有理函数及三角函数有理式的积分

有理函数及三角函数有理式的积分
有理函数及三角函数有理式的积分

§ 有理函数及三角函数有理式的积分

教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。

重点:有理函数及三角函数有理式积分法及其应用

难点:有理函数及三角函数有理式积分法及其应用

教学过程:

一、问题的提出

前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如,

????+-31,,ln ,sin 2x dx dx e x dx dx x x x ,

被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。

求不定积分的主要方法有“拆、变、凑、换、分、套”

“拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全

平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。

求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧

用上述方法和综合运用上述方法。

二、 有理函数的积分

有理函数)(x R 是指由两个多项式的商所表函数,即

=)(x R m m m m n n n n b x b x b x b a x a x a x a x Q x P +++++++=----11101110)

()( 其中m 和n 都是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,通常总假定分子多项式)(x P 与分母多项式)(x Q 之间没有公因式,并且00≠a ,00≠b .

当m n <时,称)(x R 为真分式;而当m n ≥时,称)(x R 为假分式. 一个假分式总可化为一个多项式和一个真分式之和的形式.例如

111122234-++++=-+x x x x x x x .

多项式的积分容易计算,因此,有理函数的积分主要是解决真分式的积分问题,而真分式的积分往往是转化为最简分式来计算.鉴此,我们先来讨论真分式分解为最简分式问题.

在实数范围内,真分式)()

(x Q x P 总可以分解成最简分式之和,且具有这样的对应关系:

①???????? 如果)(x Q 中有因式k

a x )(-,那么分解后相应有下列k 个最简分式之和

)()()(121a x A a x A a x A k k k -++-+-- , 其中1A 、2A 、…、k A 都是常数.特别地,如果1=k ,那么分解后只有一项a x A

-;

②???????? 如果)(x Q 中有因式k q px x )(2++(042<-q p ),那么分解

后相应有下列k 个最简分式之和

q px x N x M q px x N x M q px x N x M k k k k ++++++++++++-21222211)()( ,

其中i M 、i N 都是常数.特别地,如果1=k ,那么分解后只有一项q px x N

Mx +++2.

有理真分式总能分解为若干个部分分式之和的形式(部分分式是指这样一种简单分式,其分母为一次因式或二次质因式)。从而得到,有理真分式的积分总可以归纳为以下四种形式的部分分式的积分:

(1);dx a x A ?

- (2)dx a x A n ?-)( (2))04(22<-+++?

q p dx q px x N Mx (3)?<-+++为常数、、其中系数N M A q p dx q px x N Mx n ),04()(22

综上所述,有理函数分解为多项式及部分分式之和以后,各个部分都能积出,且原函数都是初等函数,因此,有理函数的原函数都是初等函数。 由上述定理,我们得到求有理真分式不定积分dx x Q x P m n ?

)

()(的步骤书为: 第一步 将)(x Q m 分解为(2)的形式;

第二步 将)()(x Q x P m n 分解为(3)的形式; 第三步 求各部分分式的原函数。

下面通过具体的举例来说明分解的方法和步骤.

例1 把2)1(1

-x x 分解为最简分式之和.

解:根据真分式的性质可设

2)1(1-x x =)1()1(2-+-+x C x B x A

上式两端去分母后,得

)1()

1()1(12-++-=x Cx Bx x A

)2()2()(12A

x C B A x C A +-+-++=

因为这是恒等式,等式两端对应项的系数应相等,于是有 ?????==-+-=+10

20A C B A C A

从而解得1=A ,1=B ,1-=C . 于是得2)1(1-x x =

)1(1)1(112---+x x x . 注:此题定A 、B 、C 还有另法: 在恒等式⑴中,代入适当的x 值,即可求出待定的常数.

在式⑴中

令1=x ,得1=B ;

令0=x ,得1=A ;

再令2=x ,得1-=C .

于是得

2)1(1-x x =)1(1)1(112---+x x x .

例2 把653

2+-+x x x 分解为最简分式之和.

解:因为)3)(2(652--=+-x x x x 所以,令6532+-+x x x 32-+-=x B x A ,其中A 、B 为待定常数.

上式两端去分母后,得

)3()

2()3(3-+-=+x B x A x 或

)4()23()(3B A x B A x +-+=+ 比较两端系数有

???=+-=+3)3(1B A B A

从而解得 5-=A ,6=B .所以

6532+-+x x x 3625-+--=x x

注:此题也可以采用上例第二种方法确定待定系数.

例3 把

)22)(2(22

+++x x x x 分解为最简分式之和. 解:因为分母中222++x x 为二次质因式,故应分解为 )22)(2(22+++x x x x ++=2x A 222+++x x C Bx

两端去分母得

)2)(()22(22+++++=x C Bx x x A x 比较两端对应项的系数不难求得2=A ,1-=B ,2-=C

所以

)22)(2(22+++x x x x -+=22x 2222+++x x x

? 由上可知,有理函数总能分解为多项式及最简分式之和,其积分最终归结为多项式、a x A -、k a x A

)(-、q px x N Mx +++2、

k q px x N

Mx )(2+++)04,1,(2<->∈q p k N k 等五类函数的积分.显然,前面四类都比较容易积出,我们将在下面的例子中进行介绍,而对于最后一类积分较繁,其结果可通过查阅积分表求得,这里不作讨论.

例4 求dx x x x x x ?+-++-65924223.

解:因为++=+-++-16

5924223x x x x x x 6532+-+x x x 又由前面例2知6532+-+x x x 3625-+--=x x

所以,

dx x x x x x ?+-++-65924223???? ??-+--+=dx x x x 36251 C x x x x +-+--+=3ln 62ln 522

例5 求?-dx x x 2)1(1.

解:因为

2)1(1-x x =)1(1)1(112---+x x x

所以

?-dx x x 2)1(1????? ??---+=dx x x x )1(1)1(112 ?=dx x 1?-+dx x 2)1(1?--dx x 11 C x x x +----=1ln 11ln .

例6 求?+++dx

x x x x )22)(2(22

.

解:由例3可得

?+++dx x x x x )22)(2(22-+=?dx x 22?+++dx x x x 2222 又?+++dx x x x 2222?++++=dx x x x 221)22(2

12

?+++=dx x x x 2222212?+++dx x x 2212

?++++=22)22(2122x x x x d ?++++1)1()1(2x x d C x x x +++++=)1arctan(22ln 212 从而

?+++dx x x x x )22)(2(22

C x x x x ++-+++=)1arctan(2

2)2(ln 22

二、三角函数有理式的积分 由三角函数和常数经过有限次四则运算所构成的函数称为三角有理式。由于各种三角函数都可用x x cos sin 及的四则运算来表示,故三角函数有理式也可以说是由x x cos sin 、及常数经过有限次四则云素所构成的函数,

记为)cos (sin x x R ,,其中),(v u R 表示两个变量的

有理式,积分?dx x x R )cos ,(sin 称为三角有理式的积分。

下面通过举例来说明这类函数的积分方法.

例7 求?++dx x x cos sin 11.

解:因为

2cos 2sin 2cos 2sin 2sin 22x x x x x +=2tan 12tan 22

x x += 2

cos 2sin 2sin 2cos cos 2

222x x x x x +-=2tan 12tan 122

x x +-= 所以,令u x =2tan ,则u x arctan 2=,于是

=x sin 212u u +,=x cos 2211u u +-,=dx 212u du

+.

代入原积分得

?++dx x x cos sin 11?++-+++=2

22212111211

u du

u u u u ?+=du u 11C u ++=1ln

C x ++=2tan 1ln .

一般说来,对于三角函数有理式积分,总可作变量代换

u x =2tan ,将其

转化为u 的有理函数的积分.即有 dx

x x R ?)cos ,(sin ?+???? ??+-+du u u u u u R 22221211,12 例8 求?++dx x x x )cos 1(sin sin 1

解:令u x =2tan ,则u x arctan 2=,于是

?++dx x x x )cos 1(sin sin 1???? ??++=du u u 2121 C u u u +++=241ln 21

C x x x +++=2tan 2tan 412tan ln 212.

最后需要指出的是:上面所谈两类函数的积分方法是常规方法,虽然有效但往往非常麻烦,因此,在具体解题时,应尽量采用其它简便方法,只有在用其它方法难以积分的情况下才采用上述方法.如下面的例题

例9 求?+dx x x 132

解:此题属于有理函数积分,可采用上述常规方法做,但用下列方法计算较简便

?+dx x x 132?++=1)1(3133x x d C x ++=1ln 313.

例10 求?-+dx x x 2)1(5.

解:此题也属于有理函数积分,用下列做法计算较简便

?-+dx x x 2)1(5?-+-=dx x x 2)1(6)1(+-=?dx x 11?-dx x 2)1(16 +--=?)1(11x d x ?--)1()1(162x d x C x x +---=161ln 例11 求?+dx x x sin 1sin .

解:此例属于三角函数有理式积分,用下面做法计算较为简便

?+dx x x sin 1sin ?-=dx x x x 2cos )sin 1(sin ?=dx x x 2cos sin ?--dx x x 22cos cos 1

u x =2tan

?

-=x x d 2cos )(cos ?-dx x

2cos 1?+dx C x x x ++-=tan cos 1 形如)0(cos sin cos sin 22≠+++?b a dx x b x a x d x c 的积分,一般可将被积函数的分子凑成分母与分母的导数的线形组合,即令

)cos sin ()cos sin (cos sin '+++=+x b x a B x b x a A x d x c ,

通过比较等式两端x x cos sin 和的系数,求出A 和B.

对形如???nxdx mx nxdx mx nxdx mx cos cos ,sin sin ,cos sin 的积分一般是将被积函数积化和差后再积分。

小结:本节主要学习了有理函数及三角函数有理式的积分。

习题

求下列积分: ⑴?+++dx x x x x )3)(2)(1(; ⑵?+++dx x x x 43322; ⑶?+-dx x x x 2324; ⑷?-+dx x x x )1)(1(2; ⑸?+dx x 133; ⑹?-+-dx x x x 32)1(12; ⑺?-+-dx x x x x 34251; ⑻?-++dx x x x )1()1(122; ⑼?+x dx sin 45; ⑽?+x dx cos 3; ⑾?+dx x x 2cos 21tan ; ⑿?+-5cos sin 2x x dx ; ?

?

高数三角函数公式大全

三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3 π +a)·tan( 3 π -a) 半角公式 sin( 2A )= 2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )= A A sin cos 1-=A A cos 1sin +

sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2 b a +sin 2 b a - tana+tanb= b a b a cos cos ) sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π -a) = cosa cos(2 π -a) = sina sin(2 π +a) = cosa cos( 2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina c os(π+a) = -cosa tgA=tanA =a a cos sin

有理函数及三角函数有理式的积分

§3.6 有理函数及三角函数有理式的积分 教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如, ????+-31,,ln ,sin 2 x dx dx e x dx dx x x x , 被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是 因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。 求不定积分的主要方法有“拆、变、凑、换、分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。 求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧用上述方法和综合 运用上述方法。 二、 有理函数的积分 有理函数)(x R 是指由两个多项式的商所表函数,即 =)(x R m m m m n n n n b x b x b x b a x a x a x a x Q x P +++++++= ----11101110) ()(ΛΛ 其中m 和n 都是非负整数;n a a a a ,,,,2 10Λ及m b b b b ,,,,210Λ都是实数,通常总假定 分子多项式)(x P 与分母多项式)(x Q 之间没有公因式,并且00≠a ,00≠b . 当m n <时,称)(x R 为真分式;而当m n ≥时,称)(x R 为假分式. 一个假分式总可化为一个多项式和一个真分式之和的形式.例如 111122 234-++++=-+x x x x x x x .

(完整版)定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)21 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a =+?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)22 11tan x dx arc C a x a a =++?

(17)2211ln ||2x a dx C x a a x a -=+-+? (18) sin x arc C a =+? (19) ln(x C =+ (20) ln |x C =+? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2 x x += , 21cos 2sin 2 x x -= 。 注:由[()]'()[()]()f x x dx f x d x ????=??,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

常用积分公式

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

三角函数常用公式表

1 1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; 2)、与 终边相同的角,连同角 在内,都可以表示为集合 { | k 360 ,k Z } ( 3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限, 就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。 2)、度数与弧度数的换算: 180 弧度, 1 弧度 (180) 57 18 3)、弧长公式: l | |r 是角的弧度数) x 2 P (x 0 y y ) 2 y sin cos y r x r tan cot y x x y sec csc r x r y + y + y + y + O x O x + O + x (3)、 特殊角的三角函数值 sin cos tan 的角度 0 30 45 60 90 120 135 150 180 270 360 的弧度 0 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 10 2 2 2 2 2 2 cos 1 3 2 1 0 1 2 3 1 01 2 2 2 2 2 2 tan 3 1 3 3 1 3 0 —0 3 3 扇形面积: 0 x 各象限的符号: 3、三角函数 2)、 4式 1)平方关系: 2)商数关系: 倒数关 系: 3) S 1lr 2 (1)、定 义: 2| |r 2 如图) sin 2 cos 2 1 tan sin tan cot cos 1 tan 2 2 sec cot cos sin sin csc 1 cot 2 2 csc cos sec cot 4)同角三角函数的常见变 形: 活用 1” ) ①、 sin 2 2 cos sin 1 cos 2 2 cos 2 sin cos 1 sin 2 ; ② tan cot cos 2 sin 2 sin cos sin2 2 , cot tan cos 2 sin 2 sin cos 2cos2 2cot2 sin2

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

3-7有理函数和三角函数有理式的积分法

§3-7 阅读(有理函数和三角函数有理式的积分法) 在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分.在那里,因为被积函数都很特殊,所以用“拼凑的方法”就求出了它们的积分.这一节讨论的是一般情形下,如何求它们的积分.当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了. 1.有理函数的积分法 有理函数的积分 () d () p x x q x ? [其中()p x 和()q x 都是多项式] 总可以积出来,即可把它表示成初等函数.积分方法的要点是: 第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式.在这种情形下,就用多项式除法(见下面例27),先把它变成一个多项式与一个真分式之和,即 ()() ()()() p x r x s x q x q x =+ [其中分子()r x 的次数低于分母()q x 的次数] 于是, () d () p x x q x ? () ()d d () r x s x x x q x =+?? 右端第一项是多项式的积分(用分项积分法可以积出来),所以就变成求有理函数真分式的积 分()d ()r x x q x ? . 关于多项式除法,请看下面的例题. 例27 例如求有理函数假分式的积分 522 d 36 x x x x -++? 首先像做整数除法那样,做多项式除法: 由此可得 63225++-x x x 321232 3336x x x x +??=-+ ?+?? 其次再逐项积分,即 (余式) 23+x (被除式) (除式) 25 53 36000202x x x x x ++++-+++ x x x x 40220233-+-+-+- (商式) 312 33x x -

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切 值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 对 边 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角水平线 视线 视线俯角 :i h l =h l α

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 ⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2 =b 2 +c 2 -2bc A cos b 2 =a 2 +c 2 -2ac B cos c 2 =a 2 +b 2 -2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

有理函数及三角函数有理式的积分.docx

精品文档 §3.6 有理函数及三角函数有理式的积分 教学目的: 使学生理解有理函数及三角函数有理式积分法, 掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、 不定积分性质和两种基本积分发 (换元积分法与分部积分法) 已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按 照求导法则并利用基本求导公式就一定能求出一个函数的导数, 而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如, sin x dx, dx , e x 2 dx , dx , x ln x 1 x 3 被积函数都是初等函数, 看起来也并不复杂, 但是在初等函数范围内却积不出来, 这是 因为被积函数的原函数不是初等函数。 本节主要介绍几类常见的函数类型的积分方法与积分 计算技巧。 求不定积分的主要方法有“拆、变、凑、换、分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。 “变”,即代数恒等 变形:加一项减一项、 乘一项除一项、 分子分母有理化、 提取公因子; 三角恒等变形: 半角、 倍角公式, 平方和公式, 积化和差、 和差化积、 和角公式; 陪完全平方: 根号下配完全平方、分母配完全平方等; “凑”,即凑微法(第一类换元法) 。“换”,即第二类换元法(三角代换、倒代换、指数代换法等) 。“分”,即分部积分法。 “套”,即套基本公式。 求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧用上述方法和综合 运用上述方法。 二、 有理函数的积分 有理函数 R( x) 是指由两个多项式的商所表函数,即 P( x) a 0 x n a 1x n 1 a n 1 x a n R( x) Q( x) b 0 x m b 1 x m 1 b m 1 x b m 其中 m 和 n 都是非负整数; a 0 , a 1 , a 2 , , a n 及 b 0 , b 1, b 2 , , b m 都是实数,通常总假定 分子多项式 P( x) 与分母多项式 Q(x) 之间没有公因式,并且 a 0 0 , b 0 0 . 当 n m 时,称 R(x) 为真分式;而当 n m 时,称 R( x) 为假分式 . 一个假分式总可化为一个多项式和一个真分式之和的形式 .例如 x 4 x 3 x 2 x 1 x 1 22

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

三角函数公式大全(很详细).docx

高中三角函数公式大全[ 图] 1 三角函数的定义三角形中的定义 图1 在直角三角形中定义三角函数的示意图 在直角三角形 ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数

直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数 余切函数 正割函数 余割函数 2 转化关系倒数关系

平方关系 2和角公式 3倍角公式、半角公式倍角公式 半角公式

万能公式 4积化和差、和差化积积化和差公式 证明过程

首先, sin( α+β)=sin αcosβ+sin β(cos已证α。证明过程见《》)因为 sin( α+β)=sin αcosβ+sin β(cos正弦α和角公式)则 sin( -αβ) =sin[ α-β+( )] =sin α cos(-β )+sin(-β )cos α =sin α cos-sinβ β cos α 于是 sin( -αβ )=sin α cos-sinββ cos(α正弦差角公式) 将正弦的和角、差角公式相加,得到 sin( α +β )+sin(-β )=2sinα α cos β 则 sin α cos β =sin( α +β )/2+sin(-β(“α积化和差公式”之一)同样地,运用诱导公式cosα=sin( π-/2α),有 cos( α +β )= sin[ π-/2(α +β )] =sin( π-/2α-β) =sin[(π-α/2 )+(-β )] =sin( π-/2α )cos(-β )+sin(-β )cos( π-α)/2 =cos α cos- βsin α sin β 于是 cos( α +β )=cos α-cossin βα sin(β余弦和角公式) 那么 cos( α-β) =cos[ α-+(β )] =cos α cos(-β)-sin α sin(-β) =cos α cos β +sin α sin β cos( α-β )=cos α cos β +sin (α余sin弦β差角公式) 将余弦的和角、差角公式相减,得到 cos( α +β)-cos( α-β )=-2sin α sin β

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

有理函数及三角函数有理式的积分

有理函数及三角函数有理式的积分 §3.6有理函数及三角函数有理式的积分 教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如,

sin x ’ dx x' dx ----- dx-—, e dx -------- 3, x In x #1 x 被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。 求不定积分的主要方法有“拆、变、凑、换、 分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。 求不定积分的主要技巧在一个“巧” 字和一个“练”字,即巧用上述方法和综合运用上述方法。 二、有理函数的积分 有理函数盹)是指由两个多项式的商所表函数,即卩

三角函数及其导数积分公式的六边形记忆法

从俞诗秋的文章修改而来,原来的口诀不太好记 原文:三角函数双曲函数及其导数积分公式的六边形记忆法 三角函数及其导数积分公式的六边形记忆法 2. 三角函数的定义 [三角函数的定义和符号变化] 名称 正弦 余弦 正切 余切 正割 余割 定 义 r y ==斜边对边αsin r x ==斜边邻边αcos x y == 邻边对边αtan y x ==对边邻边αcot x r ==邻边斜边αsec y r ==对边斜边αcsc 1 sinx cosx cscx cotx secx tanx + -

符号与 增 减 变 化 Ⅰ+↑+↓+↑+↓+↑+↓ Ⅱ+↓-↓-↑-↓-↑+↑ Ⅲ-↓-↑+↑+↓-↓-↑ Ⅳ-↑+↑-↑-↓+↓-↓1. 三角函数的记忆: 对角线倒数:对角线互为倒数sinx=1/cscx,指在三角函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1. 倒三角形平方和:指在三角函数六边形中,每个有阴影的三角形下顶处函数的平方等于上面两个顶处函数平方的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x. 邻点积:指在三角函数六边形中,任何一个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx. 2.三角函数求导数 图中左面“+”号表示六边形左面三个顶角处函数的导数为正值,右面“-”号表示六边形右面三个顶角处函数的导数为负值。 上互换:指在三角函数求导六边形中,上顶角处函数的导数为另一上顶角处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。 中下2:指在三角函数求导六边形中,中间顶角处函数的导数为对应边下顶角处函数导数的平方.即:(tanx)’=sec2x,

高中阶段三角函数公式大全

高中阶段三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB cos(A+B) = cosAcosB-sinAsinB sin(A-B) = sinAcosB-cosAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + cot(A+B) =cotA cotB 1-cotAcotB + tan(A-B) =tanAtanB 1tanB tanA +- cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - tan(2 A )=A A cos 1cos 1+- cos( 2A )=2cos 1A + cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - cosa+cosb = 2cos 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)]

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+? ? 9 221 csc cot sin xdx x c x ==-+?? 10 2 1 arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 2211arctan x dx c a x a a =++? 17 22 11ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?= ?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-? ? 11.()()()2cot csc cot cot f x xdx f x d x ?=?? 第二部分:常用微分、导数公式 (c=常数) 1、极限

相关文档
最新文档