组态王油罐液位控制课设

组态王油罐液位控制课设
组态王油罐液位控制课设

目录

任务书 (3)

第一章火电发电厂的介绍 (6)

1.1设计目的 (6)

1.2 厂用电的设计 (6)

1.3厂用电的设计原则 (6)

1.4主接线中设备配置的一般准则 (6)

1.4.1开关的配置 (6)

1.4.2电压互感器的配置 (6)

1.4.3电流互感器的配置 (7)

第二章基于组态王的油罐液位控制 (8)

2.1 设计目的 (8)

2.2 组态王简介 (8)

2.3 控制要求 (8)

2.4组态软件在油罐液位中的应用 (8)

2.4.1定义外部设备 (8)

2.4.2数据词典定义 (9)

2.4.3创建组态画 (12)

2.4.4动画连接 (12)

2.4.5阀门动画设 (13)

2.4.6液体流动动画设置 (14)

2.4.7 命令语 (17)

2.4.8 报警和件 (17)

2.4.8.1 报警和事件窗口用 (17)

2.4.8.2 建立报警和事件窗口 (18)

2.4.9趋势曲线 (20)

2.4.9.1实时趋势曲线 (20)

2.4.9.2历史趋势曲线 (21)

2.4.9.3定义历史数据文件的存储目录 (21)

2.4.10运行结果图 (21)

第三章心得体会 (22)

第四章参考文献 (22)

第一章火电发电厂的介绍

1.1设计目的

(1)对发电厂各子系统有明确的认识和了解;

(2)学会厂用电的设计;

(3)学会发电厂如何并网。

1.2厂用电的设计

发电厂在启动、运转、停役、检修过程中,有大量由电动机拖动的机械设备,用以保证机组的主要设备(如锅炉、气轮机或水轮机、发电机等)和输煤、碎煤、除灰、除尘及水处理的正常运行。这些电动机以及全厂的运行、操作、试验、检修、照明用电设备等都属于厂用负荷,总的耗电量,统称为厂用电。

1.3厂用电设计原则

厂用电的设计原则与主接线的设计原则基本相同,主要有:

(1)接线应保证对厂用负荷可靠和连续供电,使发电厂主机安全运转。

(2)接线应灵活的适应正常、事故、检修等各种运行方式的要求。

(3)厂用电源的对应供电性。

(4)设计还应适当注意其经济性和发展的可能性并积极慎重的采用新技术、新设备,使厂用电接线具有可行性和先进性。

(5)在设计厂用电接线时,还应对厂用电的电压等级、中性点接地方式、厂用电源及其引线和厂用电接线形式等问题,进行分析和论证。

1.4 主接线中设备配置的一般规则

1.4.1 开关的配置

(1)中小型发电机出口一般应装设隔离开关;容量为200MW及以上大

机组与双绕组变压器的单元连接时,其出口不装设隔离开关,但应有可拆连接点。

(2)在出线上装设电抗器的6~10KV配电装置中,当向不同用户供电的两

回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关。

(3)接在发电机、变压器引出线或中性点上的避雷器可不装设隔离开关。

(4)一台半断路器接线中,视发变电工程的具体情况,进出线可装设隔离开关也可不装设隔离开关。

(5)断路器的两侧均应配置隔离开关,以便在断路器检修时隔离电源。

(6)中性点直接接地的普通型变压器均应通过隔离开关接地;自耦变压器的中性点则不必装设隔离开关。

1.4.2 电压互感器的配置

(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压。

(2)6~220KV电压等级的每组主母线的三相上应装设电压互感器。旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感顺的情况和需要确定。

(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。

(4)当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。

(5)发电机出口一般装设两组电压互感器,供测量、保护和自动电压调整装置需要。当发电机配有双套自动电压调整装置,且采用零序电压式匝间保护时,可再增设一组电压互感器。

1.4.3 电流互感受器的配置

(1)凡装有断路器的回路均应装设电流互感器,其数量应满足测量仪表、

保护和自动装置要求。

(2)在未设断路器的下列地点也应装设电流互感器;发电机和变压器的中

性点、发电机和变压器的出口、桥形接线的跨条上等。

(3)对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。

(4)一台半断路器接线中,线路一线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器可以利用时,可装设三组电流互感器。

在仿真中心,我们学了给发电机并网,我知道了发电机并网的条件:

发电机并网就是通过发电机出口开关的合闸,把发电机和电网(也可以认为电网就是好多需要用电的用户)联接起来,让电能源源不断地输送出去.发电机并网有三个条件:发电机的频率、电压、相位必须与电网的频率、电压、相位保持一致,才能并网发电。

第二章基于组态王的油罐液位控制

2.1 设计目的

(1).熟悉并熟练掌握组态王软件;

(2).通过组态王软件的使用,进一步掌握了解过程控制理论基础知识;

(3).培养自主查找资料、收索信息的能力;

(4).培养实践动手能力与合作精神。

2.2 组态王简介

“组态王”是运行于microsoft windows 200/NT4.0.XP中文平台的中文界面软件,充分利用了windows图形功能完备、界面一致性好、易学易用的特点,并且采用了多线程。COM 组件等新技术,实现了实时多任务,软件运行稳定可靠。

“组态王”软件包括由工程浏览器(TouchExplorer)、工程管理器(Proj-Manager)和画面运行系统(TouchVew)三大部分组成。在工程浏览中可以查看工程的各个组成部分,也可以完成数据库构造、定义外部设备等工作;工程管理器中内嵌了画面管理系统,用于新工程的创建和已有工程的管理。画面的开发和运行由工程浏览器调用画面制作系统touchMak和运行系统touchVew来完成。

2.3控制要求

(1)能根据具体对象及控制要求,独立设计控制方案,正确选用过程仪表。

(2)能够根据过程控制系统A/D、D/A和开关I/O的需要,正确选用模块。

(3)能运用组态软件,正确设计过程控制系统的组态图、组态画面和组态控制程序。

2.4组态软件在油罐液位中的应用

2.4.1定义外部设备

1、在组态王工程浏览器树型目录中,选择设备,在右边的工作区中出现了“新建”图标, 双击此“新建”图标,弹出“设备配置向导”对话框。

2、在上述对话框选择亚控提供的“仿真PLC”的“串行”项后单击“下一步”弹出对话框。

3、为仿真PLC 设备取一个名称,如:PLC1 ,单击“下一步”弹出连接串口对话框

4、为设备选择连接的串口为COM1,单击“下一步”弹出设备地址对话框

在连接现场设备时,设备地址处填写的地址要和实际设备地址完全一致。

5、此处填写设备地址为0,单击“下一步”,弹出通讯参数对话框

6、设置通信故障恢复参数(一般情况下使用系统默认设置即可)。

7、请检查各项设置是否正确,确认无误后,单击“完成”。设备定义完成后,可以在Com1 项下看到新建的设备“PLC1”。

8、双击Com1 口,弹出串口通讯参数设置对话框,如图1 所示:

图1

数据库是组态王最核心的部分,在Touch Vew运行时,工业现场的生产状况要以动画的形式反映在荧幕上,操作者在计算机前发布的指令也要迅速送达生产现场,所有的这一切都是以实时数据库为中介环节,因此数据库是联系上位机和下位机的桥梁。

数据库中变量的集合形象地称为数据词典,数据词典记录了所有用户可使用的数据变量的详细信息,包括基本类型的内存变量、I/O变量,特殊类型的报警窗口变量、报警组变量、历史趋势曲线变量、时间变量。对于监控系统中用到的变量的定义为:在目录显示区点击“数据词典”图标,则目录内容显示区显示“新建”图标,双击,即可进入“定义变量”对话框进行变量的定义。

2.4.2数据词典定义

图2

对于我们将要建立的演示工程,需要从下位机采集原料油罐的液位、原料油罐的压力、催化剂液位和成品油液位,所以需要在数据库中定义这四个变量。因为这些数据是通过驱动程序采集来的,所以四个变量的类型都是I/O 实型变量,变量定义方法如下:

在工程浏览器树型目录中选择“数据词典”,在右侧双击“新建”图标,弹出“变量属性”对话框,如图所示:

在对话框中添加变量如下:

变量名:原料油液位变量类型:I/O 实数

变化灵敏度:0 初始值:0

最小值:0 最大值:100

最小原始值:0 最大原始值:100

转换方式:线性连接设备:PLC1

寄存器:DECREA100 数据类型:SHORT

采集频率:1000 毫秒读写属性:只读

设置完成后单击“确定”。

用类似的方法建立另外三个变量:原料油罐压力、催化剂液位和成品油液位。

图3 图4

图5 图6

图7 图8

图9 图10

此外由于演示工程的需要还须建立三个离散型内存变量为:原料油出料阀、催化剂出料阀、成品油出料阀。

在该演示工程中使用的设备为上述建立的仿真PLC,仿真PLC 提供四种类型的内部寄

存器:INCREA 、DECREA 、RADOM 、STATIC,寄存器INCREA 、DECREA 、RADOM、STATIC 的编号从1-1000,变量的数据类型均为整型(即SHORT)。

递增寄存器 INCREA100 变化范围 0~100 ,表示该寄存器的值周而复始的由0 递加到

100。

递减寄存器 DECREA100 变化范围 0~100 ,表示该寄存器的值周而复始的由100 递减

为0。

随机寄存器 RADOM100 变化范围 0~100 ,表示该寄存器的值在0 到100 之间随机的变

动。

静态寄存器 STATIC100 该寄存器变量是一个静态变量,可保存用户下发的数据,当用

户写入数据后就保存下来,并可供用户读出。STATIC100 表示该寄存器变量能够接收0-100 之间的任意一个整数。

2.4.3创建组态画面

设计画面

建立新画面

为建立一个新的画面请执行以下操作:

1、在工程浏览器左侧的“工程目录显示区”中选择“画面”选项,在右侧视图中双击

“新建”图标,弹出新建画面对话框,

2、使用工具箱调色板和图库画出液位控制画面

图11

3、选择“文件”菜单的“全部存”命令将所完成的画面进行保存。

2.4.4 动画连接

动画连接的作用

所谓“动画连接”就是建立画面的图素与数据库变量的对应关系。

液位示值动画设置

1、打开“监控中心”画面,在画面上双击“原料油罐”图形,弹出该图库的动画连接

对话框。

对话框设置如下:

变量名(模拟量):\\本站点\原料油液位

填充颜色:绿色

最小值:0 占据百分比:0

最大值:100 占据百分比:100

2、单击“确定”按钮,完成原料油罐的动画连接。这样建立连接后原料油罐液位的高

度随着变量“原料油液位”的值变化而变化。

用同样的方法设置催化剂罐和成品油罐的动画连接,连接变量分别为:\\本站点\催化剂

液位、\\本站点\成品油液位。

作为一个实际可用的监控程序,操作者可能需要知道罐液面的准确高度而不仅是形象的

表示,这个功能由“模拟值动画连接”来实现。

3、在工具箱中选择文本工具,在原料油罐旁边输入字符串“####”,这个字符串

是任意的,当工程运行时,字符串的内容将被您需要输出的模拟值所取代。

4、双击文本对象“####”,弹出动画连接对话框,在此对话框中选择“模拟量输出”

选项弹出模拟量输出动画连接对话框,如图3-7 所示:

图12

对话框设置如下:

表达式:\\本站点\原料油液位

整数位数:2

小数位数:0

对齐方式:居左

5、单击“确定”按钮完成动画连接的设置。当系统处于运行状态时在文本框“####”

中将显示原料油罐的实际液位值。

用同样方法设置催化剂罐和成品油罐的动画连接,连接变量分别为:\\本站点\催化剂液位、\\本站点\成品油液位。

2.4.5阀门动画设置

1、在画面上双击“原料油进料阀”图形,弹出该图库对象的动画连接对话框,如图13

图13

对话框设置如下:

变量名(离散量):\\本站点\原料油出料阀

关闭时颜色:红色

打开时颜色:绿色

2、单击“确定”按钮后原料油进料阀动画设置完毕,当系统进入运行环境时鼠标单击此阀门,其变成绿色,表示阀门已被打开,再次单击关闭阀门,从而达到了控制阀门的目的。

3、用同样方法设置催化剂出料阀和成品油出料阀的动画连接,连接变量分别为:\\本

站点\催化剂出料阀、\\本站点\成品油出料阀。

图14 图15

图16

2.4.6液体流动动画设置

1、数据词典中定义一个内存整型变量:

变量名:控制水流

变量类型:内存整型

初始值:0

最小值:0

最大值:100

2、选择工具箱中的“立体管道”工具,在画面上画一管道,如图18 所示:

图17

3、在画面上双击管道弹出动画连接对话框,在对话框中单击“流动”选项,弹出管道流连

接设置对话框。

对话框设置如下:

图18

流动条件:\\本站点\控制水流

单击“确定”按钮完成动画连接的设置。

4、上述“表达式”中连接的\\本站点\控制水流变量是一个内存变量,在画面上放一文

本,双击该文本在弹出的动画连接对话框中选择“模拟值输出”按钮,弹出模拟值输出连接对话框,点击“?”选择控制水流变量,如图20 所示:

图19

同样把模拟值输入也连上,单击“确定”按钮完成文本动画连接的设置。

5、全部保存,切换到运行画面。修改文本的值,可以看到管道中水流的效果,如下图

图20

2.4.7 命令语言

组态王除了在定义动画连接时支持连接表达式,还允许用户编写命令语言来扩展应用程

序的功能,极大地增强了应用程序的可用性。

如何退出系统

如何退出组态王运行系统,返回到Windows 呢?可以通过Exit()函数来实现。

1、选择工具箱中的工具,在画面上画一个按钮,选中按钮并单击鼠标右键,在弹

出的下拉菜单中执行“字符串替换”命令,设置按钮文本为:系统退出。

2、双击按钮,弹出动画连接对话框,在此对话框中选择“弹起时”选项弹出命令语言

编辑框,在编辑框中输入如下命令语言:

Exit(0);

3、单击“确认”按钮关闭对话框,当系统进入运行状态时单击此按钮系统将退出

组态王运行环境。

定义热键

在实际的工业现场,为了操作的需要可能需要定义一些热键,当某键被按下时使系统执

行相应的控制命令。例如当按下F1 键时,使原料油出料阀被开启或关闭。这可以使用命令语言的一种热键命令语言来实现。

1、在工程浏览器左侧的“工程目录显示区”内选择“命令语言”下的“热键命令语言”

选项,双击“目录内容显示区”的新建图标弹出“热键命令语言”编辑对话框

2、对话框中单击“键”按钮,在弹出的“选择键”对话框中选择“F1”键后关闭对话框。

3、在命令语言编辑区中输入如下命令语言:

if (\\本站点\原料油出料阀= = 1 )

\\本站点\原料油出料阀= 0;

else

\\本站点\原料油出料阀= 1;

图21

4、单击“确认”按钮关闭对话框。当系统进入运行状态时,按下“F1”键执行上述命

令语言:首先判断原料油出料阀的当前状态,如果是开启的则将其关闭,否则将其打开,从而实现了按钮开和关的切换功能。

实现画面切换功能

利用系统提供的“菜单”工具和ShowPicture()函数能够实现在主画面中切换到其他任一

画面的功能。具体操作如下:

1、选择工具箱中的工具,将鼠标放到监控画面的任一位置并按住鼠标左键画一个按

钮大小的菜单对象,双击弹出菜单定义对话框,如图22所示:

图22

对话框设置如下:

菜单文本:画面切换

菜单项:

报警和事件画面

实时趋势曲线画面

历史趋势曲线画面

实时数据报表画面

2、菜单项输入完毕后单击“命令语言”按钮,弹出命令语言编辑框,在编辑框中输入

如下命令语言:

图23

3、单击“确认”按钮关闭对话框,当系统进入运行状态时单击菜单中的每一项,进入

相应的画面中。

2.4.8 报警和事件

2.4.8.1 报警和事件窗口的作用

组态王中的报警和事件主要包括变量报警事件、操作事件、用户登录事件和工作站事件。通过这些报警和事件用户可以方便地记录和查看系统的报警和各个工作站的运行情况。当报警和事件发生时,在报警窗中会按照设置的过滤条件实时地显示出来。

为了分类显示产生的报警和事件,可以把报警和事件划分到不同的报警组中,在指定的

报警窗口中显示报警和事件信息。

2.4.8.2 建立报警和事件窗口

定义报警组

1、在工程浏览器窗口左侧“工程目录显示区”中选择“数据库”中的“报警组”选项,在右侧“目录内容显示区”中双击“进入报警组”图标弹出“报警组定义”对话框,如图

2、单击“修改”按钮,将名称为“RootNode”报警组改名为“油罐液位”。

3、选中“油罐液位”报警组,单击“增加”按钮增加此报警组的子报警组,名称为:液位控制。

4、单击“确认”按钮关闭对话框,结束对报警组的设置,如图24 所示:

图24

设置变量的报警属性

1、在数据词典中选择“原料油液位”变量,双击此变量,在弹出的“定义变量”对话

框中单击“报警定义”选项卡,如图25 所示:

图25

对话框设置如下:

报警组名:反应车间

低:10 原料油液位过低高:90 原料油液位过高优先级:100

建立报警窗口

报警窗口是用来显示“组态王”系统中发生的报警和事件信息,报警窗口分:实时报警

窗口和历史报警窗口。实时报警窗口主要显示当前系统中发生的实时报警信息和报警确认信息,一旦报警恢复后将从窗口中消失。历史报警窗口中显示系统发生的所有报警和事件信息,主要用于对报警和事件信息进行查询。

报警窗口建立过程如下:

1、新建一画面,名称为:报警和事件画面,类型为:覆盖式。

2、选择工具箱中的工具,在画面上输入文字:报警和事件。

3、选择工具箱中的工具,在画面中绘制一报警窗口,如图26 所示:

图26 图27

4、双击“报警窗口”对象,弹出报警窗口配置对话框,如图 27 所示:

5、报警窗口分为五个属性页:通用属性页、列属性页、操作属性页、条件属性页、颜色和字体属性。设置完这些属性后,单击“文件”菜单中的“全部存”命令,保存所作的设置。

6、单击“文件”菜单中的“切换到VIEW”命令,进入运行系统。系统默认运行的画

面可能不是您刚刚编辑完成的“报警和事件画面”,可以通过运行界面中“画面”菜单中

的“打开”命令将其打开后方可运行

图28

2.4.9趋势曲线

趋势曲线用来反应变量随时间的变化情况。趋势曲线有两种:实时趋势曲线和历史趋势

曲线。

2.4.9.1实时趋势曲线

定义过程如下:

1、新建一画面,名称为:实时趋势曲线画面。

2、选择工具箱中的工具,在画面上输入文字:实时趋势曲线。

3、选择工具箱中的工具,在画面上绘制一实时趋势曲线窗口,如图29 所示:

图29

2.4.9.2历史趋势曲线

设置变量的记录属性

对于要以历史趋势曲线形式显示的变量,必须设置变量的记录属性,设置过程如下:

1、在工程浏览窗口左侧的“工程目录显示区”中选择“数据库”中的“数据词典”选项,在“数据词典”中选择变量\\本站点\原料油液位,双击此变量,在弹出的“定义变量”对话框中单击“记录和安全区”属性页,如图31 所示:

设置变量\\本站点\原料油液位的记录类型为:数据变化记录,变化灵敏为:0。

2、设置完毕后单击“确定”按钮关闭对话框。

图30 图31

2.4.9.3定义历史数据文件的存储目录

1、在工程浏览器窗口左侧的“工程目录显示区”中双击“系统配置”中的“历史数据

记录”选项,弹出“历史记录配置”对话框,

对话框设置如下:

运行时自动启动:有效

数据文件记录时数:8 小时

记录开始时刻:0 点

数据保存天数:30 日

存储路径:当前工程路径

2、设置完毕后,单击“确定”按钮关闭对话框。当系统进入运行环境时“历史记录服

务器”自动启动,将变量的历史数据以文件的形式存储到当前工程路径下。每个文件中保存了变量8 小时的历史数据,这些文件将在当前工程路径下保存30 天。

2.4.10运行结果图

图32

第三章心得体会

本设计在学习了液位监控过程的基础上,利用组态王为开发平台的油罐液位监控系统,能够实时地监控液位的变化,系统界面友好、操作方便,对系统中的油罐的液位、管道的流量进行测量与控制,并具有完善的报警处理能力,满足了现场监测的需要。并开发了多幅用户画面,包括:系统管理画面、总体监控画面、实时趋势曲线画面、历史趋势曲线画面、报警画面等。建立了画面之间的连接,各幅画面的访问可通过鼠标的点击而方便地切换,而且支持多窗口覆盖功能。通过这个工程的开发,我基本掌握了组态王软件的开发,为今后工作打下一定的基础。

由于本人掌握的知识有限以及时间的有限,肯定还存在很多不足之处或不妥之处,希望得到大家的批评指正。

第四章参考文献

[1] 邵裕森. 过程控制工程[M]. 北京:机械工业出版社,2000

[2] 姜秀英. 过程控制系统实训[M]. 北京:化学工业出版社,2007

[3] 金以慧. 过程控制[M]. 清华大学出版,1993

[4] 孙洪程. 过程控制工业设计[M]. 化学工业出版社,2001

[5] 冯品如. 过程控制工程[M]. 中国轻工业出版社,1995

组态王-水箱水位控制

自动化应用软件实训

1 绪论 组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2 系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3 系统方案论证 整个供水系统可以抽象为原水箱和储水箱两个容器的液位控制。原水箱的水来自地下,储水箱的液位由水塔的水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀和用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)围,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)围,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80和低于30时,报警指示灯开始闪烁,提醒工作人员系统是否正常工作。这样便实现了单容水箱液位的自动控制。 4 系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。 水箱水位监控界面如图4.1所示,实时曲线界面如图4.2所示,实时报表界

基于组态王的单容水箱液位控制系统

内蒙古科技大学信息工程学院测控专业毕业实习报告 题目:基于组态王的单容水箱液位控制系统 学生姓名: 学号: 专业:测控技术与仪器 班级:测控2009-1 指导教师:李文涛教授

前言 随着科学技术的发展,现代工业生产中的控制问题也日趋复杂。在人们的生活中以及某些化工和能源的生产过程中,常常涉及一些液位或流量控制的问题。比如,在石油、化工、轻工等工业生产过程中,有许多贮罐作为原料、半成品的贮液罐,前一道工序的成品或半成品不断地流入下一道工序的贮液罐进行加工和处理,为保证生产过程能连续进行,必须对贮罐的液位进行控制。此外,居民生活用水的供应,通常需要使用蓄水池,蓄水池中的液位需要维持合适的高度。还有一些水处理的过程也需要对蓄水池中的液位实施控制。这些实际问题都可以抽象为某种水箱的液位控制。因此,液位控制系统是过程控制的重要研究模型,对液位控制系统的研究具有显著的理论和实际意义。 本课题主要以单容水箱作为研究对象,运用研华PCI1710及1720板卡进行单容水箱对象特性的测试,从而求得其数学模型,并利用MATLAB软件进行了控制系统的仿真及分析,并确定出一组合适的PID参数对其进行控制。其次,采用组态王进行系统监控,通过对调节器PID参数的整定,实现了水箱液位的闭环控制,使水箱液位稳定在设定值,满足设计要求。

一、总体方案设计 该设计方案硬件部分由计算机,水泵,电磁阀,液位变送器,PCI-1710与1720板卡组成,软件部分以组态王来实现编程控制。组态王通过从 PCI-1710与1720板卡两个I/ O模块与外界硬件设备通讯,对采集的数据进行处理来实时监控。系统启动后,水泵由水源抽水,通过管道将水送到上水箱,液位变送器测得水箱液位通过板卡PCI-1710转换为数字信号输入计算机,组态监控中心对测得信号进行处理,通过PID运算,输出控制信号由板卡PCI-1720进行D/A转换,传送给电磁阀,进而控制水的流量实现对水箱液位控制。系统方框图如图1.1所示。 图1.1系统方框图

储油罐压力和温度监测控制

储油罐压力和温度监测 概述 对一个储油设备来说,连续的压力和温度监测十分重要。操作员必需能够从中央控制室综合监测和调节每个油泵的进口和出口压力,操作员也必需在运行期间监测油泵的主轴温度以防止主轴过热,保护整个系统处在较高的安全水平上。除了对压力和温度进行监测外,在温度和压力偏离可接收的范围时,系统必需发送信号通知操作员采取纠正措施。 系统要求 亚洲石油公司拥有的一家储油站需要安装监测系统。客户希望系统能够一直对储油站的输油泵进行连续的状态监测,监测参数包括油泵进口和出口的压力以及油泵的主轴温度。 当 CCR (中央控制室)需要对数据进行分析以及越界状态触发报警时,必需能够利用这些数据。 系统体系结构 阿尔泰和系统集成商设计了一个监控系统,完全满足客户的要求。系统围绕一个包 括 DAM-3000 分布式数据采集和控制系统的 RS-485 网络来设计,所有模块都连接到控制室的电脑上。每个 DAM-3000 系统包含多达四个 DAM-3000 输入输出模块,许多模块具有多种功能,大多数模块的输入输出范围可以进行远程设置。系统集成商选择 DAM-3058 模拟量输入输出模块(设置它的远程可配置范围为 4-20 mA)处理来自遍布储油站的压力发送机和压力差发送机的信号。经过 DAM-3058 处理的信号把每个油泵入口或进口的压力或者每个油料过滤器的压力差提供给控制室的设备操作员。选择 DAM-3039 处理油泵主轴温

度的测量信号。选择 DAM-3039 继电器输出模块在温度或压力读数超出可接受的范围时触发控制室中的警报。每个 DAM-3000模块通过 RS-485 网络与控制室的电脑通信。 RS-485 多点网络可以进行比较快速的远距离通信,是使用最广的工业现场总线

组态王 储水箱液位控制

目录 1绪论 (1) 2系统需求分析 (1) 3系统方案论证 (1) 4系统监控界面设计 (1) 5数据字典设计 (4) 6动画连接 (5) 7储水箱液位控制程序 (7) 8心得体会 (9)

1绪论 组态王Kingview是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3系统方案论证 整个供水系统可以抽象为原水箱和储水箱两个容器的液位控制。原水箱的水来自地下,储水箱的液位由水塔的水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀和用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80和低于30时,报警指示灯开始闪烁,提醒工作人员系统是否正常工作。这样便实现了单容水箱液位的自动控制。 4系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记

基于组态王的储液罐液位自动控制

自动化应用软件实训 专业:______ 自动化_______ 班级:动1101 姓名: __________________ 学号:— 指导教师:____________

基于组态王的储液罐液位自动控制系统 1任务要求 基于组态王的储液罐液位自动控制系统的要求:进水阀控制储液罐的水位,出水阀 控制主液箱的水位,排气阀用于保持储液罐内的压强与外界压强一致 ,储液罐与主液 箱设置的最大水位值为100。当储液罐水位<100时,出水阀打开,储液罐液位增加,直 到水位达到100;当主液箱水位<100并且储液罐液位不等于0时,出水阀打开,主液箱 水位增加,储液罐液位减少;当主液箱水位 <100时,出水阀打开,主液箱液位增加, 直到水位达到100;当用户打开水龙头时,主液箱液位减少,出水阀打开,储液罐液位 减少,进水阀打开,储液罐液位增加,如此循环。 2界面设计 2.1新建工程 打开组态王首先新建立工程“课程工程”,进入画面界面,进入画面界面,点击新 建工程画面,进入开发系统界面,确定背景属性。如图 1所示 图1建立工程 22主监控界面设计 打开“控制中心”画面,调用所需要的器件,然后调整好各器件的位置,进行相应 的管道连接,使得整个画面安排合理、紧凑。如图 2所示。 I 字凰 C0M1 COM2 COM3 悔 DDE 实时鶴吨 捱薛匚

图2储蓄罐液位自动控制系统主监控界面 2.3实时趋势曲线设计 新建画面,调用实时趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.4历史趋势曲线设计 新建画面,调用历史趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.5实时报警设计 新建画面,调用报警窗口,选择实时报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.6历史报警设计 新建画面,调用报警窗口,选择历史报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.7报表设计 新建画面,调用报表窗口,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 3数据字典设计 选中数据字典,然后双击新建来定义变量,按要求定义相应的变量,并注意其变量类型及其后续设置。最后结果如图3所示。

液位自动控制系统

控制类系统设计 ——液位自动控制系统 摘要 随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。 液位控制是工业中常见的过程控制,它对生产的影响不容忽视。该系统利用了常见的芯片,设计并实现了液位控制系统的智能性及显示功能。电路组成简单,调试方便,性价比高,抗干扰性好等优点,能较好的实现水位监测与控制的功能。能够广泛的应用于工业场所。 液位控制有很多方法,如,非接触传感。只需要将传感器紧贴在非金属容器的外壁,就可以侦测到容器里面液位高度变化,从而及时准确地发出报警信号,有效防止液体外溢或防止机器干烧。由于不需要与液体接触且安装简便,避免了水垢的腐蚀,可取代传统的浮球传感和金属探针传感,延长寿命。而本设计是基于纯电路的设计,低成本且抗干扰性好。在本设计中较好的实现了水位监测与控制的功能。 液位控制系统是以液位为被控参数的系统,液位控制一般是指对某控制对象的液位进行控制调节,以达到所要求的液位进行调节,以达到所要求的控制精度。

1 概述 液位控制系统是以液位为被控参数的系统,是现代工业生产中的一类常见的、重要的控制过程。而传统的液位控制多采用单回路控制,并采用传统的指针式仪表来显示液位值,使液位控制的精度和显示的直观性受到限制,而随着生产线的更新及生产过程控制要求的提高,要求液位系统有高的控制性能。基于此,本系统就设计了一种电路简单,调试方便且性价比高的系统,来完成液位的自动调控。本系统主要由四部分组成:显示模块、振荡模块、传感器模块和声光报警模块,系统简单易行。 系统框图如下: 2 硬结构与功能 2.1 该设计的总体结构 该设计是一块集多种电子芯片于一体的多功能实验板,实现了液位系统的控制及显示。主要功能器件包括:电源部分的7808,定时部分的555定时器,数字分段的LM3914等。 电路原理图如下图所示:

罐区液位计和紧急切断阀的设置及联锁要求规范合集

罐区液位计和紧急切断阀的设置及联锁要求规范合集 01 GB50074-2014《石油库设计规范》 设置要求: 15.1 自动控制系统及仪表 15.1.1容量大于100m3的储罐应设液位测量远传仪表,并应符合下列规定: 1 液位连续测量信号应采用模拟信号或通信方式接入自动控制系统; 2 应在自动控制系统中设高、低液位报警; 3 储罐高液位报警的设定高度应符合现行行业标准《石油化工储运系统罐区设计规范》SH/T 3007的有关规定; 4 储罐低液位报警的设定高度应满足泵不发生汽蚀的要求,外浮顶储罐和内浮顶储罐的低液位报警设定高度(距罐底板)宜高于浮顶落底高度0.2m 及以上。

15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀: 1 年周转次数大于6次,且容量大于或等于10000m3的甲B、乙类液体储罐; 2 年周转次数小于或等于6次,且容量大于20000m3的甲B、乙类液体储罐; 3 储存I、II级毒性液体的储罐。 15.1.3 容量大于或等于50000m3的外浮顶储罐和内浮顶储罐应设低低液位报警。低低液位报警设定高度(距罐底板)不应低于浮顶落底高度,低低液位报应能同时联锁停泵。 15.1.4用于储罐高高、低低液位报警信号的液位测量仪表应采用单独的液位连续测量仪表或液位开关,并应在自动控制系统中设置报警及联锁。 条文说明: 15.1.4 “单独的液位连续测量仪表或液位开关”是指,除了“应设液位测量远传仪表”外,还需设置一套专门用于储罐高高、低低液位报警及联锁的液位 测量仪表。 " 设置及联锁要求: 15.1.2 下列储罐应设高高液位报警及联锁,高高液位报警应能同时联锁关闭储罐进口管道控制阀; 15.1.7 一级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚应能在控制室进行控制和显示状态。二级石油库的重要工艺机泵、消防泵、储罐搅拌器等电动设备和控制阀门除应能在现场操作外,尚宜能在控制室进行控制和显示状态。 15.1.11 一级石油库消防泵的启停、消防水管道及泡沫液管道上控制阀的开关均应在消防控制室实现远程启停控制,总控制台应显示泵运行状态和控制阀的阀位信号。" 条文说明: 15.1.7 这样规定可以实时监测电动设备状态,及时处理异常情况。 15.1.11 本条规定是为了保证快速启动消防系统,及时对火灾实施扑救。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

液位自动控制系统设计及调试

等级: 课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

储油罐液位温度实时检测

储油罐液位、温度实时检测 设计小组名单: 任光辉张晨睿王资凯 徐梦然韩冬芳朱晨

1. 系统总体说明 (1) 1.1课题任务规定的设计要求 (1) 1.2设计方法比较 (1) 1.3设计特色 (1) 2. 总体解决方案概述 (2) 3. 所用传感器简介[4] [5] (3) 3.1光纤传感器 (3) 3.2超声波传感器 (4) 3.3半导体热敏电阻 (5) 4. 系统描述 (6)

4.1温度传感器PPM电路[1] [6] (6) 4.2超声波测距[2][3] (7) 4.3传感器PPM电路[8] (8) 4.4复合及脉冲光发射电路 (9) 4.5脉冲甄别电路[8] (10) 4.6单片机数据处理[7][8] (11) 5. 光推动系统的功率与信号通道设计[9][10] (13) 5.1光推动系统简介 (13) 5.2光推动通道 (13) 6. 附录 (14) 6.1存在的问题 (14) 6.2解决的办法 (14) 7. 致谢 (15) 8. 参考资料 (16)

1.系统总体说明 1.1课题任务规定的设计要求 我国石油资源丰富,采油炼油企业众多,储油罐是储存油品的重要设备,储油罐液位的精确计量对生产厂库存管理及经济运行影响很大。但国内许多反应罐、大型储油罐的液位计量仍采用人工检尺和分析化验的方法,其他参数的测定也没有实行实时动态测量,这样易引发安全事故,无法为生产操作和管理决策提供准确的依据。采用计算机自动监测技术,实时监测储油罐液位、温度等参数,可以方便了解生产状况,及时监视、控制容器液位及温度等,保障安全平稳生产。试设计储油罐(圆柱体型)液位、温度的实时监测系统。 1.2设计方法比较 1.3设计特色 采用光纤传输,实现测量无电回路,避免电信号引起的危险,动态效应好,可以远端控制,实现数字脉冲的传输,避免干扰。

组态王水箱液位控制

基于组态王的水箱液位控制系统 1.引言 自动化软件在自动化产品的研发过程中有着举足重轻的地位,尤其在科学技术飞速发展的今天,自动化软件的应用越来越受到人们的重视。本文采用的自动化软件是北京亚控公司出品的组态王6.53,其软件包由工程浏览器(TouchExploer)、工程管理器(ProjMamager)和画面运行系统(TouchView)三部分组成。在工程浏览器中可以查看工程的各个组成部分,也可以完成数据库的构造、定义外部设备等工作;工程管理器内嵌画面管理系统,用于新工程的创建和已有工程的管理。画面的开发和运行由工程浏览器调用画面制作系统TOUCHMAKE和工程运行系统TOUCHVIEW来完成的。 本文利用组态王强大的组态功能和友好的人机界面实现了对供水系统中水塔和储水箱的实时监控,并且具有一定的工程应用价值。 2.系统需求分析及方案论证 2.1 系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。

2.2 系统方案论证 整个供水系统可以抽象为水塔和主水箱两个容器的液位控制。水塔的水来自地下水,主水箱的液位由水塔的水泵和主水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 系统通过智能模块将液位的检测量采集到组态王对应变量中,由组态王统一管理给出系统各部分运行趋势、报表及报警事件,并通过与给定的液位设定比较来控制入水量,从而使液位保持在一定的范围之内。 本系统假定主水箱满液位为100,而水塔容量相对于主水箱来说应该大很多,为了明显起见,我们选水塔容量为500.当水塔液位低于100时水塔进水,主水箱液位低于20时水塔自动供水,高于90时供水关闭。由于工业用水和生活用水的需求相差比较大,所以给他们设定了不同的流速,并且它们的使用时随机的,顾没有对两储水罐的出水阀进行自动控制。应运程序代码如下: if(\\本站点\泵==1) {\\本站点\控制水流=8; \\本站点\水塔=\\本站点\水塔-8; \\本站点\主水箱= \\本站点\主水箱+8; } else {\\本站点\控制水流=0; \\本站点\水塔=\\本站点\水塔; \\本站点\主水箱= \\本站点\主水箱; } if(\\本站点\阀门1==1) {\\本站点\控制水流1=5; \\本站点\主水箱= \\本站点\主水箱-5; } else \\本站点\控制水流1=0; if(\\本站点\主水箱>90) \\\本站点\泵=0; if(\\本站点\主水箱<20)

储油罐液位、温度实时检测(2005)

储油罐液位、温度实时检测

1. 系统总体说明 (1) 1.1课题任务规定的设计要求 (1) 1.2设计方法比较 (1) 1.3设计特色 (1) 2. 总体解决方案概述 (2) 3. 所用传感器简介[4] [5] (3) 3.1光纤传感器 (3) 3.2超声波传感器 (4) 3.3半导体热敏电阻 (5) 4. 系统描述 (6) 4.1温度传感器PPM电路[1] [6] (6) 4.2 超声波测距[2][3] (7) 4.3传感器PPM电路[8] (9) 4.4复合及脉冲光发射电路 (10) 4.5脉冲甄别电路[8] (10) 4.6单片机数据处理[7][8] (11) 5. 光推动系统的功率与信号通道设计[9][10] (13) 5.1光推动系统简介 (13) 5.2光推动通道 (13) 6. 附录 (14) 6.1存在的问题 (14) 6.2解决的办法 (14) 7. 致谢 ............................................................................................错误!未定义书签。 8. 参考资料 (15)

1.系统总体说明 1.1课题任务规定的设计要求 我国石油资源丰富,采油炼油企业众多,储油罐是储存油品的重要设备,储油罐液位的精确计量对生产厂库存管理及经济运行影响很大。但国内许多反应罐、大型储油罐的液位计量仍采用人工检尺和分析化验的方法,其他参数的测定也没有实行实时动态测量,这样易引发安全事故,无法为生产操作和管理决策提供准确的依据。采用计算机自动监测技术,实时监测储油罐液位、温度等参数,可以方便了解生产状况,及时监视、控制容器液位及温度等,保障安全平稳生产。试设计储油罐(圆柱体型)液位、温度的实时监测系统。 1.2设计方法比较 1.3设计特色 采用光纤传输,实现测量无电回路,避免电信号引起的危险,动态效应好,可以远端控制,实现数字脉冲的传输,避免干扰。

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

基于组态王的储液罐液位自动控制

自动化应用软件实训 专 业: 班 级: 姓 名: 学 号: 指导教师: 动1101 自动化

基于组态王的储液罐液位自动控制系统 1 任务要求 基于组态王的储液罐液位自动控制系统的要求:进水阀控制储液罐的水位,出水阀控制主液箱的水位,排气阀用于保持储液罐内的压强与外界压强一致,储液罐与主液箱设置的最大水位值为100。当储液罐水位<100时,出水阀打开,储液罐液位增加,直到水位达到100;当主液箱水位<100并且储液罐液位不等于0时,出水阀打开,主液箱水位增加,储液罐液位减少;当主液箱水位<100时,出水阀打开,主液箱液位增加,直到水位达到100;当用户打开水龙头时,主液箱液位减少,出水阀打开,储液罐液位减少,进水阀打开,储液罐液位增加,如此循环。 2 界面设计 2.1 新建工程 打开组态王首先新建立工程“课程工程”,进入画面界面,进入画面界面,点击新建工程画面,进入开发系统界面,确定背景属性。如图1所示。 图1建立工程 2.2 主监控界面设计 打开“控制中心”画面,调用所需要的器件,然后调整好各器件的位置,进行相应的管道连接,使得整个画面安排合理、紧凑。如图2所示。

图2 储蓄罐液位自动控制系统主监控界面 2.3 实时趋势曲线设计 新建画面,调用实时趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.4 历史趋势曲线设计 新建画面,调用历史趋势曲线,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.5 实时报警设计 新建画面,调用报警窗口,选择实时报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.6 历史报警设计 新建画面,调用报警窗口,选择历史报警窗,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 2.7 报表设计 新建画面,调用报表窗口,进行相应的属性设置和文字标注,然后保存,以进行后续操作。 3 数据字典设计 选中数据字典,然后双击新建来定义变量,按要求定义相应的变量,并注意其变量 类型及其后续设置。最后结果如图3所示。

液位自动控制系统分析

二.系统分析 2.1系统工作原理 浮球杠杆式液位自动控制系统原理示意图 工作原理:当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上。一旦流入水量或流出水量发生变化,水箱液面高度便相应变化。例如,当液面升高时,浮子位置亦相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。此时,水箱液面下降,浮子位置相应下降,知道电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度,反之,若水箱液面下降,则系统会自动增大阀门开度,加大流入的水量,使液面升到给定的高度。

2.2系统分解 水位自动控制系统由浮子,杠杆,直流电动机,阀门及水箱控制部分构成。根据不同的需要可以对各部分进行不同的设计。该系统结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 液位控制系统原理方框图如下所示: 图2 2.3.数学模型 2.3.1浮子、杠杆、电位计(比例环节) 浮球杠杆测量液位高度的原理式 U o=U 总 b??al 式中Uo为电位计的输出电压,U 总 为电位计两端的总电势,b a为杠杆的长度比,??为高度的变化,l为电位计电阻丝的中点位置到电阻丝边缘的长度。 则:

G1s=K1 2.3.2微分调理电路(微分环节) 由于水面震荡,导致浮子不稳定,在电位计的输出电压与电动机的输入端之间接一个微分调理电路,对输入的电压进行调理传递函数为 G2s=K2s 2.3.3电动机(惯性环节) 查资料知电动机的传递函数: G3s= K3 Ts+1 2.3.4减速器(比例环节) 这是一个比例环节,增益为减速器的减速比。 故,传递函数为 G4s=K4 2.3.5控制阀(积分环节) 这是一个积分环节, 故,传递函数为 G5s=K5 s 2.3.6水箱(积分环节) 这是一个积分环节,实际液位Y是流入量Q in与流出量Q out的差值?Q对时间t的积分。

组态王_水箱水位控制

目录 水箱水位控制 (1) 第一章绪论 (1) 第二章系统需求分析 (1) 第三章系统控制方案 (1) 第四章系统监控界面设计 (2) 第五章数据字典设计 (4) 第六章应用程序命令语言 (4) 反应中心监控车间的设计 (6) 第一章系统监控界面设计 (6) 第二章应用程序命令语言 (8) 心得体会 (9)

水箱水位控制 第一章绪论 在日常生活中,我们最常见的就是对储水罐液位的控制,系统是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定围。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。在双容水箱中,我们需要实时检测和调节水箱水位,为为了最大程度上减轻了人们工作负担,需要设计一个组态王液位控制系统对水箱的水位进行实时检测。双位水箱串级控制系统是被测对象由两个不同容积的水箱串联组成,故称其为双容水箱,控制原理是通过水泵将储水箱中的水送上水箱,通过阀门对其控制,使其可以合理的进行储水,当然,如果进水量大于出水量,则自动通过溢水口排入储水箱。 第二章系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔和储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔和储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 第三章系统控制方案 整个供水系统可以抽象为主水箱和储水箱两个容器的液位控制。主水箱的水来自地下,储水箱的液位由水泵和储水箱的出水阀门综合决定。各种工业用水和生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当主水箱进水阀打开时,水箱液位以较小的速度增长,增到90,水位达到高水位线,发出警报,水箱液位达到98时,主水箱进水阀自动关闭;此时,储水箱水泵打开,开始抽水,输送到储水箱中;当储水箱液位到达高水位时(90)报警,到达液位98时关闭水泵;储水箱出水阀打开;当储水箱

储油罐爆炸的原因分析与控制

储油罐爆炸的原因分析与控制 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计。近20年来,油罐发展呈大型化的明显趋势。随着油气储备量的增加,储油罐的规模和数量也大幅度地增加。因此,如何安全有效地管理储油罐、提高储油罐的安全可靠性,已是当前安全管理工作所面临的一个重大课题。 1爆炸原因分析 1.1明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。 1.2静电 所谓静电火灾是指静电放电火花引燃可燃气体、可燃液体、蒸汽等易燃易爆物而造成的火灾或爆炸事故。 静电的实质是存在剩余电荷。当两种不同物体接触或摩擦时,物体之间就发生电子得失,在一定条件下,物体所带电荷不能流失而发生积聚,这就会产生很高的静电压,当带有不同电荷的两个物体分离或接触时,物体之间就会出现火花,产生静电放电(ESD)

静电放电的能量和带电体的性质及放电形式有关。静电放电的形式有电晕放电、刷形放电、火花放电等。其中火花放电能量较大,危险性最大。 静电引起火灾必须具备以下4个条件: (1)有产生静电的条件。一般可燃液体都有较大的电阻,在灌装、输送、运输或生产过程中,由于相互碰撞、喷溅与管壁摩擦或受到冲击时,都能产生静电。特别是当液体内没有导电颗粒、输送管道内表面粗糙、液体流速过快时,都会产生很强的摩擦,从而产生静电。 (2)静电得以积聚,并达到足以引起火花放电的静电电压。油料的物理特性决定了其内产生的静电电荷难以流失而大量积聚,其电压可达上万伏,遇到放电条件,极易产生放电引起火灾。 (3)静电火花周围有足够的爆炸性混合物。油品蒸发、喷溅时产生的油雾和储油罐良好的蓄积条件致使油面上部空间形成油气一空气爆炸性混合物。 (4)静电放电的火花能量达到爆炸性混舍物的最小引燃能量。当静电放电所产生的电火花能量达到或大干油品蒸气引燃的最小能量(0.2-0.25mJ)时,就会点燃可燃混合气体,造成燃烧爆炸。 因静电放电(ESD)引起的火灾爆炸事故屡见不鲜,而且静电火灾具有一定的突发性、易爆炸、扑救难度大、易造成人员伤亡等特点,故如何更好地做好防静电危害工作一直是安全管理工作的重要组成部分。 1.3自燃 自燃是物质自发的着火燃烧过程,通常是由缓慢的氧化还原反应而引起,即物质在没有火源的条件下,在常温中发生氧化还原反应而

组态王-水箱水位控制

自动化应用软件实训 组态王Kingview就是一种通用的工业监控软件,它融过程控制设计、现场操作及工厂资源管理于一体,将一个企业内部的各种生产系统与应用以及信息交流汇集在一起,实现了最优化管理。适用于从单一设备的生产运营管理与故障诊断,到网络结构分布式大型集中监控管理系统的开发。在日常生活中,我们最常见的就就是对储水罐液位的控制,系统就是根据用户使用水的情况自动向储水罐中注水,确保储水罐也为保持在一定范围内。在这里我们运用组态王对单容水箱液位控制系统进行自动控制。 2系统需求分析 为了保证系统所需用水的供给,供水系统必须能够及时的对各种用水对象进行供水。这就要求水塔与储水箱的水位不能低于一定的下限以免断水对人们的正常生活所带来的影响,同时水塔与储水箱的水位又不能高于一定的上限,从而使得水资源可以合理的分配利用。如果使用组态王来实现软硬结合的控制,将会给系统的各性能带来良好的提升。 3系统方案论证 整个供水系统可以抽象为原水箱与储水箱两个容器的液位控制。原水箱的水

来自地下,储水箱的液位由水塔的水泵与储水箱的出水阀门综合决定。各种工业用水与生活用水可以用其对应的储水箱的出水管道代替。这样系统就组态好了。 单容水箱液位控制系统主要有以下几个基本环节组成:被控对象(水箱)、液位测量变送器、控制器(计算机)、执行机构(电动调节阀)、水泵、储水箱。 本文的设计原理:当注水阀与用户阀同时打开时,水箱液位以较小的速度增长,增到(60,80)范围内,水位达到动态平衡;当用户阀关闭时,水箱液位以较快速度增长,增到(80,90)范围内,注水阀自动关闭;当注水阀关闭,用户阀打开时,水位下降到30以下,注水阀自动打开。水位高于80与低于30时,报警指示灯开始闪烁,提醒工作人员系统就是否正常工作。这样便实现了单容水箱液位的自动控制。 4系统监控界面设计 设计的界面有:水箱水位监控界面,实时曲线界面,实时报表界面,报警记录界面、历史曲线界面。 水箱水位监控界面如图4、1所示,实时曲线界面如图4、2所示,实时报表界面如图4、3所示。报警记录界面如图4、4所示,历史曲线界面如图4、5所示。 图4、1水箱水位监控界面

液位自动控制系统方案

等级: 课程设计 课程名称电气控制与PLC课程设计 课题名称液位自动控制系统设计与调试 专业 班级 学号 姓名 指导老师

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师 课程设计时间 教研室意见审核人: 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程围的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

组态王软件的应用与控制系统的设计

组态王软件的应用与控制系统的设计 姓名:徐标标(080312080) 指导老师:徐文权 摘要:组态王软件是完成数据采集与过程控制的专用软件,它是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业控制系统。同时组态王软件开发的监控系统软件以标准的工业计算机软、硬件平台构成的开放式系统取代传统的封闭式系统,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态。本文通过介绍组态王的特点、基本功能及组态王应用实例与控制系统的设计,详细直观的把组态王软件的特性展示出来。 关键词:组态王,组态王软件的应用,组态控制系统的设计 一、组态王软件简介 组态王软件是利用系统软件提供的工具,用户通过简单的形象组织组合工作,即可实现所需的软件功能。工业过程控制系统中,常常要求有如下功能:数据采集与数据处理功能、数据存储功能、包括数据查询、数据管理和数据显示等系统故障或事故报警、现场动态图形功能、显示现场生产过程或实时状态、自动或召唤出实时和历史报表功能或数据曲线显示功能、友好的人机界面等。过去在开发控制系统软件时开发者要选择一种程序设计语言来实现上述功能。往往软件的编程量很大软件开发成本高、开发周期长、软件的维护量大组态软件就是在这当种需求下产生。组态软件将士主常用功能组合在一起形成一个新的软件平台用户只须在这个软件平台下进行二次开发,系统所需的软件即可。组态软件正在代替各种计算机语言的软件开发。其优点有:提高系统的成功率和可靠性、缩短项目开发周期、减少开发费用组态王组态软件是在流行的微机上建立工业控制对象的人机接口的一种智能软件包。它是以windows98/windowsnt4.0中文操作系统为其操作平台。充分利用了windows的图形功能完备、界面一致性好、易学易用的特点。它使采用微机开发的系统工程比以往的使用专用机开发的工业控制系统更有通用性,大大地减少了工控软件开发者的重复性工作并可运用微机丰富的软件资源进行开发。 二、组态王的特点 它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。尤其考虑三方面问题:画面、数据、动画。通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。 三、组态王功能简介 组态王软件是真正的32位程序支持多任务、多线程、运行于windows98等操作系统。

相关文档
最新文档