知识讲解 动能、动能定理(基础)

知识讲解 动能、动能定理(基础)
知识讲解 动能、动能定理(基础)

物理总复习:动能、动能定理

编稿:xx 审稿:xx

【考纲要求】

1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系;

2、会用动能定理分析相关物理过程;

3、熟悉动能定理的运用技巧;

4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。

【知识网络】

【考点梳理】

考点一、动能 动能是物体由于运动所具有的能,其计算公式为212

k E mv =。动能是标量,其单位与 功的单位相同。国际单位是焦耳(J )。

考点二、动能定理

1、动能定理

合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。

2、动能定理的表达式

21k k W E E =-。式中W 为合外力对物体所做的功,2k E 为物体末状态的动能,1k E 为物体初状态的动能。动能定理的计算式为标量式,v 为相对同一参考系的速度,中学物理中一般取地球为参考系。

要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。

2、应用动能定理解题的基本步骤

(1)选取研究对象,明确它的运动过程。

(2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。

(3)明确物体在始、末状态的动能1k E 和2k E 。

(4)列出动能定理的方程21k k W E E =-及其他必要的辅助方程,进行求解。

动能定理中的W 总是物体所受各力对物体做的总功,它等于各力做功的代数和,即

123=W W W W +++???总若物体所受的各力为恒力时,可先求出F 合,再求cos W F l α=总合

3、一个物体动能的变化k E ?与合外力做的功W 总具有等量代换的关系。因为动能定理实质上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。

0k E ?>,表示物体动能增加,其增加量就等于合外力做的功;

0k E ?<,表示物体动能减少,其减少量就等于合外力做负功的绝对值;

0k E ?=,表示物体动能不变,合外力对物体不做功。

这种等量代换关系提供了一种计算变力做功的简便方法。

考点三、实验:探究动能定理

实验步骤

1.按图组装好实验器材,由于小车在运动中会受到阻力,把木板略微倾斜,作为补偿。

2.先用一条橡皮筋进行实验,把橡皮筋拉伸一定长度,理清纸带,接通电源,放开小车。

3.换用纸带,改用2条、3条……同样的橡皮筋进行第2次、第3次……实验,每次实验中橡皮筋拉伸的长度都相同。

4.由纸带算出小车获得的速度,把第1次实验获得的速度记为1v ,第2次、第3次……记为2v 、3v ???。

5.对测量数据进行估计,大致判断两个量可能的关系,然后以W 为纵坐标,2

v (或v ,

3v

【典型例题】

类型一、应用动能定理时过程的选取问题

在应用动能定理时,针对这种多过程问题,既可以分段利用动能定理列方程求解,也可以对全过程利用动能定理列方程求解,解题时可灵活选择应用。不过全过程用动能定理列方程求解往往比较简捷,应优先考虑。

例1、如图所示,一质量为2㎏的铅球从离地面2m 高处自由下落,陷入沙坑2 cm 深处,求沙子对铅球的平均阻力。(取210/g m s =)

【思路点拨】分析外力做功,哪个力做多少功,(力多大,位移是多少),分析初态的动能、末态的动能,根据动能定理列出方程求解。如果初态、末态取得好,计算要简单的多,那就是对全过程应用动能定理。

【答案】 2020 N

【解析】 铅球的运动分为自由下落和陷入沙坑中的减速两过程,可根据动能定理分段列式,也可对全过程用动能定理.

方法一:分阶段列式

设小球自由下落到沙面时的速度为v ,则 2102

mgH mv =

- 设铅球在沙坑中受到的阻力为F ,则 2102mgh Fh mv -=- 代入数据,解得F=2020 N 。

方法二:全过程列式

全过程重力做功 ()mg H h +,进入沙坑中阻力做功Fh -,从全过程来看动能变化为零,则由21k k W E E =-,得 ()00mg H h Fh +-=-

解得 ()2020mg H h F N h

+==。 【总结升华】若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。对全过程应用动能定理,一般来说都要简单一些,因为减少了中间环节,如果初、末状态的动能为零,解题就很简捷了。

举一反三

【变式】如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平的,其距离d=0.50 m ,盆边缘的高度为h=0. 30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑。已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0. 10。小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( )

A .0. 50 m

B .0. 25 m

C .0. 10 m

D .0

【答案】 D

【解析】分析小物块的运动过程,AB 、CD 段光滑,不消耗机械能,只是BC 段摩擦力做功,小物块在盆内来回滑动,由于克服摩擦力做功,物块的机械能不断减少。摩擦力做功等于力乘以路程。在A 处为初态,最后静止下来的那点为末态,初态、末态的动能都为零,设小物块在BC 段滑行的总路程为s ,摩擦力做负功为mgs μ-,重力做正功为mgh ,根据动能定理可得0mgh mgs μ-=,物块在BC 之间滑行的总路程3mgh h s m mg μμ

===,小物块正好停在B 点,所以D 选项正确。本题如果根据功和能的关系理解也很简单:物体的重力势能全部用于克服摩擦力做功,计算式为:mgh mgs μ=。

类型二、利用动能定理求变力做功的问题

如果是恒力做功问题,往往直接用功的定义式求解。但遇到变力做功问题,需借助动能

定理等功能关系进行求解。分析清楚物理过程和各个力的做功情况后,对全过程运用动能定理可简化解题步骤。

【高清课堂:动能、动能定理例4】

例2、质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,如图所示,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子所受拉力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )

A .

8mgR B .4

mgR C .2mgR D .mgR

【思路点拨】理解“最低点,此时绳子所受拉力为7mg ”的意义,可以求什么,理解“经过半个圆周恰能通过最高点”的意义,是重力提供向心力。从最低点到最高点,有阻力,求阻力做的功,根据动能定理列方程求解。

【答案】 C

【解析】小球所受空气阻力时刻在变化,运动情况和受力情况均比较复杂,用动能定理求解比较容易。从“小球通过轨道的最低点绳子所受拉力为7mg ”可以求出最低点的速度;从“经过半个圆周恰能通过最高点”可以求出最高点的速度。最低点为初态,最高点为末态,

从低到高,重力做负功,阻力也做负功(用正负号均可)。 小球在最低点,合力提供向心力:217v mg mg m R

-= 得 216v gR = 小球在最高点,重力提供向心力: 22v mg m R

= 得 22v gR =

根据动能定理有:222112()2f mg R W m v v -?+=- 得 12

f W mgR =-, 故C 选项正确。

【总结升华】求解变力的功时最常用的方法是利用动能定理或功能关系从能量的角度来解决。本题关键要理解隐含条件的物理意义,可以求什么。

另外还有一些方法如:①将变力转化为恒力;②平均方法(仅大小变化且为线性变化的力);③利用F s -图象的面积;④利用W Pt = (功率恒定时)。

举一反三

【变式】如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物块重力的k 倍,它与转轴OO '相距R 。物块随转台由静止开始转动,当转速增加到一定值时,物块即将在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为( )

A .12

kmgR B .0 C .2kmgR π D .2kmgR

【答案】A

【解析】 物块在开始滑动时最大静摩擦力是圆周运动的向心力,故2

v kmg m R

=,所以2v kgR = 则由动能定理211022W mv mgkR =

-= 得 12

W mgkR = 故选A 。 类型三、动能定理的综合应用 在应用动能定理解题时,应注意受力分析和过程分析,先确定受力分析,确定各个力是否做功及做功正负,后进行过程分析以确定物体的初、末状态及动能的变化。同时要注意运动过程中物体机械能的损失和物体合运动与分运动的关系。

例3、(2015 四川卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )

A .一样大

B .水平抛的最大

C .斜向上抛的最大

D .斜向下抛的最大

【答案】A

【解析】三个小球被抛出后,均仅在重力作用下运动,三球从同一位置落至同一水平地

面时,设其下落高度为h ,并设小球的质量为m ,根据动能定理有:2201122mgh mv mv =

-,

解得小球的末速度大小为:v =

与小球的质量无关,即三球的末速度大小相等,

故选项A 正确。

【考点】抛体运动特点、动能定理的理解与应用。 【高清课堂:动能、动能定理例3】

例4、质量为m 的滑块与倾角为θ的斜面间的动摩擦因数为μ,μ

个和斜面垂直放置的弹性挡板,滑块滑到底端与它碰撞时没有机械能损失,如图所示,若滑块从斜面上高度为h 处以速度v 0开始沿斜面下滑,设斜面足够长,求:

(1)滑块最终停在何处?

(2)滑块在斜面上滑行的总路程是多少?

【思路点拨】根据题意μ

【答案】(1)滑块停在距挡板; (2)θ

μcos 2220g v gh + 【解析】(1)当物体静止时,做受力分析图,

垂直斜面:cos N mg θ=

cos tan cos sin f mg mg mg μθθθθ=

平行斜面:sin 0F mg f θ=->∑

即物体不能静止于斜面上, ∴滑块最终停在档板处。

(2)设滑块在斜面上滑行的总路程为s ,由动能定理,

G f k W W E +=? 即:202

10cos mv s mg mgh -=?-θμ 解得:θμcos 2/)2(20g v gh s +=

举一反三

【变式】如图所示,AB 与CD 为两个对称斜面,其上部足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R 为2.0m ,一个物体在离弧底E 高度为h=3.0m

处,以初速4.0m/s 沿斜面运动。若物体与两斜面的动摩擦因数为0.02,则物体在两斜面上(不包括圆弧部分)一共能走多长路程?(g 取10m/s 2)

【答案】280m

【解析】斜面的倾角为60θ=,由于物体在斜面上所受到的滑动摩擦力小于重力沿斜面的分力(cos60sin 60mg mg μ<),所以物体不能停留在斜面上,物体在斜面上滑动时,由于摩擦力做功,使物体的机械能逐渐减小,物体滑到斜面上的高度逐渐降低,直到物体再也滑不到斜面上为止,最终物体将在B 、C 间往复运动(B 、C 间光滑,不损失机械能),设物体在斜面上运动的总路程为s ,则摩擦力所做的总功为cos60mg s μ-?,末状态选为B (或

C ),此时物体速度为零,对全过程由动能定理得

201(1cos 60)cos 6002

mg h R mg s mv μ??---?=-?? 物体在斜面上通过的总路程为

22012()210(3.0 1.0) 4.022800.0210

g h R v s m m g μ-+??-+===?

例5、(2015 北京卷)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下。将蹦极过程简化为人沿竖直方向的运动。从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是 ( )

A. 绳对人的冲量始终向上,人的动量先增大后减小

B. 绳对人的拉力始终做负功,人的动能一直减小

C. 绳恰好伸直时,绳的弹性势能为零,人的动能最大

D. 人在最低点时,绳对人的拉力等于人所受的重力

【答案】A

【解析】从绳恰好伸直到人运动到最低点的过程中,绳对人的拉力始终向上,故冲量始终向上。此过程中人先加速再减速,当拉力等于重力时,速度最大,则动量先增大后减小,A 选项正确,B 、

C 选项错误,在最低点时,人的加速度向上,拉力大于重力,

D 选项错误。

举一反三

【变式】如图,质量为m=60kg ,重心离地面高度为H=0.8m 的运动员进行“挑战极限运动”训练,需穿越宽为1S =2.5m 的水沟并跃上高为h=2.0m 的平台.运动员手握长为L= 3.25m 轻质弹性杆一端,从A 点静止开始匀加速助跑,至B 点时将杆的一端抵在O 点障碍物上,杆发生形变,同时运动员蹬地后被弹起,到达最高点时杆处于竖直状态,且重心恰好在杆的顶端,此刻运动员放开杆水平飞出并趴在平台的保护垫上,忽略空气阻力,取210/g m s =。

(1)若运动员助跑距离216s m =,到达B 点时速度08/v m s =,求运动员助跑的加速度多大

(2)运动员在最高点飞出时速度至少多大

(3)当满足条件(1)(2),运动员在B 点蹬地起跳瞬间至少做功为多少

【答案】(1)a = 2.0 m/s 2 (2) v = 5.0 m /s (3)W = 300 J

【解析】(1)运动员从A 到B 的过程中,做匀加速运动,由运动学公式

22

02as v = ① 代入数据得 a = 2.0 m/s 2

(2)设运动员在最高点水平飞出时的速度为v ,做平抛运动,由平抛运动公式 vt s =1 ② 22

1gt h L =- ③ 联立方程②、③代入数据得 v = 5.0 m /s

(3)设运动员在B 点至少做功为W , 从B 点到最高点的过程中,由动能定理得

2022

121)(mv mv H L mg W -=-- ④ 代入数据得 W = 300 J 例6、某实验小组采用图所示的装置探究“动能定理”,图中小车中可放置砝码。实验中,小车碰到制动装置时,钩码尚未到达地面,打点计时器工作频率为50 Hz 。

(1)实验的部分步骤如下:

①在小车中放入砝码,把纸带穿过打点计时器,连在小车后端,用细线连接小车和钩码; ②将小车停在打点计时器附近,__________,__________,小车拖动纸带,打点计时器

在纸带上打下一系列点,__________;

③改变钩码或小车中砝码的数量,更换纸带,重复②的操作。

(2)下图是钩码质量为0. 03 kg ,砝码质量为0.02 kg 时得到的一条纸带,在纸带上选择起始点O 及A 、B 、C 、D 和E 五个计数点,可获得各计数点到O 的距离、及对应时刻小车的瞬时速度v ,请将C 点的测量结果填在表1中的相应位置。

(3)在小车的运动过程中,对于钩码、砝码和小车组成的系统,__________做正功,__________做负功。

(4)实验小组根据实验数据绘出了图中的图线(其中220v v v ?=-),根据图线可获得

的结论是__________。要验证“动能定理”,还需测量的物理量是摩擦力和__________。

【思路点拨】熟悉实验步骤、实验数据处理、实验图像处理和分析。

【答案】 (1)②接通打点计时器电源;释放小车;关闭打点计时器电源

(2)5.05~5.10;0. 48~0.50(答案在此范围都得分)

(3)重力(钩码的重力);摩擦力(阻力)

(4)2v s ?∝(速度平方的变化与位移成正比);小车的质量

【解析】(1)使用打点计时器要先开电源,并且打点计时器指针振动稳定时再松开纸带才能打出所需要的理想的点,同时打出的点才足够多,满足实验的要求,实验完毕要及时关闭电源。

(2)从图中的标尺上可读出C 点对应的刻度为6.10 cm ,C 点离O 点的距离为(6.10-1.00)cm=5.10 cm ,其(8.15 4.20)/0.49/440.02

c BD v m s m s T -===? (3)系统在运动过程中,钩码的重力与运动方向同向,而摩擦力与运动方向始终相反,因此可确定钩码受的重力做正功、摩擦力做负功。

(4)2v s ?-图线是过原点的直线,说明2v s ?∝,根据动能定理应有:

22112301()()2

m g fs m m m v v -=++-(其中1m 为钩码质量,2m 为砝码质量,3m 为小车

质量)可以看出,在1m 、2m 已知,v 与0v 已知,s 已测出,除摩擦力外,还需测量的是小车的质量。

【总结升华】该题是在课本实验的基础上进行了变化和创新,主要考查了灵活应用知识的能力和创新能力。

动能定理基础20140411

动能定理习题 一、选择题(不定项选择) 1、一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图,则力F 所做的功为 ( ) A .mgLcos θ B. mgL(1-cos θ) C. FLsin θ D. FLcos θ 2、质量为m 的物块与转台之间的动摩擦因数为μ,物体与转轴相距R ,物块随转台由静止开始转动,当转速增加到某值时,物块即将在转台上滑动,此时转台已开始做匀速转动,在这一过程中,摩擦力对物体做的功为( ) A. 0 B. 2πμmgR C. μmgR/2 D. 2μmgR 3.质量一定的物体 ( ) A.速度发生变化时,其动能一定变化 B.速度发生变化时,其动能不一定变化 C.速度不变时.其动能一定不变 D.动能不变时,其速度一定不变 4、下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是 ( ) A. 物体做变速运动,合力一定不为零,动能一定变化 B. 若合外力对物体做功为零,则合外力一定为零 C. 物体的合力做功,它的速度大小一定发生变化 D. 物体的动能不变,所受的合外力必定为零 5、一物体做变速运动时,下列说法正确的有 ( ) A. 合外力一定对物体做功,使物体动能改变 B. 物体所受合外力一定不为零 C. 合外力一定对物体做功,但物体动能可能不变 D. 物体加速度一定不为零 6. 一质量为m 的滑块,以速度v 在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力,经过一段时间后,滑块的速度变为-2v(方向与原来相反),在这段时间内,水平力所做的功为 ( ) A. 32mv 2 B. -32mv 2 C. 52mv 2 D. -52 mv 2 7.如右图所示 质量为M 的小车放在光滑的水平而上,质量为m 的物体放在小车的一端.受到水平恒力F 作用后,物体由静止开始运动,设小车与物体间的摩擦力为f ,车长为L ,车发生的位移为S ,则物体从小车一端运动到另一端时,下列说法正确的是( ) A 、物体具有的动能为(F-f )(S+L ) B. 小车具有的动能为fS C. 物体克服摩擦力所做的功为f(S+L) D 、摩擦力对小车所做的功为f(S+L) 8、汽车从静止开始做匀加速直线运动,到最大速度时刻立即关闭发动机,滑行一段后停止,总共经历s 4,其速度——时间图象如图所示,若汽车所受牵引力为F ,摩擦阻力为f F ,在这一过程中,汽车所受的牵引力做功为W 1,摩擦力所做的功为W 2,则 ( ) A. 3:1:=f F F B. 1:4:=f F F C. 4:1:21=W W D. 1:1:21=W W 9、质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用. 设某一时刻小球通过轨道最低点,此时绳子的张力为7mg ,此后小球继续做运动,经过半个圆周恰能通过最高点,则此过程中小球克服空气阻力做的功为( ) A. 14 mgR B. 13 mgR C. 12 mgR D. mgR 10、如图所示,质量为 m 的小车在水平恒力F 的推动下,从山坡底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,A 、B 的水平距离为s.下列说法正确的是( ) A.小车克服重力所做的功是mgh B. 推力对小车做的功是12mv 2 O 1 2 3 4 v t O ′ m O m M θ o P Q F

垂径定理—知识讲解(提高).

垂径定理—知识讲解(提高) 【学习目标】 1.理解圆的对称性; 2.掌握垂径定理及其推论; 3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】 知识点一、垂径定理 1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点诠释: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展 根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等. 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是.

【答案】5. 【解析】作OM⊥AB于M、ON⊥CD于N,连结OA, ∵AB=CD,CE=1,ED=3, ∴OM=EN=1,AM=2, ∴ 【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题. 举一反三: 【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径. 【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB, ∴ 1 2 MO HN CN CH CD CH ==-=- 11 ()(38)3 2.5 22 CH DH CH =+-=+-=, 111 ()(46)5 222 BM AB BH AH ==+=+=, ∴在Rt△BOM中,OB== 【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】 【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.

知识讲解 动能、动能定理(教师参考)

物理总复习:动能、动能定理 【考纲要求】 1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系; 2、会用动能定理分析相关物理过程; 3、熟悉动能定理的运用技巧; 4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。 【考点梳理】 考点一、动能 动能是物体由于运动所具有的能,其计算公式为212 k E mv =。动能是标量,其单位与 功的单位相同。国际单位是焦耳(J )。 考点二、动能定理 1、动能定理 合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。 2、动能定理的表达式 21k k W E E =-。式中W 为合外力对物体所做的功,2k E 为物体末状态的动能,1k E 为物体初状态的动能。动能定理的计算式为标量式,v 为相对同一参考系的速度,中学物理中一般取地球为参考系。 要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。 2、应用动能定理解题的基本步骤 (1)选取研究对象,明确它的运动过程。 (2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。 (3)明确物体在始、末状态的动能1k E 和2k E 。 (4)列出动能定理的方程21k k W E E =-及其他必要的辅助方程,进行求解。 动能定理中的W 总是物体所受各力对物体做的总功,它等于各力做功的代数和,即123=W W W W +++???总若物体所受的各力为恒力时,可先求出F 合,再求cos W F l α=总合 3、一个物体动能的变化k E ?与合外力做的功W 总具有等量代换的关系。因为动能定理实质上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。 高三提高班

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

动能和动能定理 知识讲解

动能和动能定理 编稿:周军 审稿:隋伟 【学习目标】 1.通过设计实验探究功与物体速度的变化关系. 2.明确动能的表达式及含义. 3.能理解和推导动能定理. 4.掌握动能定理及其应用. 【要点梳理】 要点一、探究功与速度变化的关系 要点诠释: 1.探究思路 让小车在橡皮绳的弹力下弹出,沿木板滑行。由于橡皮绳对小车做功,小车可以获得速度,小车的速度可以通过打点计时器测出。这样进行若干次测量就可以得到多组数据,通过画图的方法得出功与速度的关系。 2. 操作技巧 (1)功的变化我们可以通过由一根橡皮绳逐渐增加到若干根的方法得到。 (2)要将木板倾斜一定角度,使小车在木板上沿斜面向下的重力的分力与其受的摩擦力相等,目的是让小车在木板上可以做匀速直线运动。 3.数据的处理 以单根橡皮绳做的功为横坐标,以速度的平方为纵坐标描点连线,画出图象。 4.实验结论 画出2W v -图象,图象为直线,即2W v ∝。 要点二、动能、动能的改变 要点诠释: 1.动能: (1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半. (2)定义式:212 k E mv =,v 是瞬时速度. (3)单位:焦(J ). (4)动能概念的理解. ①动能是标量,且只有正值. ②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能. ③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动. 2.动能的变化: 动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功. 要点三、动能定理 要点诠释: (1)内容表述:外力对物体所做的总功等于物体功能的变化. (2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速

焦耳定律——知识点

焦耳定律 1.电功和电功率 (1)定义:电路中电场力对定向移动的电荷所做的功,简称电功,通常也说成是电流的功。(2)实质:能量的转化与守恒定律在电路中的体现。 电能通过电流做功转化为其他形式能。 上一章里学过电场力对电荷的功,若电荷q在电场力作用下从A搬至B,AB两点间电势差为U AB,则电场力做功W=qU AB。 对于一段导体而言,两端电势差为U,把电荷q从一端搬至另一端,电场力的功W=qU,在导体中形成电流,且q=It,(在时间间隔t内搬运的电量为q,则通过导体截面电量为q,I=q/t),所以W=qU=ItU。这就是电路中电场力做功即电功的表达式。 (3)表达式:W=IUt(适用于所有电路) 说明:①表达式的物理意义:电流在一段电路上的功,跟这段电路两端电压、电路中电流和通电时间成正比。 ②适用条件:I、U不随时间变化——恒定电流。 (4)单位:电流单位用安培(A),电压单位用伏(V),时间单位用秒(s),则电功的单位是焦耳(J)。 1KW.h=3.6x10^6 J (5)电功率 物理意义:一段电路上功率,跟这段电路两端电压和电路中电流成正比。此公式适用于所有点路。 ②单位:功的单位用焦耳(J),时间单位用秒(s),功率单位为瓦特(W)。 1W=1J/s 这里应强调说明:推导过程中没用到任何特殊电路或用电器的性质,电功和电功率的表达式对任何电压、电流不随时间变化的电路都适用。所以在这里瞬时功率和平均功率相等。额定功率:用电器正常工作时所需电压叫额定电压,在这个电压下消耗的功率称额定功率。一般说来,用电器电压不能超过额定电压,但电压低于额定电压时,用电器功率不是额定功率,而是实际功率。实际功率P=IU,U、I分别为用电器两端实际电压和通过用电器的实际电流。再者,这里W=IUt是电场力做功,是消耗的总电能,也是电能所转化的其他形式能量的总和。 电流在通过导体时,导体要发热,电能转化为内能。这就是电流的热效应,那么如果想求出转化的内能得多少,学习焦耳定律就可以求出了。英国物理学家焦耳,经过长期实验研究后提出焦耳定律。 2.焦耳定律 (1)纯电阻和非纯电阻电路 纯电阻电路:W=Q 如白炽灯、电炉 非纯电阻电路:W=Q+W其他如电动机、电解槽 (2)焦耳定律表达式:Q=I2Rt(适用于所有电路) (3)简单介绍产生焦耳热的原因:

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

物理知识:动能定理

物理知识:动能定理 以下是###整理的《物理知识:动能定理》,希望大家喜欢! 一、动能 如果一个物体能对外做功,我们就说这个物体具有能量.物体因为运动而具有的能. Ek=½mv2, 其大小与参照系的选择相关.动能是描述物体运动状态的物理量.是相对量。 二、动能定理 做功能够改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½mvt2-½mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.能够理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小. 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.因为此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不

能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用. 7.对动能定理中的位移与速度必须相对同一参照物.

北师大版初中物理九年级全一册焦耳定律(基础)知识讲解

焦耳定律(基础) 【学习目标】 1、知道电流的热效应; 2、理解焦耳定律,知道电流通过导体时产生热的多少与哪些因素有关; 3、知道电热的利用和防止。 【要点梳理】 要点一、电流的热效应 1.定义:电流通过导体时电能转化成内能,这个现象叫做电流的热效应。 2.影响电流的热效应大小的因素:导体通电时,产生热的多少与电流的大小、导体电阻的大小和通电时间有关。通电时间越长,电流越大,电阻越大,产生的热量越多。 要点诠释:电流通过导体时,电流的热效应总是存在的。这是因为导体都有电阻。导体通电时,由于要克服导体对电流的阻碍作用,所以要消耗电能,这时电能转化成内能。如果导体的电阻为零,电流通过导体时,不需要把电能转化成内能,这时电能在导体中传输时也不会因发热而损失。 3. 探究影响电流通过导体产生的热量的因素 (1)电流产生的热量与电阻的关系 如图18.4-2所示,两个透明容器中密封着等量的空气,U形管中液面高度的变化反映密闭空气温度的变化。两个密闭容器中都有一段电阻丝,右边容器中的电阻比较大。 两容器中的电阻丝串联起来接到电源两端,通过两段电阻丝的电流相同。通电一定时间后,比较两个U形管中液面高度的变化。你看到的现象说明了什么? 实验表明:在电流相同、通电时间相同的情况下,电阻越大,这个电阻产生的热量越多。 (2)电流产生的热量与电流大小的关系 如图18.4-3所示,两个密闭容器中的电阻一样大,在其中一个容器的外部,将一个电阻和这个容器内的电阻并联,因此通过两容器中电阻的电流不同。在通电时间相同的情况下,观察两个U形管中液面高度的变化。你看到的现象说明了什么? 实验表明:在电阻相同、通电时间相同的情况下,通过一个电阻的电流越大,这个电阻产生的热量越多。

动能定理基础练习题

1.下面各个实例中,机械能守恒的是( ) A 、物体沿斜面匀速下滑 B 、物体从高处以0.9g 的加速度竖直下落 C 、物体沿光滑曲面滑下 D 、拉着一个物体沿光滑的斜面匀速上升 3.某人用手将1Kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取10m/s 2),则下 列说法不正确的是( ) A .手对物体做功12J B .合外力做功2J C .合外力做功12J D .物体克服重力做功10J 4.如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为 13g.在他从上向下滑到底端的过程中,下列说法正确的是( ) A .运动员减少的重力势能全部转化为动能 B .运动员获得的动能为13 mgh C .运动员克服摩擦力做功为23 mgh D .下滑过程中系统减少的机械能为 13mgh 5.如图所示,在地面上以速度o v 抛出质量为m 的物体,抛出后物体落在比地面低h 的海平面上,若以地面为零势能参考面,且不计空气阻力。则: A .物体在海平面的重力势能为mgh B .重力对物体做的功为mgh C .物体在海平面上的动能为 mgh m +202 1υ D .物体在海平面上的机械能为mgh m +2021υ 7.某游乐场中一种玩具车的运动情况可以简化为如下模型:竖直平面内有一水平轨道AB 与1/4圆弧轨道BC 相切于B 点,如图所示。质量m=100kg 的滑块(可视为质点)从水平轨道上的 P 点在水平向右的恒力F 的作用下由静止出发沿轨道AC 运动,恰好能到达轨道的末端C 点。已知P 点与B 点相距L=6m ,圆轨道BC 的半径R=3m ,滑块与水平轨道AB 间的动摩 擦因数μ=0.25,其它摩擦与空气阻力均忽略不计。(g 取10m/s 2)求: (1)恒力F 的大小. (2)滑块第一次滑回水平轨道时离B 点的最大距离 (3)滑块在水平轨道AB 上运动经过的总路程S

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习 (1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。若直径AB ⊥弦CD 于点E ,则CE=DE , ⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 若CE=DE ,AB 是直径,则⌒ AC=⌒ AD ;⌒ BC=⌒ BD ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD ③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒ BD ④圆的两条平行弦所夹的弧相等。若CD ∥FG ,CD 、FG 为弦,则⌒ FC=⌒ GD 特别提示:①垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 ②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”. (3)垂径定理及推论的应用: 它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。 ①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”; ②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题; 例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题 意得,∵⌒ AB= ×360o=120o3 1∴∠AOB=120o,∴∠AOC=60o,在Rt △AOC 中,∵∠AOC=60o,OA=2,∴OC = OA=1,∴AB=2AC=2=22 122OC AO 3故AB 的长为23练习 一、选择题 1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A 、CM=DM B 、∠ACB=∠ADB C 、AD=2B D D 、∠BCD=∠BDC G A A

动能定理机械能守恒定律知识点例题

动能定理机械能守恒定律知识点例题(精) 1. 动能、动能定理 2. 机械能守恒定律 【要点扫描】 动能动能定理 -、动能 如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具 有的能.E k=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。 二、动能定理 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量.W1+W2+W3+……=?mv t2-?mv02 1、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2、“增量”是末动能减初动能.ΔE K>0表示动能增加,ΔE K<0表示动能减小. 3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.

5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理. 6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用. 7、对动能定理中的位移与速度必须相对同-参照物. 三、由牛顿第二定律与运动学公式推出动能定理 设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为v t,则: 根据牛顿第二定律F=ma……① 根据运动学公式2as=v t2―v02……② 由①②得:Fs=mv t2-mv02 四、应用动能定理可解决的问题 恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等. 机械能守恒定律 -、机械能 1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等. (1)物体由于受到重力作用而具有重力势能,表达式为 E P=mgh.式中h 是物体到零重力势能面的高度.

九年级物理:《焦耳定律》教学设计

《焦耳定律》教学设计 江苏南京29中致远校区殷发金 一、教学目标 (一)知识与技能 1.能通过实例,认识电流的热效应。 2.能在实验的基础上得出电热的大小与电流、电阻和通电时间有关,知道焦耳定律。 3.会用焦耳定律进行计算,会利用焦耳定律解释生活中电热利用与防治。 (二)过程与方法 体验科学探究过程,了解控制变量的物理方法,提高实验探究能力和思维能力。 (三)情感态度和价值观 会解释生活中一些电热现象,通过学习电热的利用与防止,学会辩证地看待问题。 二、教学重难点 电热是指电流做功把电能转化为内能,电热的大小与哪些因素这个实验从提出问题、猜想、设计实验、进行实验与收集证据、得出结论几个方进行研究。重点是研究电热与电流、电阻和通电时间的关系,实验中要采用控制变量的方法。研究电热与电阻关系时要控制电流和通电时间相同,设计出的电路要使用两个不同的电阻串联。研究电热与电流的关系的设计是一个难点,电阻相同改变电流,可以利用并联分电流的思想,也可以两个电路来完成。 焦耳定律研究的是把电能转化为内能的多少,它与电功有联系也有区别。电功是指电流做功,可以把电能转化为各种形式能,而电热只是电功的一部分。只有在纯电阻电路中,这两个量才相等。 重点:通过实验研究电热与电流、电阻和通电时间的关系,并确定研究方法及实验操作中各个环节应注意的问题。 难点:对焦耳定律的理解及焦耳定律在实际生活中的应用。 三、教学策略 电流做功的过程就是把电能转化为其它形式能的过程,不同的用电器转化成不同形式的能量。本节研究的是把电能转化为内能多少,生活中的用电器工作时都伴有热的现象,用此引入电流的热效应,从电炉丝与连接的导线入手,提出问题,学生也比较容易猜到电阻是影响电热的因素之一。在设计实验研究电热与电流、电阻和通电时间关系时,要利用到控制变

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

动能定理 模块知识点总结

动能定理 模块知识点总结 一、动能:物体由于运动而具有的能叫动能,其表达式为: 2k mv 2 1 E = 和动量一样,动能也是用以描述机械运动的状态量。只是动量是从机械运动出发量化机械运动的状态动量确定的物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。 二、动能定理:合外力所做的总功等物体动能的变化量。 K E mv mv W ?=-= 2 1222121合 (1) 式中W 合是各个外力对物体做功的总和, ΔE K 是做功过程中始末两个状态动能的增量. 动能定理实际上是在牛顿第二定律的基础上对空间累积而得: 在牛顿第二定律 F = ma 两端同乘以合外力方向上的位移,即可得 2 1222 121mv mv mas Fs W -= ==合 三、对动能定理的理解: ①如果物体受到几个力的共同作用,则(1)式中的W 合表示各个力做功的代数和,即合外力所做的功. W 合=W 1+W 2+W 3+…… ②应用动能定理解题的特点:跟过程的细节无关. 即不追究全过程中的运动性质和状态变化细节. ③动能定理的研究对象是质点. ④动能定理对变力做功情况也适用.动能定理尽管是在恒力作用下利用牛顿第二定律和运动学公式推导的,但对变力做功情况亦适用. 动能定理可用于求变力的功、曲线运动中的功以及复杂过程中的功能转换问题. ⑤应用动能定理解题的注意事项:

⑴要明确物体在全过程初、末两个状态时的动能; ⑵要正确分析全过程中各段受力情况和相应位移,并正确求出各力的功; ⑶动能定理表达式是标量式,不能在某方向用速度分量来列动能定理方程式: ⑷动能定理中的位移及速度,一般都是相对地球而言的. 动量定理与动能定理的区别: 【比较】两大是描述物体在空间运动的时间过程中: 动量定理:F ·t=P ′-P .合外力对物体的冲量与物体动量变化之间的关系 动能定理:F ·s = 2 1m υ22—21m υ12,或W = ΔE k 。合外力对物体所做的总功等于物体动能的变化。 两定理都是由牛顿第二定律与运动学公式结合推导得出的。但它们是从不同角度来描述力和物体运动状态的关系。 动量定理反映了力对时间的积累效果——使物体的动量发生了多少变化; 动能定理反映了力对空间的积累效应——使物体的动能发生了多少变化。 动量定理的表达式是矢量式,一般应采用矢量运算的平行四边形法则。当用于一维运动的计算时,应首先选定向。 动能定理的表达式是标量式,合力的功即为各力做正功或负功的代数和,所有运算为代数运算,不必规定向。 动量定理的研究对象是单个物体或物体系统,式中F 是合外力,不包含系统力。因为系统力是成对出现的,作用力和反作用力在任何情况下的冲量都是等值反向,不会改变系统的总动量。 动能定理的研究对象是单个物体,合力的功即为合外力的功。若扩展到系统,则合力的功亦包括力的功。因为系统力做功也可能改变系统的总动能。 (作用力与反作用力的冲量和一定为零,而作用力与反作用力的功的和却不一定为零) 动能定理和动量定理从不同的侧面(分别是位移过程和时间过程)反映了力学规律,是解决办学问题两条重要定理,一般来说,侧重于位移过程的力学问题用动能定量处理较为方便,侧重于时间过程的力学问题用动量定理处理较为方便. 动量定理和动能定理虽然是由牛顿第二定律推导出来的,但由于应用它们处理问题时无须深究过程细节,对恒力、

焦耳定律知识点的例题及其解析

焦耳定律知识点的例题及其解析 【例1】生活中我们常遇到下列情形:电炉丝热得发红,但跟电炉丝连接的铜导线却不怎么热,请你用学过的物理知识解释其原因。 答案:电炉丝与连接的铜导线串联,通过的电流和通电时间相等,但铜导线电阻比电炉丝的电阻小得多,根据Q=I2Rt,电炉丝上产生的热量比铜导线上多得多,所以电炉丝热得发红,而铜导线却不怎么热。 【例题2】如图所示,电热水壶上标有“220V 1800W”,小明发现烧水过程中热水壶的发热体部分很快变热,但连接的电线却不怎么热,是因为导线的电阻比发热体的电阻。在额定电压下,烧开一壶水用时3min20s,这段时间内电热水壶发热体产生的热量为J。 答案:小;3.6×104。 解析:热水壶的发热体与电线串联,通过它们的电流及时间相等,但热水壶的发热体的电阻比电线的电阻大得多,由焦耳定律Q=I2Rt可知,热水壶的发热体比电线产生的热量就多得多,所以电热丝很热,但与之相连的电线却不怎么热; 在额定电压下,烧开一壶水用时3min20s,这段时间内电热水壶发热体产生的热量: Q=Pt=1800W×(3×60s+20s)=3.6×104J。 【例题3】两个发热电阻R1:R2=1:4,当它们串联在电路中时,R1、R2两端的电压之比U1:U2= ;已知R1=10Ω,那它们并联在4V电路中后,两个电阻在100s内产生的热量是J。答案:1:4;200。 解析:本题考查了串联电路的电流特点和并联电路的电压特点以及欧姆定律、电热公式的灵活应用,是一道较为简单的应用题。 两电阻串联时通过的电流相等,根据欧姆定律求出两电阻两端的电压之比; 两电阻并联时它们两端的电压相等,根据Q=W=t求出两个电阻产生的热量。 (1)当两电阻串联在电路中时, 因串联电路中各处的电流相等, 所以,由I=可得,R1、R2两端的电压之比:===; (2)已知R1=10Ω,R1:R2=1:4,所以R2=4R1=4×10Ω=40Ω, 当两电阻并联在电路中时,因并联电路中各支路两端的电压相等, 所以,两个电阻在100s内产生的热量: Q总=W总=W1+W2=t+t=×100s+×100s=200J。 【例题4】直流电动机两端的电压为5V,通过它的电流为1A,电动机线圈的电阻为1Ω,则 1

知识讲解动能和动能定理提高

动能和动能定理 编稿:周军审稿:吴楠楠 【学习目标】 1.通过设计实验探究功与物体速度的变化关系. 2.明确动能的表达式及含义. 3.能理解和推导动能定理. 4.掌握动能定理及其应用. 【要点梳理】 要点一、探究功与速度变化的关系 要点诠释: 1.探究思路 让小车在橡皮绳的弹力下弹出,沿木板滑行。由于橡皮绳对小车做功,小车可以获得速度,小车的速度可以通过打点计时器测出。这样进行若干次测量就可以得到多组数据,通过画图的方法得出功与速度的关系。 2. 操作技巧 (1)功的变化我们可以通过由一根橡皮绳逐渐增加到若干根的方法得到。 (2)要将木板倾斜一定角度,使小车在木板上沿斜面向下的重力的分力与其受的摩擦力相等,目的是让小车在木板上可以做匀速直线运动。 3.数据的处理 以单根橡皮绳做的功为横坐标,以速度的平方为纵坐标描点连线,画出图象。 4.实验结论 画出2Wv?图象,图象为直线,即2Wv?。 要点二、动能、动能的改变 要点诠释: 1.动能: (1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半. (2)定义式:212k Emv?,v是瞬时速度. (3)单位:焦(J). (4)动能概念的理解. ①动能是标量,且只有正值. ②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能. ③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动. 2.动能的变化: 动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功. 要点三、动能定理 要点诠释:

高二物理焦耳定律教案

高二物理焦耳定律教案文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

焦耳定律【教学目标】 (一)知识与技能 1、理解电功的概念,知道电功是指电场力对自由电荷所做的功,理解电功 的公式,能进行有关的计算。 2、理解电功率的概念和公式,能进行有关的计算。 3、知道电功率和热功率的区别和联系。 (二)过程与方法 通过推导电功的计算公式和焦耳定律,培养学生的分析、推理能力。 (三)情感、态度与价值观 通过电能与其他形式能量的转化和守恒,进一步掌握能量守恒定律的普遍性。 【教学重点】 电功、电功率的概念、公式;焦耳定律、电热功率的概念、公式。 【教学难点】 电功率和热功率的区别和联系。 【教学过程】 (一)复习 1.串并联电路的性质。 2.电流表的改装。 (二)进行新课

1、电功和电功率 教师:请同学们思考下列问题 (1)电场力的功的定义式是什么 (2)电流的定义式是什么 学生:(1)电场力的功的定义式W=qU q (2)电流的定义式I= t 教师:投影教材图(如图所示) 如图所示,一段电路两端的电压为U,由于这段 电路两端有电势差,电路中就有电场存在,电路中 的自由电荷在电场力的作用下发生定向移动,形成 电流I,在时间t内通过这段电路上任一横截面的电荷量q是多少学生:在时间t内,通过这段电路上任一横截面的电荷量q=It。 教师:这相当于在时间t内将这些电荷q由这段电路的一端移到另一端。在这个过程中,电场力做了多少功 学生:在这一过程中,电场力做的功W=qU=IUt 教师:在这段电路中电场力所做的功,也就是通常所说的电流所做的功,简称电功。 电功: (1)定义:在一段电路中电场力所做的功,就是电流所做的功,简称电功. (2)定义式:W=UIT 教师:电功的定义式用语言如何表述

相关文档
最新文档