液压泵计算公式

液压泵计算公式

液压泵马达的参数及计算公式

电机功率,液压泵压力及排量计算公式:

近似计算功率(w)=压力(Mp)*排量(ml)*1500(转速) /60 (2级电机2800转,4级电机1500转,6级电机1000转)

液压计算(原件选择)

液压元件的选择 一、液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 p B =p 1 +ΣΔp (9-15) ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。 阀名Δp n(×105Pa) 阀名Δp n(×105Pa)阀名Δp n(×105Pa)阀名Δp n(×105Pa)单向阀0.3~0.5 背压阀3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀2~3 顺序阀 1.5~3 调速阀3~5 B B max 的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即 q B≥K(Σq)max(m3/s) (9-16) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: q B≥K(A1-A2)v max(m3/s) (9-17) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);v max为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 q B=∑ = Z 1 i V i K/T i (9-18) 式中:V i为液压缸在工作周期中的总耗油量(m3);T i为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力p B和流量q B,查液压元件产品样本,选择与P B和q B相当的液压泵的规格型号。 上面所计算的最大压力p B是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力p B应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=p B q B/103ηB (kW) (9-19) 式中:p B为液压泵的最大工作压力(N/m2);q B为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。 液压泵类型齿轮泵螺杆泵叶片泵柱塞泵 总效率0.6~0.7 0.65~0.80 0.60~0.75 0.80~0.85 ②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所

冲床落料吨位计算公式

冲床冲裁力的计算(冲孔落料篇) 计算冲裁力的目的是为了合理地选用冲床和设计模具。冲床的吨位必须大于所计算的冲裁力,以适应冲裁的要求。 平刃模具冲裁时,其冲裁力F0可按下式计算: 式中 T——材料厚度,[t]为mm; r——材料抗剪强度,[τ]为MPa; L——冲裁周长,[L]为mm。 过去一般采用仅与材料性质有关的抗剪强度τ进行计算,实际上冲裁时的抗剪强度不仅与材料性质有关,还与材料硬化程度,材料相对厚度,凸、凹模相对间隙(Z/t)以及冲裁速度有关,可用如下公式计算: 式中 m——与相对间隙有关的系数; ——材料抗拉强度,[τ]为MPa。 在Z/t=0. 15时,m=l.2,故

(1.5-1.8) (2.0-2.6) 受模具刃口的磨损,间隙的影响,材料机械性能的变化,材料厚度偏差等诸多因素,实际所需冲裁力还须增加30%,即 冲床的计算吨位分为两种: (1)无斜刃口冲 公式:冲芯周长(mm)×板材厚度(mm)×材料的剪切

强度(kn/mm2)=冲切力(KN) 换算成公吨:用KN除以9.81 冲芯周长----任何形状的各个边长相加 材料厚度----指冲芯要冲孔穿透的板材的厚度 材料的剪切强度----板材的物理性质,由板材的材质所决定,可在材料手册中查到。 举例 在 3.00mm厚的低碳钢板材上冲孔,形状方形,边长20.00mm 冲芯周长=80.00mm 材料厚度=3.00mm 剪切强度=0.3447kn/mm2 8.00×3.00×0.3447=82.73KN 82.73KN÷9.81=8.43公吨 (2)普通冲床压力计算公式 冲裁力计算公式: p=k*l*t*τ p——平刃口冲裁力(n); t——材料厚度(mm); l——冲裁周长(mm); τ——材料抗剪强度(mpa); k——安全系数,一般取k=1.3. 冲剪力计算公式: f=s*l*440/10000 s——工件厚度

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

液压功率计算公式

请问液压功率计算公式为何有两种N=P*Q/(60η)K W,压力P单位M P a,流量Q单位L/m i n,η为油泵总效率 和 N=P*Q/612η KW,压力P单位kgf/cm2,流量Q单位L/min,η为油泵总效率。 为何一个除60η,一个除612η60η和612η是如何而来 液压泵的常用计算公式 参数名称单位计算公式符号说明 流量L/min V —排量 n —转速 q —理论流量q —实际流量 输入功率kW P i —输入功率(kW) T—转矩(N·m) 输出功率kW P —输出功率(kW) p—输出压力(MPa) 容积效率%η —容积效率(%) 机械效率%η m —机械效率(%)总效率%η—总效率(%) 液压泵和液压马达的主要参数及计算公式 液压泵和液压马达的主要参数及计算公式参数名称单位液压泵液压马达 排量、流量排量q0m3/r 每转一转,由其密封腔内几何尺寸变化计算而得的 排出液体的体积 理论流 量Q0 m3/s 泵单位时间内由密 封腔内几何尺寸变化 计算而得的排出液体 的体积 Q0=q0n/60 在单位时间内为形成指 定转速,液压马达封闭腔 容积变化所需要的流量 Q0=q0n/60

实际流量Q 泵工作时出口处流量 Q=q0nηv/60 马达进口处流量 Q=q0n/60ηv 压力额定压 力 Pa 在正常工作条件下,按试验标准规定能连续运转的 最高压力 最高压 力p max 按试验标准规定允许短暂运行的最高压力 工作压 力p 泵工作时的压力 转速额定转 速n r/min 在额定压力下,能连续长时间正常运转的最高转速 最高转 速 在额定压力下,超过额定转速而允许短暂运行的最 大转速 最低转 速 正常运转所允许的最低 转速 同左(马达不出现爬行 现象) 功率输入功 率P t W 驱动泵轴的机械功率 P t=pQ/η 马达入口处输出的液压 功率 P t=pQ 输出功 率P0 泵输出的液压功率,其 值为泵实际输出的实际流 量和压力的乘积 P0=pQ 马达输出轴上输出的机 械功率 P0=pQη 机械功 率 P t=πTn/30P0=πTn/30 T–压力为p时泵的输入扭矩或马达的输出扭矩, N.m 扭矩理论扭 矩 N.m 液体压力作用下液压马 达转子形成的扭矩 实际扭 矩 液压泵输入扭矩T t T t=pq0/2πηm 液压马达轴输出的扭矩 T0 T0=pq0ηm/2π 效率容积效 率ηv 泵的实际输出流量与理 论流量的比值 ηv=Q/Q0 马达的理论流量与实际 流量的比值 ηv=Q0/Q 机械效 率ηm 泵理论扭矩由压力 作用于转子产生的液 马达的实际扭矩与理论 扭矩之比值 ηm=2πT0/pq0

液压常用计算公式-液压泵

液压常用计算公式 1、齿轮泵流量(L /min ): q 。 Vn Vn 。 1000,q 1000 说明:V 为泵排量(ml/r ) ; n 为转速(r/min ) ; q o 为理论流量 (L/min ); q 为实际流量(L/min ) 2、 齿轮泵输入功率(kW ): P 辽 i 60000 说明:T 为扭矩(N.m ); n 为转速(r/min ) 3、 齿轮泵输出功率(kW ): P o 说明:p 为输出压力(MP a ); pq _p_q 60 612 p '为输出压力(kgf/cm 2 ); q 为实际 流量(L/min ) 4、齿轮泵容积效率(% : 说明:q 为实际流量(L/min ); 2 100 q o q o 为理论流量(L / min ) 5、齿轮泵机械效率(%: 10 ^ 100 2 Tn 说 p 为输出压力(MP a ); q 为实际流量(L/min ); T 为扭矩 m (N.m ); n 为转速(r/min ) 6、齿轮泵总效率(% :

说明: V 为齿轮泵容积效率(% ; m 为齿轮泵机械效率(% 7、齿轮马达扭矩(N.m ): T P q T T 2 , t (ml/r );T t 为马达的理论扭矩(N.m ); T 为马达的实际输出扭矩(N.m ); m 为马达的机械效率(% 8齿轮马达的转速(r / min ): Q — V q 说明:Q 为马达的输入流量(ml/min ); q 为马达排量(ml/r ); V 为马达的容积效率(% 11、液压缸速度(m. min ): Q V 10A 说明:Q 为流量(L min );A 为液压缸面积(cm 2 ) 说明:P 为马达的输入压力与输出压力差( MP a ) ; q 为马达排量 9、齿轮马达的输出功率( kW ): 说明:n 为马达的实际转速 10、液压缸面积(cm 2 ): 2 nT P 60 103 (r / min ); T 为马达的实际输出扭矩(N.m ) D 2 A - 4 说明:D 为液压缸有效活塞直径 (cm )

冲床冲压吨位计算word精品

一、冲床冲压吨位计算 无斜刃口冲芯 公式:冲芯周长(mm)X板材厚度(mm)x材料的剪切强度(KN/mm2)=冲切力(KN ) 换算成公吨:用KN除以9.81 冲芯周长----任何形状的各个边长相加 材料厚度----指冲芯要冲孔穿透的板材的厚度 材料的剪切强度----板材的物理性质,由板材的材质所决定,可在材料手册中查到。常见材料的剪切强度如下:材料剪切强度(KN/mm2) 铝5052H32 0.1724 黄铜 0.2413 低碳钢 0.3447 不锈钢 0.5171 举例: 在3.00mm厚的低碳钢板材上冲孔,形状方形,边长20.00mm 冲芯周长=80.00mm 材料厚度=3.00mm 剪切强度=0.3447KN/mm2 80.00 X.00 X.3447=82.73KN 82.73KN 弋.81=8.43 吨 二、数控冲床模具的使用与维护 数控冲床模具的使用与维护 模具应定期清洗和油润。 不同板厚不同材质应选用不同的下模间隙,间隙过小易啃模,过大则毛刺大。 不同材质板材应选用不同材质模具,如不锈钢及铝铜板,应选用特殊用钢。 要定期检查冲床上下的模座同轴性,模位不正,容易单边啃模或打坏模具。 成型模具应将打击头从最低逐步向上微调到适当位置,否则,容易一次就造成打散模具。 当发现上下模刃口磨损达R0.25毫米的圆弧时,就需要重新刃磨。 每次刃磨量(吃刀量)不应超过0.013毫米,磨削量过大会造成模具表面过热,相当于退火处理,模具变软,大大降 低了模具的寿命,刃磨时必须增加足够的冷却液。 刃磨完后,边缘部要油石处理,去掉过分尖锐的棱线,并退磁和上油。 当入模深度不够时,将打击头的高度调整为要求尺寸。 模具的刃磨量是一定的,如果达到该数值,冲头就要报废。如果继续使用,容易造成模具和机器的损坏,得不偿失。更换模及刃模时,启动设备前后应注意安全,以防设备、模具、人身受损。 三、推荐的下模间隙(双面)材质/厚度钢铝 低碳钢板 不锈钢板 t v 1 14%t

冲床冲压力计算公式

冲床冲压力计算公式 冲床冲压力计算公式 冲床冲压力计算公式P=kltГ 其中:k为系数,一般约等于1, l 冲压后产品的周长,单位mm; t为材料厚度,单位mm;Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少就是多少T 冲床冲压力计算公式P=kltГ 其中:k为系数,一般约等于1, l冲压后产品的周长,单位mm; t为材料厚度,单位mm; Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少就是多少T. 这个只能算大致的,为了安全起见,把以上得到的值乘以2就可以了,这样算出的值也符合复合模的冲压力. 冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3. 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可。 冲压力是指在冲裁时,压力机应具有的最小压力。 P冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。 冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度 t-板料厚度 σb-材料强度极限σb-的参考数0.6 算出的结果单位为KN

3、卸料力:把工件或废料从凸模上卸下的力 Px=KxP冲 其中Kx-卸料力系数Kx-的参考数为0.04 算出的结果单位为KN 4、推件力:将工件或废料顺着冲裁方向从凹模内推出的力 Pt=KtPn Kt-推件力系数n-留于凹模洞口内的件数 其中:Px、Pt --分别为卸料力、推件力 Kx,Kt分别是上述两种力的修正系数 P——冲裁力; n——查正表卡在凹模洞口内的件数Kt的参考数为0.05,结果单位为KN 5、压边力:P y=1/4 [D2—(d1+2R凹)2]P 式中D------毛坯直径 d1-------凹模直径 R凹-----凹模圆角半径 p--------拉深力 6、拉深力:Fl= d1 bk1(N) 式中d1-----首次拉深直径(mm) b-----材料抗拉强度(Mpa) K-------修正系数

冲压模具价格估算表_冲压模具价格估算办法

冲压模具价格估算表_冲压模具价格估算办法 无论进行哪种冲压模具价格估算的报价,在报价之前都需要与进行开发评估,这是必不可少的环节之一。开发评估:冲压模具的定位,预估产量,技术面是否可行。其中还包括技术要求能否达到、品质能否确保、材料、外包件件是否有货源、设备是用原有的还是新购、目前公司的产能人力负荷是否足够等。通过评估结果来决定这个开发案是否进行。下面大家一起来看看冲压模具价格如何估算,以及冲压模具价格估算办法,以及冲压件价格是如何计算的。 冲压模具工程分析 1,分析模具的冲压工艺 2,计算零件的材料展开 3,列出工步或工程 4,计算出模面尺寸,冲裁力 这些工作必须安排资深的模具设计工程师来完成。做完这四步以后的报价工作就简单了,就是本文接下来探讨的重点。 对模具了解不够,专业知识缺乏的人,是做不了工程分析的。先要去系统地学习,了解模具结构和模具设计。这要花费相当多精力,并且不是本文模具报价的讨论范围。所有的模具报价,都应要有专业可靠的工程分析数据后才能进行计算。有类似的产品模具制作经验的,参照做过的模具直接报价不在除外。

冲压模具报价计算 方法一——冲压模具价格估算办法 计算模具材料费,然后以模具材料费推算整套模具报价。 模具材料费指一套模具所有模板的材料费,包括冲头,镶件;但不包含标准件,其它零配件,下同。为便于理解,下面计算模具材料费以一套模面尺寸(指下母模板尺寸,下同)为400W*1000L (单位mm,下同)的工程模和连续模为例说明:下母模板通常都按40mm厚计算(取中间值),材质用Cr12MoV国标机轧料,按28元/公斤计算。 1,下模板材料费计算: 先计算下母模板重量:400*1000*40*0.0000079 得出理论重量=126.4KG 一块下模板的材料费=126.4KG*28元/KG=3540元2,计算出一整套模具的材料费: 一套冲压模具的模板材料费,按一块下模板材料费的4倍计算。 这样可以大致得出,一套模面400W*1000L的模具材料费为:3540*4=14200元冲压模具结构复杂,模板数目会视情况有所不同,常见模板组成上模有:上模座,上垫板,上夹板(上固定板),止档板(脱料背板),脱料板5块;下模有:下母模板,下垫板,下模座3块,有时还有下夹板(下固定板),再加上垫脚及托板。 由此可以看出,一套模具材料费按下模板材料费4倍计算是合适的。模具上的其余的七八块板

冲床冲压力计算公式

冲床冲压力计算公式 2007-01-22 13:57 这下面有几个公式,任选一个就可以,只能算出个大概,我公司是用Excle做好的函数算的,非常精确,如果你想得到更精确的,我可以帮你算,把冲压产品的周长或规格,厚度,原材料材质(越详细越好,如钢铁的含碳量多少)发到我邮箱landray2006@https://www.360docs.net/doc/6d3553831.html, ,标题请注明 "算冲压力",不然我会当垃圾邮件直接删的.我会在两天内回复,如果想自己算,就用下面的任一个公式都能算. --------------------------------------- 冲床冲压力计算公司P=kltГ 其中:k为系数,一般约等于1, l冲压后产品的周长,单位mm; t为材料厚度,单位mm; Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少 就是多少T. 这个只能算大致的,为了安全起见,把以上得到的值乘以2就可以了,这样算出的值也符合复合模的冲压力. ---------------------------------- 冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3. ------------------------------------ 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可。 ------------------------------------- 冲压力是指在冲裁时,压力机应具有的最小压力。 P冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。 冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度

冲压件常用公式及数据表

第三章常用公式及数据表 第四节冲压件模具设计常用公式一.冲裁间隙分类见表4-1 表4-1 冲裁间隙分类(JB/Z 271-86) 二.冲裁间隙选取(仅供参考) 见表4-2 (见下页)

表4-2 冲裁间隙比值(单边间隙) (单位:%t) (注: 1. 本表适用于厚度为10mm以下的金属材料, 厚料间隙比值应取大些; 2. 凸,凹模的制造偏差和磨损均使间隙变大, 故新模具应取最小间隙; 3. 硬质合金冲模间隙比钢模大20% 左右.) 注: 冲裁间隙选取应综合考虑下列因素: 1.冲床﹑模具的精度及刚性. 2.产品的断面质量﹑尺寸精度及平整度. 3.模具寿命. 4.跳屑. 5.被加工材料的材质﹑硬度﹑供应状态及厚度. 6.废料形状. 7.冲子﹑模仁材质﹑硬度及表面加工质量. 三.冲裁力﹑卸(剥)料力﹑推件力﹑顶件力 F冲= 1.3 * L * t *τ(N) (公式4-1) F卸= K卸* F冲(N) (公式4-2) F推= N * K推* K冲(N) (公式4-3) F顶= K顶* F冲(N) (公式4-4) 其中:

L ――冲切线长度(mm) t ――材料厚度(mm) τ――材料抗剪强度(N/mm2 ) 1.3 ――安全系数 K卸――卸(剥)料力系数 K推――推料力系数 K顶――顶料力系数 K卸K推K顶数值见表4-3 表4-3 卸料力﹑推件力和顶件力系数 注:卸料力系数K卸在冲多孔﹑大搭边和轮廓复杂时取上限值. 四.中性层弯曲半径 R = r + x * t (mm) (公式4-5) 其中: R――中性层弯曲半径(mm) r ――零件内侧半径(mm) x ――中性层系数

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积 (cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V = Q / A Q :流量 (l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) 液压油缸出力 (kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时 ) p :压力 (kgf /cm 2 )

冲压件展开计算方法

冲压件展开计算方法 冲压件是常件的金属件,在冲压前,要对冲压件下料,这时,往往要对冲压件展开计算: 1 90?无内R轧形展开 K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e. 软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模.

2 非90?无内R轧形展开 L=A+B+Kt(C?/90?) K值取值标准: a. t≦,K= b. c. d. t>材料展开长度不易准确计算,应先试轧,得出展开系数后再调整展开尺寸. e.软料t≦,K=(主要有铝料,铜料). 注意:无内R是指客户对内R无要求,或要求不高时,为便于材料的折弯成形,我们的下模做成尖角的形式.有时客户的部品图中有内R,一般客户没有特别指出的条件下我们均以尖角起模. 3 有内R轧形展开

备注:当客户部品图中没有特别要求做轧形内R时,我们尽量按尖角设计.有要求时按以上方式进行展开. 中性层系数确定: 弯曲处的中性层是假设的一个层面.首先将材料延厚度方向划分出无穷多个厚度趋于0的层面,那么在材料弯曲的过程中长度方向尺寸不变的层面即为材料弯曲处的中性层.由上述可知中性层的尺寸等于部品的展开尺寸. 1)铝料/ Al料中性层系数 角度( 0?角度( 90?角度 ( >180? ) R内/T S(从弯曲内 侧往外) R内/T S(从弯曲内 侧往外) R 内 /T S(从弯曲内 侧往外)

泵与发动机的功率匹配原理

泵与发动机的功率匹配原理 发动机的输出功率: ne=me·ne/9 549 (1) 式中:ne——发动机输出功率(kw) me——发动机转矩(n·m) ne——发动机转速(r/min) 泵的输出功率为: nb=pbqb/60=pbqbnb/60 000 (2)式中:nb——泵的输出功率(kw) pb——泵出口压力(mpa) qb——泵出口流量(l/min) qb——泵的排量(ml/r) nb——泵的转速(r/min) 泵与发动机直接连接,有nb=ne。 由传动关系知,nb与ne又满足: nb=neη 1η 2(3) 式中η 1——泵与发动机之间的传动效率,泵与发动机直接连接时取为1,泵与发动机通过分动箱相连时取为0.97 η 2——泵自身的效率,由于泵一般为变量柱塞泵,当泵的排量、转速、压力变化时,效率也随之变化,因此,泵的效 率值由供应商提供。 当发动机期望工作在某一最佳工作点时,其输出转矩为一常

值,所以泵与发动机功率匹配,有关系式: mb=pbqb/2π=常值(4) 式中:mb——泵的吸收转矩n·m 因此,当负载pb变化时,通过调节泵的排量qb使得泵的输出转矩不变,就实现了泵与发动机之间的功率匹配,发动机的转速为设定的最佳工作点处的转速。从而得出结论:当发动机在设定的最佳工作点运行时,欲实现泵与发动机匹配,则要求泵具有恒功率特性,图1所示。 此主题相关图片如下: [disablelbcode] 恒功率泵可采用机械控制或微控器控制,机械控制的恒功率变量是靠不同的弹簧组合来近似实现恒功率的,在其恒功率区段能实现泵与发动机的匹配,但是有调节不方便、存在误差等不足。而当采取微控器(如MC控制器)控制时,能实现泵与发动机的精确匹配,而且调节方便。 2柴油机最佳工作点的选取 图2是发动机的外特性转矩曲线图,曲线ABCD是发动机的全负荷速度特性,斜线AH、BI、CJ、DK为不同油

数控冲吨位计算

吨位计算及模具维护 一、冲压吨位计算 无斜刃口冲芯 公式:冲芯周长(mm)×板材厚度(mm)×材料的剪切强度(KN/mm2)=冲切力(KN) 换算成公吨:用KN除以9.81 冲芯周长----任何形状的各个边长相加 材料厚度----指冲芯要冲孔穿透的板材的厚度 材料的剪切强度----板材的物理性质,由板材的材质所决定,可在材料手册中查到。常见材料的剪切强度如下: 举例: 在3.00mm厚的低碳钢板材上冲孔,形状方形,边长20.00mm 冲芯周长=80.00mm 材料厚度=3.00mm 剪切强度=0.3447KN/mm2 80.00×3.00×0.3447=82.73KN 82.73KN÷9.81=8.43吨 二、数控冲床模具的使用与维护 数控冲床模具的使用与维护 模具应定期清洗和油润。 不同板厚不同材质应选用不同的下模间隙,间隙过小易啃模,过大则毛刺大。 不同材质板材应选用不同材质模具,如不锈钢及铝铜板,应选用特殊用钢。 要定期检查冲床上下的模座同轴性,模位不正,容易单边啃模或打坏模具。 成型模具应将打击头从最低逐步向上微调到适当位置,否则,容易一次就造成打散模具。 当发现上下模刃口磨损达R0.25毫米的圆弧时,就需要重新刃磨。 每次刃磨量(吃刀量)不应超过0.013毫米,磨削量过大会造成模具表面过热,相当于退火处理,模具变软,大大降低了模具的寿命,刃磨时必须增加足够的冷却液。 刃磨完后,边缘部要油石处理,去掉过分尖锐的棱线,并退磁和上油。 当入模深度不够时,将打击头的高度调整为要求尺寸。 模具的刃磨量是一定的,如果达到该数值,冲头就要报废。如果继续使用,容易造成模具和机器的损坏,得不偿失。 更换模及刃模时,启动设备前后应注意安全,以防设备、模具、人身受损。 三、推荐的下模间隙(双面)

浅谈液压泵的主要性能参数

浅谈液压泵的主要性能参数 液压泵的主要参数有压力、排量、流量、功率和效率等。 1.压力 液压泵压力有工作压力、额定压力、最高允许压力和吸人压力等。用P表示,单位为Mpa 1)工作压力p 工作压力是指液压泵实际工作时的输出压力。工作压力的大小取决于负载和管路的压力损失,随着外负的变化而变化,和液压泵的流量无关。 2)液压泵的额定压力Pn 液压泵的额定压力指液压泵在正常工作条件下,按试验标淮规定的连续运转最高巧-力。液压泵的实际工作压力要小于额定压力,如果工作压力大于额定压力时,液压泵就过载。3)最高允许压力Pmax 最高允许压力是指液压泵按试验标准规定的,允许短时间超过额定压力运行的最大压力值。 4)吸人压力 吸人压力是指液压泵进口处的压力。为了保证液压泵正常工作而不产生气穴,应限制液压泵的吸油髙度,即最低吸人压力必须大于相应的空气分离压力。 2,排量和流量 1)排量 排量是指液压泵每转一周,由其密封容积几何尺寸变化计算而得排出的液体体积。排量用V 表示,其单位为L/r排量可啁节的液压泵为变量泵,徘量不可调节的液压泵为定量泵。 流量 液压泵的流量是指在单位时间内排出的液体体积,有理论流量、实际流量和额定流量之分。用q表示,单位为L/min。 (1)理论流量q1。理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所徘出的液体的体积。裉然,如果液压泵的排量为V,其主轴转速为",则该液压泵的理论流量为q1=Vn (2)实际流量qp。实际流量是指液压泵在工作时,考虑液压泵泄漏而输出的流量。它等于理论流量减去泄漏流量△q即 qp=q1-△q (3)额定流量qn额定流量是指液压泵在正常工作条件下,试验标准规定(如在额定压力和额定转速下)必须保证的流量。实际流量和额定流量都小于理论流量。 3)功率 液压泵的功率有输人功率、理论输出功率和实际输出功率。用P表示.单位是W 或KW。(1)输入功率P1。液压泵是通过电动机带动,输人的是转矩T和转速n;即输人能量为机械能。输人功率p1,指作用在液压泵主轴上的机械功率。

冲床冲裁力及冲剪力计算公式

冲床冲裁力及冲剪力计算公式 冲床冲裁力及冲剪力计算公式 许多用户在购买冲床时会问到一些问题:如何选择冲床吨位?多厚的板子用多大的冲床?冲多大的孔用多大的冲床?类似的问题只要搞清楚冲床冲裁力的计算公式,对冲床的选用就很简单。 冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可冲床冲压力计算公式 冲床冲压力计算公式P=kltГ其中:k为系数,一般约等于1, l冲压后产品的周长,单位mm; t为材料厚度,单位mm; Г为材料抗剪强度.单位MPa . 算出的结果是单位是牛顿,在把结果除以9800N/T,得到的结果就是数字是多少就是多少T. 这个只能算大致的,为了安全起见,把以上得到的值乘以2就可以了,这样算出的值

也符合复合模的冲压力. --冲裁力计算公式:P=K*L*t*τ P——平刃口冲裁力(N); t——材料厚度(mm); L ——冲裁周长(mm); τ——材料抗剪强度(MPa); K——安全系数,一般取K=1.3. 冲剪力计算公式:F=S*L*440/10000 S——工件厚度 L——工件长度 一般情况下用此公式即可。冲压力是指在冲裁时,压力机应具有的最小压力。 P 冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度 t-板料厚度 σb-材料强度极限σb-的参考数0.6 算出的结果单位为KN 3、卸料力:把工件或废料从凸模上卸下的力 Px=KxP冲 其中Kx-卸料力系数 Kx-的参考数为0.04 算出的结果单位为KN 4、推件力:将工件或废料顺着冲裁方向从凹模内推出的力 Pt=KtPn Kt-推件力系数 n-留于凹模洞口内的件数其中:Px、Pt --分别为卸料力、推件力 Kx,Kt分别是上述两种力的修正系数 P——冲裁力; n——查正表卡在凹模洞口内的件数 Kt的参考数为0.05,结果单位为KN 5、压边力: P y=1/4 [D2—(d1+2R凹)2]P 式中 D------毛坯直径 d1-------凹模直径 R凹-----凹模圆角半径 p--------拉深力 6、拉深力:

冲压模具常用公式及数据表

常用公式及数据表 冲压件模具设计常用公式 一.冲裁间隙分类见表4-1 表4-1 冲裁间隙分类(JB/Z 271-86) 二.冲裁间隙选择(提供参考) 见表4-2 (見下頁) 表4-2 冲裁间隙比值(單邊间隙) (單位:%t)

(注: 1. 本表適用于厚度為10mm以下的金屬材料, 厚料间隙比值應取大些; 2. 凸,凹模的制造偏差和磨損均使间隙變大, 故新模具應取最小间隙; 3. 硬質合金冲模间隙比鋼模大20% 左右.) 注: 冲裁间隙选择應綜合考慮下列因素: 1.冲床﹑模具的精度及剛性. 2.產品的斷面品質﹑尺寸精度及平整度. 3.模具壽命. 4.跳屑. 5.被加工材料的材質﹑硬度﹑供應狀態及厚度. 6.廢料形狀. 7.冲子﹑模仁材質﹑硬度及表面加工質量. 三.冲裁力﹑卸(剝)料力﹑推件力﹑頂件力 F冲= 1.3 * L * t *τ(N) (公式4-1) F卸= K卸* F冲(N) (公式4-2) F推= N * K推* K冲(N) (公式4-3) F頂= K頂* F冲(N) (公式4-4) 其中: L ――冲切線長度(mm) t ――材料厚度(mm) τ――材料抗剪強度(N/mm2 ) 1.3 ――安全系數 K卸――卸(剝)料力系數 K推――推料力系數

K頂――頂料力系數 K卸K推K頂數值见表4-3 表4-3 卸料力﹑推件力和頂件力系數 注:卸料力系數K卸在冲多孔﹑大搭邊和輪廓復雜時取上限值. 四.中性層彎曲半徑 R = r + x * t (mm) (公式4-5) 其中: R――中性層彎曲半徑(mm) r ――零件內側半徑(mm) x ――中性層系數 中性層系數见表4-4(提供参考) 表4-4 中性層系數x值 注: 彎曲件展開尺寸與下列因素有關: 1.彎曲成形方式. 2.彎曲间隙. 3.有無压料. 4.材料硬度﹑延伸率﹑厚度. 5.根据實際狀況精確修正. 五.材料最小彎曲半徑,见表4-5 表4-5 最小彎曲半徑

液压泵性能测试1

实验一 液压泵静态性能实验 一、实验目的 1、了解定量泵的主要静态性能,分析泵的性能参数之间的关系; 2、通过实验,学会小功率液压泵的测试方法和熟悉本实验所用的仪器和设备,掌握液压泵的工作特性。 二、实验所需设备 YZ-01型液压传动综合教学实验台。 三、实验内容及要求 1. 液压泵的流量——压力特性 测定液压泵在不同工作压力下的实际输出流量,得出流量——压力特性曲线()p f q q =。 实验原理见图。 实验中,压力由压力表8直接读出,各种压力时的流量由流量计4直接读出。实验中可使溢流阀2作为安全阀使用,调节其压力值为7.0~7.5MPa ,用节流阀3调节泵出口工作压力的大小,由流量计测得液压泵在不同压力下的实际输出流量,直到节流阀调小使液压泵出口压力达到额定压力6.0MPa 为止。给定不同的出口压力,测出对应的输出流量,即可得出该泵的()p f q q =。 2. 液压泵的容积效率——压力特性 测定液压泵在不同工作压力下,它的容积效率——压力的变化特 性()p f V V =η。 因为:() 0) ()()(q q q q V 空载流量输出流量理论流量输出流量理= = η

所以:理q q V = η 由于:)(p f q q = 则:)()(p f q p f V q V ==理 η 式中:理论流量理q :液压系统中,通常是以泵的空载流量来代 替理论流量(或者nv =理q ,n 为空载转速,v 为泵的排量)。 实际流量q :不同工作压力下泵的实际输出流量。 3. 液压泵的输出功率——压力特性 测定液压泵在不同工作压力下,它的实际输出功率和输出压力的变化关系()p f N N O =。 输出功率:()p f p pf pq N N q O (=== 4. 液压泵的总效率——压力特性 测定液压泵在不同工作压力下,它的总效率和输出压力之间的变化关系()p f ηη=总 )(p f N pq N N i i o ηη=== 总 式中:i N 为泵的输入功率,实际上i N 为泵的输入扭矩()T 与角速度()ω的乘积,由于扭矩T 不易测量,这里用电动机D 的输入电流功率近似表示,该值可以从实验台功率表上针对不同的输出压力时直接读出。

液压常用计算公式-液压泵

液压常用计算公式 1、齿轮泵流量(min /L ): 1000Vn q o =,1000 o Vn q η= 说明:V 为泵排量(r ml /);n 为转速(min /r );o q 为理论流量(min /L );q 为实际流量(min /L ) 2、齿轮泵输入功率(kW ): 60000 2Tn P i π= 说明:T 为扭矩(m N .);n 为转速(min /r ) 3、齿轮泵输出功率(kW ): 612 60'q p pq P o = = 说明:p 为输出压力(a MP );' p 为输出压力(2 /cm kgf );q 为实际流量(min /L ) 4、齿轮泵容积效率(%): 100V ?= o q q η 说明:q 为实际流量(min /L );o q 为理论流量(min /L ) 5、齿轮泵机械效率(%): 10021000?=Tn pq m πη 说明:p 为输出压力(a MP ); q 为实际流量(min /L );T 为扭矩(m N .);n 为转速(min /r ) 6、齿轮泵总效率(%):

m ηηη?=V 说明:V η为齿轮泵容积效率(%);m η为齿轮泵机械效率(%) 7、齿轮马达扭矩(m N .): π 2q P T t ??= ,m t T T η?= 说明:P ?为马达的输入压力与输出压力差(a MP ) ; q 为马达排量(r ml /);t T 为马达的理论扭矩(m N .);T 为马达的实际输出扭矩(m N .); m η为马达的机械效率(%) 8、齿轮马达的转速(min /r ): V q Q n η?= 说明:Q 为马达的输入流量(min /ml ); q 为马达排量(r ml /); V η为马达的容积效率(%) 9、齿轮马达的输出功率(kW ): 3 10 602?= nT P π 说明:n 为马达的实际转速(min /r ); T 为马达的实际输出扭矩(m N .) 10、液压缸面积(2cm ): 4 2 D A π= 说明:D 为液压缸有效活塞直径(cm ) 11、液压缸速度(min m ): A Q V 10= 说明:Q 为流量(min L );A 为液压缸面积(2 cm ) 12、液压缸需要的流量(min L ):

数控冲床模具冲压过程

一、数控冲床模具冲压过程 1.退料板与板料接触 2.冲头接触板料,板料开始变形 3.材料在应力点开始断裂 4.废料从板料中开始断裂出来 5.冲头冲压到底 6.冲头回缩,废料自由下落,冲压工序完成 二、从废料情况看出的信息 A B C D D C B A A: 压塌角B:光亮带C:断裂带D:毛刺 废料本质上就是成形孔的反像。即位置相反的相同部位。通过检查废料,你可以判断上下模间隙是否正确。如果间隙过大,废料会出现粗糙、起伏的断裂面和一窄光亮带区域。间隙越大,断裂面与光亮带区域所成角度就越大。如果间隙过小,废料会呈现出一小角度断裂面和一宽光亮带区域。 过大间隙形成带有较大卷边和边缘撕裂的孔,令剖面稍微有一薄边缘突出。太小的间隙形成带稍微卷边和大角度撕裂,导致剖面或多或少地垂直于材料表面。 一个理想的废料应有合理的压塌角和均匀的光亮带。这样可保持冲压力最小并形成一带极少毛刺的整洁圆孔。从这点来看,通过增大间隙来延长模具寿命是以牺牲成品孔质量换取的。 三、为什么要使用正确的下模间隙? (1) 最佳间隙:剪切裂缝结合,均衡冲压力、工件质量和模具寿命。 (2) 间隙太小:次等的剪切裂缝,冲压力提升,缩短模具使用寿命。 四、模具间隙的选择 模具的间隙与所冲压的材料的类型及厚度有关。不合理的间隙可以造成以下问题: (1) 如间隙过大,所冲压工件的毛刺就比较大,冲压质量差。如果间隙偏小,虽然冲孔的质量较好,但模具的磨损比较严重,大大降低模具的使用寿命,而且容易造成冲头的折断。 (2) 间隙过大或过小都容易在冲头材料上产生粘连,从而造成冲压时带料。过小的间隙容易在冲头底面与板料之间形成真空而发生废料反弹。 (3) 合理的间隙可以延长模具寿命,卸料效果好,减小毛刺和翻边,板材保持洁净,孔径一致不会刮花板材,减少刃磨次数,保持板材平直,冲孔定位准确。

相关文档
最新文档