电解槽磁场计算

电解槽磁场计算
电解槽磁场计算

电解槽磁场计算方法的比较

1 前言

随着现代大型铝电解槽工作电流的增大,其载流母线和熔体电流产生的磁场对其生产和稳定运行的影响愈显突出。由于磁场与熔体电流相互作用所产生的电磁力使槽内熔体循环加速,导致铝液面产生隆起、偏斜和波动,甚至可能导致铝电解槽不能正常生产。因此,在设计高效能的大型铝电解槽时,必须考虑削弱和控制槽内磁场和电流相互作用所产生的电磁力,使母线配置与槽内磁场各分量呈一定规律分布,而且将其绝对值降到限定的数值范围。这样在设计大型铝电解槽时,才能准确计算槽内磁场。对于电解槽的磁场计算而言,其分布为不规则形状,再加上其上部结构、槽壳、摇篮架以及钢构厂房等铁磁物质的存在,使得我们很难精确计算,而不得不进行大量的简化,有些因素(特别是铁磁物质)的影响难以全面考虑,因而存在一定的计算误差。

对于铝电解槽槽内磁场而言,产生这部分磁场的主要原因有:

1)槽周载流母线在槽内产生的磁场;2)槽内导体产生的磁场;3)铁磁物质的影响;4)相邻及左右列槽在本槽内产生的磁场(通常情况下,由于钢构厂房远离计算场点而被忽略)。

我院在20世纪80年代初期即与华中工学院合作,对铝电解槽磁场分布进行研究,采用毕奥一沙伐定律,用等效线电流数学模型编制铝电解槽磁场计算软件,并在工程中进行了广泛的应用。20世纪90年代末期,我院又与华中科技大学再度进行合作,采用有限元方法计算铝电解槽磁场分布。本文就上述两种计算方法进行简要描述,并对其计算结果进行了比较。

2 毕奥-沙伐定律计算模型

计算电解槽磁场的模型有等效线电流数学模型、等效圆柱母线数学模型和等效矩形母线数学模型。作者曾对上述几种模型在计算电解槽磁场分布时的误差作过专门分析[1,2]

,为了便于计算以及实际应用,我们采用了等效线电流数学模型,其原理如图1所示。

图1: 等效线电流数学模型

把矩形母线电流用集中在母线的S 轴线上的等效线电流来代替,设AB 间有电流通过,如图1所示,电流按线性变化,沿S 轴流动,线电流βα+=S I ,其中α、β为任意常数,A 、B 两点间的坐标分别为S 1、S 2,场点P 的磁感应强度矢量为

???=

212

004S S r r s d I B ρρρρπ

μ

(1) 其数值为

ds r

S ds r I B S S S S ?

?

+=

=

2

1

2

02

1

2

0sin )(4sin 4θ

βαπμθπ

μ 若令?cos /a r =,?atg S =,则:

???

?

????+-

+++-+-=)()11(4221122222212220

αααβαπ

μS S S S a S a S a B (2)

设通过A 、B 两端点的电流分别为I 1和I 2,即:

11|I I S S ==,11I S =+βα; 22|I I S S ==,22I S =+βα

求解得:

2121S S I I --=

α,1

21

221S S S I S I --=β

将α、β值代入式(2),即可由S 1、S 2、I 1、I 2、α确定此线电流在场点

P

产生

的磁感应强度B 的大小,再利用0r s d ρ

ρ?的方向余弦,可求出P 点磁感应强度的三个分量Bx 、By 、Bz 。

1)槽周母线电流产生的磁场

将槽周母线电流用集中在母线的中心轴线上的等效线电流束代替,对每一根母线产生的磁场均按式(2)进行计算,然后再进行叠加。

2)槽内电流产生的磁场

为了计算槽内熔体电流产生的磁场,需要把铝电解槽熔体分割为若干块矩形载流导体,其电流用集中在轴线上的线电流来代替,并用式(2)进行计算。由于某些计算场点在等效圆柱导体内,应用(2)式计算时,场点与轴线越接近磁感应强度就越大,而实际上磁场随场点接近轴线应越来越小,因而由此引起的误差较大。为了提高磁场计算精度,采用等效线电流数学模型时,应注意熔体电流分割方式,使计算场点落在分割出的矩形熔体角点或边界上。

3)铁磁物质的影响

我们曾经在大电流试验室中,通过测量有、无模拟电解槽情况下磁场的数值来确定在钢结构影响下的磁场的衰减因子与变形系数。由于很难真实的模拟现场情况以确定衰减因子与变形系数,故试验结果没有很大的实用价值,因而在实际计算过程中未能考虑铁磁物质的影响。

4)相邻槽及左、右列槽的影响

与计算本槽磁场分布类似,通过一定方式的变换,来计算相邻及左右列槽电流对计算场点的影响。

3 有限元法计算

有限元法是一种偏微分计算方法,在处理边界条件复杂、材质种类较多及含有非线性条件的问题方面,具有积分方法无法比拟的优势,非常适用于铝电解槽的电磁场计算[3]。

由于磁场问题可以用泊松方程(有电流区域)和拉普拉斯方程(无电流区域)来描述。如对于一个任意三维磁场,其磁位

U m (可以是标量磁位位,也可以是矢量磁位A )通常

应满足如下的泊松方程和边值条件:

????

???=??=-=?0|)(|),,(2012

S S m m n

Um

p f U z y x f U

(3)

在式中第二项为第一类边界条件,第三项为第二类边界条件,当扒f(x ,y, z)为0

时,方程变为拉普拉斯方程。

产生铝电解槽内磁场的主要因素,曾在前言中进行过描述,可以采用变量分离的办法,即每次只考虑一个因素的影响,而将其他因素暂不考虑,将各因素在铝液内形成的磁场逐一计算,并叠加其结果,便可得到磁场的实际分布。计算方式分别如下。

1)槽周母线电流产生的磁场

由于我们关心的是铝液内的磁场分布,对于这一位置来说,旋度源(母线电流)在区域之外。故可以用标量磁位m ?作为变量来分析,其分布满足拉普拉斯方程:

2=?m ?

(4)

2)槽内电流产生的磁场

由于铝液本身也是导体,从理论上说,全部槽电流应穿过铝液层,即区域内有旋度源存在。因而,不能用标量磁位来分析,而必须改用矢量磁位A ρ

,其分布满足泊松方程:

J

A ρρμ-=?2

(5)

这里μ为磁导率,J 为电流体密度。矢量磁位A ρ

在x ,y ,z 方向上的分量分别

满足:

x x J A μ-=?2,y y J A μ-=?2,z z J A μ-=?2 (6)

式中Jx ,Jy ,Jz ,分别是载体电流密度在x ,y ,z 方向上的分量。

3)铁磁物质的影响

铁磁物质对铝电解槽内磁场的影响,如不考虑相邻及左右列槽,则电解槽内的磁场强度 H 可表示为:

m

c H H H ρρρ+=

(7)

式中

H c 为槽内外各传导电流产生的磁场,而H m 则是被磁化的铁磁物质产生的

磁场。

在进行有限元法计算时,不需要单独计算铁磁物质产生的磁场,而只要将其设为边界条件即可。如果在采用标量法计算外部母线电流产生的磁场时,对于铁磁物质与空气的交界面上,标量磁位为定值:

m m ??=

(8)

这种情形属于第一类边界条件。

而如果在计算槽内熔体电流磁场时,则在铁磁物质表面上的矢量磁位满足:

0=??n

A ρ

(9)

这种情形属于第二类边界条件。

在设定好边界条件之后,用有限元法计算传导电流产生的磁场时,可以自动考虑铁磁物质的作用。

4)相邻及左右列槽的影响

与计算槽周母线产生的磁场类似,也是用标量磁位作为变量进行分析。将上述各项计算结果进行矢量叠加,便可得出总的磁场分布。

4 计算结果的比较

以我院设计的230KA 电解槽为例,第一种方法是将流经电解槽的所有电流均用线电流进行等效,并用毕奥一沙伐定律求解磁场分布;第二种方法则采用有限元方法,将电解槽的结构适当简化,对泊松方程、或拉普拉斯方程求解后,进行叠加,求解槽内磁场分布。我们将上述二项计算结果以及计算点的测量结果同时列于表1中并绘制了图2~4。

表1 计算值与实测值的 比较(测量点位于槽的进电端,即A 侧)

序号

坐标

测量值/10-4T

毕一沙定律计算值

有限元法计算值

X Y Z Bx

By Bz Bx1 By1 Bz1 Bx2 By2 Bz2 1 -5.6 -1.6 2.8 -50.30

-6.523 -26.44

6 -56.11 -20.754 -10.121 -66.56

7 -5.389 -17.113 2 -4.2 -1.6 2.

8 -140.63 -14.498 -16.931 -167.80 -19.74

9 -5.23

-115.711 -5.201 -27.525 3

-2.

-1.

2.

-137.4-3.691

-6.797 -157.5

-17.80

-2.326 -135.32

-6.48

-16.31

8 6 8 4 2 4 2 5 1

4 -1.

4 -1.

6

2.

8

-153.8

7

7·311 -8.225 -183.1

3

-11.32

4

-3.949 -137.60

8

-1.29

5

-9.691

5 0 -1.

6 2.

8

-145.0

5

6.78 -1.414 -161.9

9

-4.09 -0.02 -145.30

8·148 -6.189

6 1.4 -1.

6 2.

8

-154.4

6

15.955 5.326 -181.6

4

5·735 -2.6 -126.07

5

14.09

1

-0.331

7 2.8 -1.

6 2.

8

-143.4

4

24.469 13.841 -162.4

2

13.148 -0.467 -126.76

3

9.557 10.573

8 4.2 -1.

6 2.

8

-137.3

3

21.608 20.518 -171.9

6

15.185 2.304 -113.52

8

4.266 29.303

9 5.6

, -1.

6

2.

8

-42.23 26.969 24.107 -63.29 16.430 4.446 -72.861 7.621 30.409

两种算法的样本方差比较见表2。

1)从表1和图2~4中可以看出,由于现场情况的复杂性,无论采用哪种方式进行计算,其计算值与实测值之间的偏差总是存在的;

2)表2列出了计算值与实测值之间的分散程度,采用有限元法计算明显提高了计算结果的精确度,特别是对于垂直磁场的计算更为突出。

图2: 两种计算结果与实测值的比较(Bx分量)

图3: 两种计算结果与实测值的比较(By分量)

图4: 两种计算结果与实测值的比较(Bz分量)

表2 : 两种算法的样本方差比较(样本方差∑

=-

=

N

i

i

x x

N1

2

) (

1

毕一沙定律计算值的样本方差有限元法计算值的样本方差

Bx1 By1 Bz1 Bx2 By2 Bz2

23.71 11.92 12.60 20.39 10.92 7.26

5 结论

由于考虑了铁磁物质的影响,使用有限元法对铝电解槽磁场进行计算要比采用等效线电流计算的结果更为接近实际值。但由于现场情况的复杂性,无论采用哪种方法进行计算,要使磁场计算结果与实测值完全吻合是非常难的。因此,这就需要我们在今后的工作中努力钻研,使我们的分析计算更加准确、可靠。

磁法标本磁参数计算公式修改意见

关于地面高精度磁测规范磁性标本参数计算公式修 改意见 刘国栋1,王富群2 1河南省地矿局第二地质勘查院,许昌(461000) 2河南省地矿局第二地质勘查院许昌(461000) E-mail :liuuodong1985@https://www.360docs.net/doc/6d5835759.html, 摘 要:本文主要阐述磁性标本的磁参数计算公式的理论推导及其单位换算,指出中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中给出的磁参数计算公式的不合理性,提出关于该公式修改意见。 关键词:磁参数计算公式 高斯 第一位置 第二位置 1.引言 我院在按照中华人民共和国地质矿产行业标准《地面高精度磁测技术规程》DZ/T 0071—93中规定的第一高斯位置法进行内蒙古标本磁参数测量并计算时碰到磁化率单位问题。 引用中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中附录C 的磁化率和剩磁计算公式[1]: 高斯第一位置磁化率: 3-6345612000051---1043222n n n n n n r n n n SI T V χπ?++?+??????=?++??? ? ? ???????????(κ) (1) 式中:r ——标本中心到探头中心的距离; V ——标本体积; 0T ——当地总磁场值; 高斯第一位置剩磁: 3-351 10/2r r I A m V =? (2) 用以上两个公式进行计算:按照该规范附录C 中叙述, r 选取单位cm ,V 选取单位cm 3,0T 与i n 选取单位nT ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实相符。 重新选取单位:r 选取单位m ,V 选取单位m3,0T 与i n 选取单位T ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实也不符,比实际小了约109倍。 由(1)式单位换算可以看出,r 3与V 的单位相消,0T 与i n 的单位相消,也就是说这四个参数的单位选择不会影响计算结果。 同理:(2)式中,3 r 与V 的单位相消,i n 的单位单独存在,影响到计算结果。 综上所述,个人认为是(1)式在推到中出现了错误,(2)式正确,i n 的单位应为nT 。 2.公式推导 约束条件: 高斯第一位置: 212n n +,432n n +,65 2n n + 0n ≥ 高斯第二位置:212n n +,432n n +,65 2 n n + 0n ≤ 2.1 高斯第一位置 根据磁偶极子模型,可得到标本在高斯第一位置产生磁场感应强度B 的大小[2]:

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

磁体与磁场教案

总第课时 课题磁体与磁场(一) 教学目标: 一、知识与技能 (1)通过磁铁等磁性物质,感知物质的磁性和磁化现象。 (2)认识磁场及其方向性,初步知道磁体的磁场分布状况; (3)能探究出磁极间的相互作用。 二、过程与方法 (1)学会通过观察实验,得出科学结论的方法; (2)通过观察物理现象的过程,能简单描述观察到的物理现象的主要 特征,增强观察能力; (3)学会利用铁屑、小磁针来研究磁场,从而进一步抽象出磁感应线 描述磁场的方法。 三、情感态度与价值观 (1)培养学生养成实事求是、尊重自然规律的科学态度; (2)让学生在解决问题中增强克服困难的信心和决心; (3)激发学生民族自豪感与振兴科学的民族责任感。 教学重点: 磁极间相互作用;磁场;探究磁场分布的过程。 教学难点: 探究磁场分布的过程、磁场的理解. 教学方法: 实验探究、分析讲解、自主训练 教学器具: 玻璃水盆一只、马蹄形磁体、几张纸。 教学过程: 一、自主检查(实验) 生甲:磁体能够吸引大头针、硬币等物体。 师:能吸引铁、钴、镍等物质的性质称为磁性。 生乙:磁体的两端吸引的大头针多,说明 师:我们把磁体上磁性最强的两端称为磁极,一端叫北(N 端叫南(S)极。

生丙:把两个北(N)极或两个南(S)极靠近,发现它们相互排斥, 把一个北(N)极和一个南(S)极靠近,发现他们相互吸引。师:我们能不能用一句话来概括它们的相互作用规律呢? 生丙:同名磁极相互排斥,异名磁极相互吸引。 师:用被磁体吸引过的大头针去靠近别的大头针会发现什么现象?生齐答:相吸。 师:像大头针这样原来没有磁性的物体获得磁性的过程叫做磁化。师:磁体对物体发生作用一定要直接接触吗? 生齐答:不要。 师:那磁体靠什么物质传递力的作用呢? 生:磁场。 师:磁场是一种存在于磁体周围,看不见也摸不着的物质,我们用什么方法可以探知它的存在、它的强弱呢? 师:请你将小磁针放在条形磁体的不同位置,观察小磁针N极的指向一致吗?有什么规律? 生:磁场中不同位置小磁针N极指向不同,说明磁场是有方向的。师:磁场的方向就用放在该处的小磁针静止时N极的指向表示 小结:怎样判断物体是否具有磁性? 二、自主检查 1.l.7万吨海南沙子用于北京奥运会沙滩排球场地。“磁选”是对沙子进行处理的工序之一,“磁选”是选走沙子中的: A.粗的沙子和小石块 B.铁钉、铁片 C.玻璃和塑料碎片 D.铜、铝碎片 2.如下图所示,一条形磁铁的周围放着能自由转动的小磁针 甲、乙、丙、丁,这四根磁针静止时磁极指向画错的是(磁针的黑端表示N极) () A.磁针甲B.磁针乙C.磁针丙D.磁针丁 3.判断两根钢条甲和乙是否有磁性时,可将它们的一端靠近小磁针的N极或S极.当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近.由此可知() A.两根钢条均有磁性B.两根钢条均无磁性

永磁同步伺服电动机的磁场分析与参数计算

ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)JT singhua U niv (Sci &Tech ),2004年第44卷第10期 2004,V o l .44,N o .106 36 131721320   永磁同步伺服电动机的磁场分析与参数计算 陶 果, 邱阿瑞, 柴建云, 肖 曦 (清华大学电机工程与应用电子技术系,北京100084) 收稿日期:2003208218 作者简介:陶果(19792),男(汉),安徽,博士研究生。 通讯联系人:邱阿瑞,教授,E 2m ail :qiuar @m ail .tsinghua .edu .cn 摘 要:为了更有效地对永磁同步伺服电动机进行设计和分析,需准确进行电机的磁场分析和参数计算。该文以一台定子为集中绕组、槽 极比为9 6、转子磁极为径向充磁圆筒形磁极等结构特点的永磁三相同步伺服电动机为例,分析了其磁场的分布情况,给出了电机的磁场分布图;对用电磁场数值计算来求解电机的空载反电动势进行了研究和分析;同时对如何求解电机的定子绕组电感进行了研究。计算结果与实验所测的结果吻合较好。该文提出的磁场分析和参数计算方法,对这类结构的永磁伺服电动机的设计和分析具有很好的参考价值。 关键词:永磁同步伺服电动机;磁场分析;电感计算中图分类号:TM 351 文献标识码:A 文章编号:100020054(2004)1021317204 Ana lysis of magnetic f ields i n permanen t magnet synchronous servo m otors TAO Guo ,Q I U A rui ,CHA I J ia nyun ,XI A O Xi (D epart men t of Electr ical Engi neer i ng and Applied Electron ic Technology ,Tsi nghua Un iversity , Be ij i ng 100084,Ch i na ) Abstract :A ccurateanalysis of the m agnetic field param eters is i m po rtant to the design of per m anent m agnet three 2phase synch ronous servo mo to rs .T h is paper describes the analysis of the m agnetic fields in a perm anent m agnet synchronous servo mo to r .T he stato r w indings are concentrated co ils wound around a single too th w ith a slo ts po les rati o of 9 6, w ith cylindrical surface 2mounted po les .T he m agnetic field distributi ons are given w ith a num erical m ethod to calculate the back E M F fo r no load conditi ons .T he stato r inductance w as also analyzed .T he calculated values agree w ell w ith m easured values . Key words :per m anentm agnetsynch ronous servo mo to r;analysis of m agnetic fields;inductance calculati on 近年来,永磁交流伺服系统具有逐步取代传统直流伺服系统的趋势,已成为现代伺服技术重要的 发展方向。正弦波驱动的稀土永磁同步伺服电动机,由于其体积小、效率高、转矩脉动小等优点,在伺服 系统中得到越来越广泛的应用。 在研制设计永磁同步伺服电动机时,在满足电机基本性能的条件下,如何使电机生产制造方便,并尽可能地减少制造成本,是研究与设计人员应当考虑的重要问题。本文以一台额定功率为400W 、额定转速为5000r m in 的小型永磁交流伺服电动机为研究对象,该电机采用了一些特殊的结构形式,如定子绕组采用集中绕组,线圈直接套在定子齿上;槽 极比(即定子槽与极数之比)为9 6;转子磁极采用径向充磁的圆筒形磁极,并直接套装在转轴上。针对这种特殊结构形式的永磁同步伺服电动机进行设计和分析,目前国内还没有成熟的方法。经文献检索国外也少见有此类研究论文发表[1]。 本文将采用电磁场有限元方法来进行电机的磁场分析与参数计算。 1 数学模型的建立 分析永磁同步伺服电动机的电磁场问题,用矢 量磁位A 来表征其磁场比较方便。由于电机磁场结构沿轴向是均匀对称的,因此可采用二维的电磁场分析方法。又因为转子极数与定子槽(齿)数不是整数倍关系,因此,在求解时宜采用整个电机为求解对象。电机的二维电磁场计算模型如图1所示。求解电机磁场的有限元模型及边界条件为[2]: 99x 1Λ9A 9x +99y 1Λ9A 9y =-?, (1)1Λ19A 9n L - 1Λ29A 9n L =J c =H c L ,(2)A A B CD =0. (3) 其中:?为外加电流密度,Λ为材料的导磁率;Λ1、 Λ2分别为永磁体外和内的导磁率,L 为永磁体表面;n 为永磁体表面的外法线,J c =H c 为等效永磁

湿法电解锌工艺流程选择概述

湿法电解锌工艺流程选择概述 1.。1 工艺流程选择 根据原料成份采用常规的工艺流程,技术成熟可靠,劳动环境好,有较好的经济效益,同时综合回收铜、镉、钴等伴生有价金属。工艺流程特点如下: (1)挥发窑产出的氧化锌烟尘一般含气氟、氯、砷、锑杂质,且含有较高的有机物,影响湿法炼锌工艺,所以通常氧化锌烟尘需先进多膛焙烧脱除以上杂质。 (2)氧化锌烟尘和焙砂需分别进行浸出,浸出渣采用回转窑挥发处理,所产氧化锌烟尘送多膛焙烧炉处理。 (3)氧化锌烟尘浸出液返焙砂系统,经中性浸出浓密后,上清液送净液车间处理,净液采用三段净化工艺流程。 (4)净化后液送往电解车间进行电解。产出阴极锌片经熔铸后得锌锭成品。 (5)净液产出的铜镉渣和钴渣进行综合回收(或外卖)。 1.6.2 工艺流程简述 焙砂经中浸、酸浸两段浸出、浓密、过滤,得到中浸上清液及酸浸渣。酸浸渣视含银品位进行银的回收后送回转窑挥发处理得氧化锌,经脱氟、氯,然后进行单独浸出,浸液与焙砂系统的浸出液混合后送净液。回转窑渣送渣场堆存。产出的中浸上清液经三段净化,即第一段用锌粉除铜镉;第二段用锌粉和锑盐高温除钴;第三段再用锌粉除复溶的镉,以保证新液的质量,所得新液送电解。电解采用传统的电解沉积工艺,用人工剥离锌片,剥下的锌片送熔铸,产出锌锭。

采用上述工艺流程的理由:主要是该工艺流程基建投资省,易于上马,建设周期短、见效快、效益高。这在株冶后10万吨电锌扩建、广西、云南、贵州等多家企业的实践中,已得到充分证实和肯定。 对净液工艺的选择,目前国内外湿法炼锌净液流程的发展趋势,主要是溶液深度净化。采用先冷后热的净液流程,为保证净液质量,设置三段净化,当第二段净化质量合格时,也可以不进行第三段净化,直接送电解。该流程稳妥可靠,净化质量高,能满足生产0#锌和1#锌的新液质量要求。 作业制度,拟采用连续操作,国内西北冶、株冶等都有生产经验。与间断操作相比,可大减少设备的容积,减少设备数量,相应可减少厂房建筑面积,故可大幅度降低基建投资。 1..3 综合利用及环境保护 浸出渣可根据含银品位高低进行银的回收后再送回转窑处理,所得氧化锌经脱氟、氯后进入氧化锌浸出系统,进一步回收锌、铟等有价金属。 净液所得铜镉渣经低酸浸出后,所得铜渣可作为炼铜原料出售。 浸出液经锌粉置换,所得贫镉液含锌很高,返回锌浸出车间,所得海绵镉进一步处理后,获得最终产品镉锭出售。 净液所得钴渣,经酸洗脱锌后根据含钴品位再考虑是否回收钴,暂时先堆存(或外卖)。 熔铸所得浮渣,其粗粒可返回熔化或作生产锌粉用。处理所得氧化锌可作为生产硫酸锌或氯化锌的原料,根据需求而定。 各湿法炼锌车间的污酸、污水,经中和沉处理后,可达到国家工业排放标准。

锌电解槽计算

3.1概述 工业上从硫酸锌水溶液中电解沉积锌有三种工艺:即低酸低电流密度法(标准法);中酸中电流密度法(中间法)和高酸高电流密度法。目前我国多采用中酸中电流密度法的下限,低酸低电流密度法上限的电解法。表3-1为三种方法的比较。 表3-1 锌电积三种工艺的比较 工艺方法电解液含 H2SO4(克/升)电流密度 (安/米2) 优缺点 酸低电流密度法(标准法)110--130 300--500 耗电少,生产能力小, 基建投资大 中酸中电流密度法(中间法) 130--160 500--300 生产操作比前者简单, 生产能力比前者大但 比后者小基建投资小 高酸高电流密度法220--300 800~1000 甚至大于 1000 生产能力大;耗电多; 电解槽结构复杂。 3.2 设计任务 设计生产能力为7万吨锌锭的电解设备 3.3 原始资料 3.3.1 设进入电解槽的电解液成份如表3-2所示: 表3-2 进入电解槽的电解液成份(克/升) 组成 Zn Fe Cd Cu CO Mn (克/升) 120 0.045 0.005 0.0004 0.005 4.720 3.3.2 电解后电解废液成份如表3-3所示 表3-3 电解废液成份(克/升) 组成 Zn Fe Cd Cu CO Mn (克/升) 46 0.028 0.003 0.0002 0.005 3.217 3.3.3 一些技术条件及技术经济指标 用于制造锌粉之锌锭占年产锌锭量的百分比,β=0.028;年工作日为330日。 阴极锌熔铸直收率η 1 = 97%

阴极电流密度 D 阴 = 520安培 槽电压 V 槽 = 3.20伏 电流效率 ηi = 98% 阴极规格 长×宽×厚= 1000×666×4(毫米) 3.4 工艺过程及设备计算 3.4.1物料平衡及电解槽计算 阴极锌成份的计算 在电积过程中,一部分铜、铁、镉与锌一齐在阴极上沉积,一升电解液得到的阴极锌含金属量如表3-4所示。 表3-4 一升电解液沉积的金属量(克) 组 成 Zn Fe Cd Cu 共计 (克) 64.00 0.005 0.002 0.0002 64.0072 铅-银阳极在电解过程中被腐蚀,使一部分铅进入到阴极锌中。设阴极锌含铅0.006%则进入到阴极锌中铅的量为: 0038.0100 006 .00072.64=?克 那么阴极锌的成份如表3-5所示。 表3-5 阴 极 锌 成 份 组成 Zn Pb Fe Cd Cu 共计 重量(克) 64.00 0.0038 0.0050 0.0020 0.00020 64.0110 % 99.983 0.006 0.0078 0.003 0.0003 100 3.4.2 所需电解槽数量的计算 (1)每日应产出的阴极锌量的计算。 Q 1= η βm Q ) 1(+吨 式中: Q 1----每日应产出阴极锌的数量,吨; Q ----设计生产能力,吨锌锭/年;

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

一、磁体与磁场

—、选择題 1. 我国古代四大发明中利用地磁场来工作的爱() A. 指南针 B.造纸术 C.火药 D.印刷术 2. 小宇同学为了检验某根钢条爱否具有磁性,他将钢条的A 端靠近小磁针的N 牧,发 现它们相互呎引;当将钢条的A 端靠近小磁针的S 牧时,发现它们仍然相互吹引,则 链接例1方法指导() A. 钢条A 端为富牧,另一罐为北枕 B. 钢条A 端为北枚,另一端为南枕 C. 不能确定钢条是否具有磁性 D. 钢条没有磁性 3. 如图6-K- 1所示,有三根钢樺,其中甲、乙相互排斥,甲、丙相互呎引,如杲巳 知甲是磁体且右端为N 枚,那么下列对乙、丙的判断正确的是链接例1方法指导() 图 6-K-1 A. 乙是磁体且右端是N ;枚 B. 丙是磁体且右端是N 枚 C. 乙是磁体,丙不一定是磁体 D. 乙是磁体,丙也一定是磁体 4. 如图6-K-2所示,磁体呎住两根铁钉的一端,那么这两根铁钉的另一堆将( ) 图 6-K-2 A. 互相吹引,如图甲 B. 互相排斥,如图乙 C. 氏不吸引,也不排斥,如图丙 D. 以上三种情况都有可能 5. 关于磁场,下列说法中正确的曼琏接例2方法指导() A. 磁体周围的磁感线从磁体N ?牧出发,回到磁体S 枕 B. 磁枕间的相互作用不都是通过磁场发生的 C. 磁感线是磁场中真实存在的一些曲线 [第十六章 磁体与磁场]

D.地磁场的N枕在地理北枚附近,S枕在地理南恢附近,与地球两枕并不完全重合 6.下列说法中正确的是链接例2方法指导() A.磁场畏由无数条磁感线组成的 B.在磁场中,小磁针静止时N:枳所指的方向为该点的磁场方向 C.磁场对放入其中的小磁针不一定有力的作用 D.磁场中某点的磁场方向畏由放在该点的小磁针决定的 7.在如图6-K-3所示的E、F、P、。四点中,磁场最强的是() A. E 点、 B. F 点 C. P 点 D. Q 点 图6-K-3 &如图6 —K—4所示,在弹黄测力计下吊着一磁体,沿水平方向从水平放置的条形磁体的A罐移到B端的过程中,能裘示测力计示数与水平位昼关系的是图6—K—5中的() S 6-K—4 S 6-K-5 二、填空題 9.如图6—K—6所示,被磁体吹引的大头针 ___________ (逸填“能”或“不能”)呎引其 他大头针,表现出__________ ;磁体是通过________ 对大头针产生力的作用来呎引大头针的. 图6-K—6 10.如图6—K—7所示,一张百元新钞票好像被一支笔“戳通” 了.实际上这张新钞 票依然完好无损,这里应用了磁现象的有关知识.原来,这支笔的笔杆(纸币的下方)与笔头(纸币的上方)可以互相分离,笔杆与笔头相连的一端内部装有小磁体,则笔头内的材料可能合有(选填“铜” “铁”或“塑料”).若想探究笔头內材料是否有磁性,现提供下 列霁材:①小磁针、②大头针、③碎纸禺,其中可用来完成探究任务的有______________(填序号). S 6-K—7 11.两条形磁体之间的磁感线方向如图6 —K—8所示,则右边条形磁体2的A端为 _______ 氐小磁针静止时,B端为_____________ 枚. S 6-/C-8 12.如图6—K—9所示的司南是我国的四大发明之一,古文《论衡》中记载“司南之杓(用途),投之于地,其柢(握柄)指电”.司南静止时能指富北,说明地球周围存在

2015高中物理磁场经典计算题-(一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b )

锌电解操作工艺

锌电解操作工艺 (2010-12-27 19:20:34) 转载 标签: 杂谈 一范围 本标准规定了电解工艺的基本原理,。工艺操作条件,岗位操作法, 原材料质量要求,产出物料质量要求,主要技术经济指标和主要设备. 二工艺目的及原理 1.工艺目的 使溶液中的锌通过电积提锌得到锌片,再熔铸成成品锌。 1.原理 锌电积一般釆用Pb-Ag(1%Ag)合金板为阳极,纯铝板为阴极,以酸性硫酸锌水溶液作为电解液,当通以直流电时,在阴极上发生锌的析出,在阳极上放出氧气。 阴极上 Zn2++2e=Zn 阳极上 H2O-2e=1/2O2 +2H+ 总反应式为 ZnSO4+H2O=Zn+H2SO4+1/2O2 因此,随着电解过程的进行,电解液中的含锌量不断减少,硫酸含量不断增加,为了保持电积条件的稳定,必须不断抽取一部分电解作为废液返回浸出,同时,相应地加入净化了的中性硫酸锌溶解,以补充所消耗的锌量,维持电解液中一定的H+,Zn2+含量,并稳定电解系统中的体积。 三硫酸锌溶液电解锌的生产工艺流程 四原辅材料质量要求。 1. 新液成份(g/l)符合企业标准的规定 Zn120-150 Cu≤0.002 Cd≤0.003 Fe≤0.015 Co≤0.0015 Ni≤ 0.0015 As≤0.003 Sb≤0.0005 Ge≤0.00005 Mn2.5-5 2. 废液成份(g/l) Zn35-60 H+140-200 五工艺操作条件 1. 槽温 37 -42℃ 2. 电流密度 500-550A/m2 3. 槽电压3.2-3.3V 4. 析出周期 24h 5. 同极中心距 62mm 6 . 添加剂 (1) 吐酒石:出槽前3min-5 min加入电解槽内,一般加入量为0..05-0.1g/槽 (2) 骨胶:装槽前1h-3h后加入电解槽内,加入量一般为0.25kg/t锌析出-0.5 kg/t析出锌 (3) 碳酸锶视锌析出含铅情况,每班在电解槽内加8次,每次加10-20 kg 7. 周期管理

磁场公式

计算两圆柱形磁铁间力的公式 F x =πμ04 M 2R 4 1x +1 x+2t +2 x+t (1) 永久磁铁磁场 B r =μ 4πr [3 μ?r r ?μ](2) 磁偶极子磁场强度计算公式 B m ,r = μ04π||r ||3 [3 m ?r r ?m ](3) r 是单位向量:( x ||r || i + y ||r || j + z ||r || k ) r 是从磁铁位置至场位置的位移矢量 m 是磁铁的磁转矩(0.0,m) 由于只需要关心z 方向的磁场强度 所以由(3)式推导如下 B z =μ04π||r ||[3 m ?z ||r ||k z ||r ||k ?m ](注:任何单位向量的平方均为1,不同单位向量相乘为0) 由于单位向量k =z ||r ||(注:单位向量等于对应轴的坐标值除以所求的点到原点的距离) (注:向量点积计算公式 (axi+ayj+azk).(bxi+byj+bzk)=(axbx+ayby+azb)=|a||b|cos(zita) 其中zita 为向量a 与向量b 的夹角) 所以B z = μ04π||r || 3[3 m z r z r ?m ](4) =μ03m 3 z 2?1 3| r |2 r 2 将(4)式写成圆柱坐标系形式(r,z ) B z (m,γ,z)= μ0 4π(z 2+γ2)32 γ22 γ22 ?m (5) = μ0m 4π(z 2+γ2)3 2 ( 3z 2γ+z ?1)(6) (6)式即为一个磁偶极子的磁感应强度公式

将(4)式写成空间中任意点(x 0,y 0,z 0)处的磁偶极子在空间中(x,y,z)点处B z 的平面直角坐标系形式 B z m ,x ,y ,z ,x 0y 0,z 0 = μ0m 4π 3 z?z 0 2?[(x?x 0)2+(y?y 0)2+(z?z 0)2][(x?x 0)2+(y?y 0)2+(z?z 0)2]5 2 (7) 根据(7)式,计算圆柱形磁铁在空间任意点处磁场强度公式 将圆柱形磁铁看成是无数个磁偶极子的集合,其磁化强度为M ,由公式m=MV 得:dm=MdV B z m ,x ,y ,z ,x 0y 0,z 0 =μ0m 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0 )2+(z ?z 0 )2]5 V 圆柱 = 3 z?z 0 2?[ x?x 0 2+(y?y 0)2+(z?z 0)2][ x?x 0 2+(y?y 0)2+(z?z 0)2]5 2 R 2?y 222dx dy dz R ?R 0?H (8) 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] 5 2 R 2?y 2 ? R 2?y 2 dx =

电解槽磁场计算

电解槽磁场计算方法的比较 1 前言 随着现代大型铝电解槽工作电流的增大,其载流母线和熔体电流产生的磁场对其生产和稳定运行的影响愈显突出。由于磁场与熔体电流相互作用所产生的电磁力使槽内熔体循环加速,导致铝液面产生隆起、偏斜和波动,甚至可能导致铝电解槽不能正常生产。因此,在设计高效能的大型铝电解槽时,必须考虑削弱和控制槽内磁场和电流相互作用所产生的电磁力,使母线配置与槽内磁场各分量呈一定规律分布,而且将其绝对值降到限定的数值范围。这样在设计大型铝电解槽时,才能准确计算槽内磁场。对于电解槽的磁场计算而言,其分布为不规则形状,再加上其上部结构、槽壳、摇篮架以及钢构厂房等铁磁物质的存在,使得我们很难精确计算,而不得不进行大量的简化,有些因素(特别是铁磁物质)的影响难以全面考虑,因而存在一定的计算误差。 对于铝电解槽槽内磁场而言,产生这部分磁场的主要原因有: 1)槽周载流母线在槽内产生的磁场;2)槽内导体产生的磁场;3)铁磁物质的影响;4)相邻及左右列槽在本槽内产生的磁场(通常情况下,由于钢构厂房远离计算场点而被忽略)。 我院在20世纪80年代初期即与华中工学院合作,对铝电解槽磁场分布进行研究,采用毕奥一沙伐定律,用等效线电流数学模型编制铝电解槽磁场计算软件,并在工程中进行了广泛的应用。20世纪90年代末期,我院又与华中科技大学再度进行合作,采用有限元方法计算铝电解槽磁场分布。本文就上述两种计算方法进行简要描述,并对其计算结果进行了比较。 2 毕奥-沙伐定律计算模型 计算电解槽磁场的模型有等效线电流数学模型、等效圆柱母线数学模型和等效矩形母线数学模型。作者曾对上述几种模型在计算电解槽磁场分布时的误差作过专门分析[1,2] ,为了便于计算以及实际应用,我们采用了等效线电流数学模型,其原理如图1所示。 图1: 等效线电流数学模型 把矩形母线电流用集中在母线的S 轴线上的等效线电流来代替,设AB 间有电流通过,如图1所示,电流按线性变化,沿S 轴流动,线电流βα+=S I ,其中α、β为任意常数,A 、B 两点间的坐标分别为S 1、S 2,场点P 的磁感应强度矢量为

物理:一、磁体与磁场(1)同步练习及答案(苏科版九年级下)

磁体与磁场(1) 姓名 1.当两个磁体靠近时,同名磁场极互相 ,异名磁场互相 。 2.磁铁能够吸引 、 、镍等物质,磁铁的这种性质叫做 ,具有磁性的物体叫做 。 3.将条形磁铁放在铁屑中,拿出后发现 吸引铁屑较多,说明条形磁铁 的磁性较强,磁体上的磁性最强的部位叫 。 4.在水平面内自由转动的小磁针,静止后总是一端指 ,一端指 ,这表明磁体具有 性,我国古代四大发明之一 就是依据这一原理制成的。 5.使原来没有磁性物质到磁性的过程叫 。 6.磁体上 叫做磁极,一个磁体具有 个磁极,它们分别是 极和 极。 7.把条形磁铁从中间断为两段,那么这两个断面再靠近时, 将 ;如图将喇叭上的圆形磁铁截断后,再让原 断处相对,两半磁铁之间将 (选填“相互吸引” 或“相互排斥”或“不发生相互作用”)。 8.用钢条的A 端靠近磁针的N 极时,发现N 极被排斥,则 ( ) A .钢条一定有磁性,且A 端为S 极 B .钢条一定有磁性,且A 端为N 极 C .钢条一定没有磁性 D .钢条可能有磁性也可能没有磁性 9.关于磁铁,下列说法中错误的是 ( ) A .把它悬挂起来,自由转动,静止时总是一端指北 B .它的磁性是两端最强,中间最弱 C .把它分成二段,每段都有两个磁极 D .把它分成二段,每段只有一个磁极 10.如图弹簧测力计下端吊一铁球,当它们在水平放置的 条形磁铁的上方沿水平直线从左端移到右端的过程中,弹 簧测力计的示数 ( ) A .变大 B .变小 C .先变大后变小 D .先变小后变大 11.有一条形铁块,上面的标记已模糊不清,你能用三种方法判断它是否具有磁性吗?试试看。 S

年 产10000吨电解锌项目

年产10000吨电解锌项目 1、生产规模 本项目用锌焙烧矿或低度氧化锌粉为原料,生产规模为年产电锌10000t。 2、产品方案 锌锭:10000t/a (Zn99.99%) 3、冶炼工艺 锌冶炼,采用常规湿法炼锌工艺流程。入厂锌焙烧矿的贮存时间按15天设计。锌浸出采用球磨浆化上矿。 浸出采用间断作业,分中浸和酸浸两个工序,浸出渣采用框式真空过滤和圆盘两段过滤。中浸浓缩上清液净化采用两段加锌粉净化工艺,液固分离采用板框压滤机。电解液冷却采用鼓风式空气冷却塔,电解槽清理采用真空掏槽装置。锌熔铸采用低频感应电炉熔化(或燃煤式反射炉),园盘铸锭机铸锭。 浸出渣处理采用干燥窑干燥后送回转窑挥发处理,产出的氧化锌尘就地浆化后泵送至浸出车间。 4、烟气收尘 锌浸出渣干燥窑烟气经两段旋涡收尘后排入大气,收集的烟尘送挥发窑处理。 浸出渣挥发窑烟气经冷却烟道、表面冷却器除尘,降温后送布袋除尘器除尘,然后经烟囱排入大气。 5、总图运输

5.1 总平面布置 以合理组织生产、改善厂区环境为原则,并结合场地地形、风向、各工序工艺特征以及尽量利用原有建构筑物等因素,将焙烧矿仓及湿法上矿布置在北端,浸出布置在中部,浓密净液、电积布置在场地西侧,浸出渣干燥及挥发布置在场地东侧,总降压站及整流所紧倚电积,锌熔铸布置在场地南端。其优点是:流程顺畅,物料输送线路短捷,能最大限度利用原有建构筑物,总降压站进出线短、方便,粉尘多的工序布置在场地下风向,能改善厂区生产环境等。 5.2 运输 总运输量48kt/a,其中运入28kt/a,运出约20kt/a,采用汽车运输。 6、给排水 6.1 给水 项目总用水量3934m3/d,其中新水757m3/d,循环水3177m3/d,水重复利用率80.7%。为节约水资源,项目设有三个循环用水系统。 6.2 排水 项目总排水量261m3/d,一般生产废水251m3/d,生活排水10m3/d。一般生产废水处理后循环使用,经处理后的生活废水直接排放,各车间跑、冒、滴、漏污水集中在各车间集液坑内,再返回生产过程中使用。 7、供电 7.1 电力负荷 总装机容量:8205kw

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

第五节 磁场的能量和能量密度

第五节磁场的能量和能量密度 磁场的能量和能量密度(P631)1、目前在实验室里产生 E=105伏/米的电场和B=104高斯的磁场是不难做到的。今在边长为10厘米的立方体空间里产生上述两种均匀场,问所需的能量各为多少?解:2、利用高磁导率的铁磁体,在实验室产生 B=5000高斯的磁场并不困难(1)求这磁场的能量密度ωm;(2)要想产生能量密度等于这个值的电场,问电场强度E的值应为多少?这在实验上容易作到吗?解:3、一导线弯成半径为 R=5、0厘米的圆形,当其中载有I=100安的电流时,求圆心的磁场能量密度ωm。解:4、一螺线管长300毫米,横截面积的直径为15毫米,有2500匝表面绝缘的导线均匀密绕而成,其中铁芯的磁导率μ=1000。当它的导线中通有电流2安时,求管中心的磁能密度ωm。解:5、一同轴线由很长的两个同轴的圆筒构成,内筒半径为1、0毫米,外筒半径为7、0毫米,有100安的电流从外筒流去,内筒流回,两筒的厚度可忽略。两筒之间的介质无磁性(μ=1),求:(1)介质中的磁能密度ωm分布;(2)单位长度(1米)同轴线所储磁能Wm。解:6、一根长直导线载有电流I,I均匀分布在它的横截面上。证明:这导线内部单位长度的磁场能量为:μ0I2/16π。解:7、一同轴线由很长的直导线和套在它外面的同轴圆筒构成,导线的半径为a,圆筒的内半径为b,外半径为c。电流I由圆筒流去,由导线流回;在它们的横

截面上,电流都是均匀分布的。(1)求下列四处每米长度内所储磁能Wm的表达式:导线内,导线和圆筒之间,圆筒内,圆筒外;(2)当a=1、0毫米,b=4、0毫米,c=5、0毫米,I=10安时,每米长度的同轴线中储存磁能多少?解:8、试验算一下,用上述两种平均磁链法计算例题2的结果,都与磁能法一致。解:

锌电解沉积

锌电解沉积 electrowinning of zinc x}nd一anJ一e ehenjl 锌电解沉积(eleetrowinning of:inc)采用不溶阳极,在直流电作用下使硫酸锌电解液中的锌沉积在阴极上的过程,为湿法炼锌流程的重要组成部分。工艺将已净化合格的硫酸锌溶液(简称新液)和返回的电解液(简称废液)按一定的比例混合后,连续不断地从电解槽的进液端送入电解槽,槽中插入用铅银合金板制成的阳极和压延纯铝板做的阴极。当通入直流电时,在阴极发生析出锌的反应: ZnZ++Ze—Zn 在阳极则发生水被分解成H+和氧气的反应: HZO一Ze—ZH十+l/202 锌电解沉积的总反应为: ZnSO;+HZO一Zn+HZSO‘+l/202 随着锌不断地在阴极上电解沉积,电解液中含锌量逐渐减少,而硫酸却相应增加。为使电解槽内电解液中锌和硫酸的浓度稳定地保持在规定范围,并维持稳定的电解液液面,须连续向电解槽加入新液,从另一端排出含锌50一609/L、硫酸120一2609/L 的废液。部分废液冷却后返回电解配液,以使电解槽内的电解液达到必要的循环速度。每隔一定周期(24~48h)取出沉积锌的阴极,经洗净后剥离锌。阴极锌经干燥后,送熔铸成产品锌锭。阴极铝板经刷洗处理,再装入电解槽中继续使少月。主要技术经济指标锌电积的主要技术条件和指标有电能消耗、电流效率、槽电压和电锌质量。电能消耗湿法炼锌每生产h电锌锭消耗电能3800一400Okw·h,电耗是构成电锌成本的重要部分。而锌电解沉积的电单耗达300。一3500kw·h,为总电能耗的79%一55%。因此,降低锌电解沉积的电能消耗,对降低电锌成本意义重大。从电解沉积电能消耗公式: 电能消耗(kW·h/t)~ 槽电压(V)只100 锌的电化当量(g/(A·h))x电流效率(环) 可知,锌的电化当量为一恒量,为降低电能消耗,应采取一切措施提高电流效率和降低槽电压。电流效率定义为实际产出的锌量和通过相同电量时,理论上应得的锌量比的百分数。生产中,除由于漏电和短路引起电流效率下降外,阴极上氢的析出是使电流效率下降的主要原因。因此,提高氢在阴极L的超电位,就可以提高锌电解沉积的电流效率。生产上常采用提高电流效率的措施有:提高电流密度(阴极电流密度一般为35。~600A/mZ),控制好电解液的温度(常控制在308~313K),加速电解液的循环,稳定电解液成分并合理使用添加剂。正常生产的锌电解沉积的电流效率为88%一92%。槽电压是影响锌电解沉积电能消耗的重要技术参数,降低槽电压就能相应降低电能消耗。槽电压由硫酸锌分解电压(占槽电压的75%一80%),电解液电阻电压降(占13%一17%),阴、阳极极板电阻电压降(占1%一1,3%),阳极泥电阻电压降(占5%一6写)及各接触点电阻电压降(1%一1.4%)组成。一般工厂的锌电解沉积槽电压多控制在3.3一3.4V,如电流密度和极间距过大,也可能达到3.5一3.6V。可采取降低槽电压的措施有:使接触点导电良好,定期刷洗阳极泥,保持电解液中合适的镁、锰等离子的浓度。电锌质量电锌中的主要杂质有铅、福、铜。福主要来自新液,铜则是由于电解槽槽面操作不洁净引入的,铅基合金阳极是杂质铅的主要来源。生产实践中影响电锌质量的主要杂质是铅,铅是由于阳极腐蚀进入电解液,在电解沉积过程中沉积入阴极锌中的。因此,大多数的锌电积厂都采用耐腐蚀性能好的含银0.5% 一1%的铅银合金或铅、银、钙、惚四元合金制造的阳极。由于直接生成的PbO,膜较间接生成的致密,许多工厂采用预先镀膜的阳极,以减少从阳极进入电解液中的铅量。电解液中氯离子含量增加或电解液温度升高,都会引起阳极中铅的溶解,但当电解液中Mn与Cl 的浓度比大于3~3.5时,氯的有害影响受到明显抑制。提高电流密度以提高单位时间内锌的析出量,可相应降低电锌含铅量。向进槽电解液中添加铭或钡的碳酸盐,使之与铅形成溶解度更小的类质同晶硫酸盐共沉淀,可有效地降低电锌中的铅。设备锌电解沉积系统由贮槽、电解槽、阴极板、阳极板、废液冷却塔、管道、溜槽、输送泵和供电系统等组成。电解槽是一个钢筋混凝土制成的矩形槽子,内衬软聚氯乙烯塑料或环氧玻璃钢,也有用辉绿岩制成的。用单槽供液。阳极板材料一般为含

相关文档
最新文档