(11) d (12) cot(c

sin

x x

x x

x

e x x

x x

x x

x x

x

x x

x

-

-

+

-

??

??

?

2

2

sc sin)d

1cos1

(13) (1 (14)d

cos21

x x x

x

x x

x

x

-

+

-

+

?

??

4

23

3

(1)(21)d.

4

x x x x x C

+-=+-+

?

31

22

1113

2222

2

3232

22

222

42

2

(2) d2.

2

(3) 1)d(11)d.

3

(2)14442

(4) d d ln.

111

(5) d d(1)d arctan.

111

331

(6)

1

x x x x C

x x x x x x C

x

x x x C

x x

x x x x

x x

x x x x x C x x x

x x

x

--

-

==-+

+-=+--=-+

-??

=-+=+-+

?

??

+-

==-=-+ +++

++

+

?

??

??

???

?23

2

1

d(3)d arctan.

1

x x x x x C

x

=+=++

+

?

(7) (13)d(3)d

x x x x

e x e e x

??

-=-

??

??

21

1 (3)(3).ln 31ln 3622112(8) d 2()d 2()3ln 2ln 2ln 33321

2 ().ln 2ln 2ln 33

1cos 11(9)cos d d sin 2

222x x x x x x x x x x

x x

x

x e e C e e C e

x x C C x

x x x x x C =-

+=-

-++-??=-=?-?+??-??=

-+?+=

=++??

??

()()()2232

2

.cos 2cos sin (10)

d d cos sin d sin cos sin cos sin cos .

1sin (11)

d =

csc sin d cot cos .

sin (12) cot (csc sin )d cot csc cot sin d x

x x x x x x x x x

x x x x C x

x x x x x x C x

x x x x x x x x x

-==-++=++--=-++-=?-????

???

?357144

4

422222

csc sin .

1

4(13) (1d 4.7cos 1

cos 11(14) d d (1sec )d cos 2122cos 1

1 2

2x x C x x x x x x C x x x x x x x x x

x -

-=--+?? ?-=-=++ ??

?

++==++=+?

?

???

tan .

x C +

2. 21, 0

() , ()d .

21, 0x x f x f x x x x -≤??=?+>???

已知求.

解 21, 0

()

2 1 , 0x x f x x x -≤??=?+>??由已知

当0x ≤时,21

()d (1)d 2f x x x x x x C

=-=-+??

当x >0时, 222

()d (21)d 3f x x x x x x C

=+=++??

故 2

21, 02

()d 2, 03x x C x f x x x x C x ?-+≤??=?

?++>???

.

3. 设某企业的边际收益是 '()1000.01R x x =- (其中x 为产品的产量),且当产量 x = 0

时,收益R = 0. 试求收益函数R (x ) 和平均收益函数. 解 由已知边际收益是 '()1000.01R x x =- 所以在上式两端积分, 得

2()(1000.01)d 1000.005R x x x x x C

=-=-+?

将0,0x R ==代入上式, 得C = 0

故收益函数为 2

()1000.005R x x x =-

平均收益函数为 ()1000.005R x x =-.

4. 某商品的需求量Q 为价格P 的函数. 已知需求量的变化率为

'1

()1000ln 3()3p

Q p =-?且该商品的最大需量为1000.求该商品的需求函数.

解 由已知需求量的变化率为

'1

()1000ln 3()3p

Q p =-? 所以在上式两端积分, 得

'1

()()d 1000ln 3()d 3

111

1000ln 3()1000()(ln 3)33p p p Q p Q p p p

C C

==-?=-??+=+-??

又因为该商品的最大需求量为Q =1000(P = 0时),代入上式, 得C = 0

故满足条件的需求函数

1

()1000()3p

Q p =. 5. 一种流感病毒每天以 (240 t – 3 t 2 ) / 天的速率增加, 其中 t 是首次爆发后的天数. 如果第一天有50个病人,试问在第10天有多少个人被感染?

解 设()y t 为t 天被感染上的人数, 则由题意得 2

d 2403d y

t t t =- 所以在上式两端积分, 得

223()(2403)d 120y t t t t t t C

=-=-+?

又当1,50t y ==时,代入上式, 得C = -69

2323()12069

(10)120(10)106910931()y t t t y =--=?--=故 而 人

习题 5-3(1)

1. 1. 填空:

22(1) d ( )d(3) (2) d ( )d(17)(3) d ( )d (4) d ( )d(12)

1(5)d ( )d(2ln ) (6) x x x x x x x x x x x x e x -==-==+=1

1

331

d ( )d()3x x x

e -=-

2(7) sin2d ( )d cos 2 (8) cos(13)d ( )d sin(13)

1(9) d ( )d arctan 214x x x x x x x x x x =-=-==+解

11111111

(1);(2);(3);(4);(5);(6)3;(7);(8);(9);(10)2.37242232----

2. 求下列不定积分:

(1) (2) cos(51)d x x x

+?

2

2

22

2

tan(21)1

(3) d (4)

d

cos (21)

9

1

(5) d (6) (19)d 9425

(7) d (8)

52x

x

x x x x x x e x x x x x x +++----+????

?2

1

(9)

d (10)

d 32(1ln )(11) (12) d 1(13) d (14) ln x

x

x

x x

e x x

e

e e x x x

x x x x -+++?

???

?3

22

32

11(15)

cos d (16) d

arctan (17) tan sec d (18) d 111

(19) d (20) sin cos x x

x x e x x x x

x x x x x

x x x -+??

??

d 1cos x

x +??

2

31

(21)

(22)

d 25

1

(23) sin d (24) d 1x

x x

x

x x x x e

-++??

?

121

21(1)

(25)d(25)

5

1

(25).

10x x x x C -

=-

--=--+?

解 22222

1

(2) cos(51)d cos(51)d(51)

51

sin(51).

5

tan(21)1(3) d =tan(21)d tan(21)

2cos (21)

1

tan (21).4

1d 1(4) d a 393x x x x x C x x x x x x C x x x x +=++=++++++=

++==++??

??

?

222

rctan .3d(2)11132(5) d ln 21232943(2)x

C x x

x C x x x ++==+---?

??

222222222

22

(6) (19)d (3)d 111

(3)22ln 3111

(3).

221ln 3

d(52)25(7)d ln 52.5252

(8) 2x x x x x x x x e x e e x e e C

e e e C x x x x x x C x x x x x ??-=-??=-?+=-?++-+-==-++-+-+=??

??

?21

2222.

d(32)11(9) d =ln 32.333232

1d (10) d arctan .11(11)

(12cos 2).

2(1ln )1

(12) d (1ln )d(1ln )(3x x

x

x x

x

x x x x

C e e x e C e e e x e C e e e

x x C x x x x x -=++=++++==+++=-=-+++=++=?

?

??

?

??

31ln ).

x C ++

1

22211

(13) d d ln ln ln .

ln ln 11(14)(23).

63x x x C x x x

x x C ==+=-=--+?

?

333

2233

2

2311111

(15)cos d cos d sin .

11(16)d d().

33

(17)tan

sec d tan

d sec (sec 1)d sec 1

sec sec .

3

x x x x C x x x x x x e x e x e C x x x x x x x

x x C ---=-=-+=--=-+?==-=-+??

?

????

22

22arctan 1(18)d arctan d arctan arctan .211sin cos (19)d d sin cos sin cos (tan cot )d ln cos ln sin ln tan .

x x x x x C x

x x

x x

x x x x

x x x x x C

x C ==+++=?=+=-++=+??

?

?

?

22

22221

d 1(20)

d sec d 1cos 22

2(1sin )2

sec d tan .222

(21)

22arctan arctan .

d(1(22)d 25x

x x x x x

x x x

C x C x x x x =

=

+-==+==-=-+?

??

?

?

?

?

2

1)11

arctan .22(1)4

x C x -=+-+?

3

223(23)sin

d sin d cos (1cos )d cos 1

cos cos .

3

d(1)1d (24)d ln(1).111x x x x x x

x x x x x x

x x C e e x

x e C e e e -----=-=--=-+++==-=-+++++???

?

??

习题 5-3(2)

1. 1. 求下列不定积分:

2(1) (3) (4)

(5)

(6)

x

x x x ???

2(7) (8)

(9)

(11) (12)

x x

x

2d 11

(1)

2d 11t t t x t t t +-=++?

?

不定积分练习题及答案

不定积分练习题一、选择题、填空题: 1、(1 sin2X )dx 2 2、若e x是f(x)的原函数,贝x2f(l nx)dx ___________ 3、sin(ln x)dx _______ 2 4、已知e x是f (x)的一个原函数,贝V f (tanx)sec2xdx ___________ : 5、在积分曲线族dx 中,过(1,1点的积分曲线是y _______________ 6、F'(x) f(x),则f '(ax b)dx ____________ ; 、1 7、设f (x)dx 2 c,则 x 8、设xf (x)dx arcs in x c,贝V ---------- dx f(x) 9、f '(lnx) 1 x,则f (x) _______ ; 10、若f (x)在(a,b)内连续,则在(a,b)内f (x) _________ (A)必有导函数(B)必有原函数(C)必有界(D)必有极限 11、若xf (x)dx xsin x sin xdx,贝Vf (x) _____ 12、若F'(x) f(x), '(x) f(x),贝V f (x)dx ______ (A)F(x) (B) (x) (C) (x) c (D)F(x) (x) c 13 、 下列各式中正确的是:(A) d[ f (x)dx] f (x) (B)引 dx f (x)dx] f (x)dx (C) df(x) f(x) (D) df(x) f (x) c 14 、设f (x) e x,则: f(lnx) dx x 1 c x (A) 1 c x (B) lnx c (C) (D) ln x c ◎dx

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

最新高考-高考数学定积分 精品

§6.3定积分 【复习目标】 (1)通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背 景;借助几何直观体会定积分的基本思想,了解定积分的概念;会求简单的定积分。 (2)通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基 本定理的含义。 【重点难点】 定积分的几何意义;利用定积分性质化简被积函数;求定积分值。 【知识梳理】 (1)概念 设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

不定积分例题及答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 5 3 2 2 23x dx x C - - ==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

不定积分例题及答案 理工类 吴赣昌

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) ? 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+? ??? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++???() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

高考数学定积分的定义

教案6:定积分的定义与性质 一、课前检测 1. 2 21(21)x x dx ++=? ; 2. 由抛物线2y x =与直线2y x =-围成的平面图形的面积 为 . 3. 用力把弹簧从平衡位置拉长10 cm,此时用的力是200 N ,变力F 做的功W 为 J. 二、知识梳理 1.定积分的概念:设函数()f x 在区间[,]a b 上有定义,将区间[,]a b 等分 成n 分小区间,每个小区间长度为x ?(x ?= ),在每个小区间上 取一点,依次为12,,,,i n x x x x ,作和n S = .如果x ?无限 趋近于0(亦即n 趋向于+∞)时,n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分,记为S = ,其 中 称为被积函数, 称为积分区间, 称为积分下限, 称为积分上限, 2.微积分基本定理:对于被积函数()f x ,如果()()F x f x '=,则 ()b a f x dx ?= . 3.定积分的运算性质:⑴()b a kf x dx ?= ; ⑵[()()]b a f x g x dx ±=? ;⑶()b a f x dx =? .()a c b << 4.定积分的几何意义:在区间[,]a b 上曲线与x 轴所围成图形面积的 (即x 轴上方的面积减去x 轴下方的面积); ⑴当()f x 在区间[,]a b 上大于0时,()b a f x dx ?表示由直线

,(),0x a x b a b y ==≠=和曲线所围成的曲边梯形的面积,这也是定积分的几何意义. ⑵当()f x 在区间[,]a b 上小于0时,()b a f x dx ?表示由直线 ,(),x a x b a b y ==≠=和曲线所围成的曲边梯形的面积的 . ⑶当()f x 在区间[,]a b 上有正有负时,()b a f x dx ?表示介于直线 ,()x a x b a b ==≠之间x 轴之上、之下相应的曲边梯形的面积的 . 5.定积分在物理中的应用:⑴匀变速运动的路程公式,作变速直线运动的物体所经过的路程s ,等于其速度函数()v t 在时间区间[,]a b 上的定积分,即s = . ⑵变力做功公式,一物体在变力()F x (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向从x a =移动到()x b a b =<(单位:m ),则力F 所作的功为W = . 三、典型例题分析 例1.求定积分 ⑴21 ?(2x 2 -1x )d x ; ⑵32?(x +1x )2d x ; (3)30π?(sin x -sin2x )d x ; 变式训练:求定积分:222||x x dx --?;

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2 2 22[()]' [()]'=2() x x x x x x e e e e e e - --+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是3 2π,求这个函数. 解 设所求函数为f (x ), 则由题意知 '()f x = '(arcsin )x 因为 '()()d arcsin f x f x x x C ===+?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知'' ()2y f x x == 因为 2()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

不定积分例题及答案

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34 134( -+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134( -+-)2 ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ?? ★★ (9) 思路 =? 看到1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? 3x x e dx ?

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

(完整版)不定积分习题与答案

不定积分 (A) 1、求下列不定积分 1)?2 x dx 2) ? x x dx 2 3) dx x ?-2)2 ( 4) dx x x ? +2 2 1 5)??- ? dx x x x 3 2 5 3 2 6) dx x x x ?2 2sin cos 2 cos 7) dx x e x) 3 2(?+ 8) dx x x x ) 1 1( 2 ?- 2、求下列不定积分(第一换元法) 1) dx x ?-3)2 3( 2) ? - 33 2x dx 3) dt t t ?sin 4) ? ) ln(ln ln x x x dx 5)? x x dx sin cos6) ?- +x x e e dx 7) dx x x) cos(2 ? 8) dx x x ? -4 3 1 3 9) dx x x ?3 cos sin 10) dx x x ? - - 2 4 9 1 11)? -1 22x dx 12) dx x ?3 cos 13)?xdx x3 cos 2 sin 14) ?xdx x sec tan3 15) dx x x ? +2 3 916) dx x x ? +2 2sin 4 cos 3 1 17) dx x x ? -2 arccos 2 1 10 18) dx x x x ? +) 1( arctan

3、求下列不定积分(第二换元法) 1) dx x x ? +2 1 1 2) dx x ?sin 3) dx x x ?-4 2 4) ?> - )0 (, 2 2 2 a dx x a x 5)? +3 2)1 (x dx 6) ? +x dx 2 1 7)? - +2 1x x dx 8) ? - +2 1 1x dx 4、求下列不定积分(分部积分法) 1) inxdx xs ? 2) ?xdx arcsin 3)?xdx x ln 2 4) dx x e x ?- 2 sin 2 5)?xdx x arctan 2 6) ?xdx x cos 2 7)?xdx 2 ln 8) dx x x 2 cos2 2 ? 5、求下列不定积分(有理函数积分) 1) dx x x ? +3 3 2)? - + + dx x x x 10 3 3 2 2 3)? +)1 (2x x dx (B) 1、一曲线通过点 )3, (2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的 方程。 2、已知一个函数 ) (x F的导函数为2 1 1 x -,且当1 = x时函数值为 π 2 3 ,试求此函数。

相关文档
最新文档