matlab图像双线性插值,最近邻插值与几何变换

matlab图像双线性插值,最近邻插值与几何变换
matlab图像双线性插值,最近邻插值与几何变换

实验二图像几何变换与插值

一、实验目的

巩固图像处理编程的步骤格式,理解数据插值及图像几何变换的原理,掌握图像几何变换的实现方法。

二、实验内容

1、理解反向变换的实现思路

2、图像缩放及插值Matlab取整命令:floor, ceil, round

分别实验最近邻插值和双线性插值

f=imread('lena.bmp');

beishu=0.5;

[row,col]=size(f);

r1=round(row*beishu);

c1=round(col*beishu);

b=zeros(r1,c1);

for i=1:r1

for j=1:c1

i1=round(i/beishu);

j1=round(j/beishu);

if i1<1

i1=1;

end

if j1<1

j1=1;

end

b(i,j)=f(i1,j1);

end

end

b=uint8(b);

figure;

imshow(f);

figure

imshow(b);

3、图像旋转及插值

以图像中心为轴实现任意角度(逆时针为正)的图像旋转,分别实验两种插值算法

f=imread('lena.bmp');

B=imrotate(f,45,'nearest','crop');

C=imrotate(f,45,'bilinear','crop');

figure;

subplot(121);

imshow(f);

title('原图像');

subplot(122);

imshow(B);

title('最近邻插值');

figure;

subplot(121);

imshow(f);

title('原图像');

subplot(122);

imshow(C);

title('双线性插值');

原图像最近邻插值处理

原图像双线性插值处理

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% matlab练习程序(图像放大/缩小,最邻近插值)

ccc

cl;

w=0.6; %放大或缩小的宽度

h=1.4; %放大或缩小的高度

img=imread('Corner.png');

imshow(img);

[m n]=size(img);

imgn=zeros(h*m,w*n);

rot=[h 0 0;0 w 0;0 0 1]; %变换矩阵x=h*u,y=w*v

inv_rot=inv(rot);

for x=1:h*m

for y=1:w*n

pix=[x y 1]*inv_rot;

imgn(x,y)=img(round(pix(1)),round(pix(2)));

end

end

figure,imshow(uint8(imgn)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% matlab练习程序(图像放大/缩小,双线性插值)

ccc

m=1.8; %放大或缩小的高度

n=2.3; %放大或缩小的宽度

img=imread('lena.jpg');

imshow(img);

[h w]=size(img);

imgn=zeros(h*m,w*n);

rot=[m 0 0;0 n 0;0 0 1]; %变换矩阵

for i=1:h*m

for j=1:w*n

pix=[i j 1]/rot;

float_Y=pix(1)-floor(pix(1));

float_X=pix(2)-floor(pix(2));

if pix(1) < 1%边界处理

pix(1) = 1;

end

if pix(1) > h

pix(1) = h;

end

if pix(2) < 1

pix(2) =1;

end

if pix(2) > w

pix(2) =w;

end

pix_up_left=[floor(pix(1)) floor(pix(2))];%四个相邻的点

pix_up_right=[floor(pix(1)) ceil(pix(2))];

pix_down_left=[ceil(pix(1)) floor(pix(2))];

pix_down_right=[ceil(pix(1)) ceil(pix(2))];

value_up_left=(1-float_X)*(1-float_Y);%计算临近四个点的权重

value_up_right=float_X*(1-float_Y);

value_down_left=(1-float_X)*float_Y;

value_down_right=float_X*float_Y;

%按权重进行双线性插值imgn(i,j)=value_up_left*img(pix_up_left(1),pix_up_left(2))+ ...

value_up_right*img(pix_up_right(1),pix_up_right(2))+ ...

value_down_left*img(pix_down_left(1),pix_down_left(2))+ ...

value_down_right*img(pix_down_right(1),pix_down_right(2));

end

end

figure,imshow(uint8(imgn)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% matlab练习程序(图像旋转,最邻近插值)

ccc

cl;

H=1; %索引pix中第一个元素,即高度

W=2; %索引pix中第二个元素,即宽度

jiaodu=45; %要旋转的角度,旋转方向为顺时针

img=imread('Corner.png'); %这里v为原图像的高度,u为原图像的宽度

imshow(img); %这里y为变换后图像的高度,x为变换后图像的宽度

[v u]=size(img);

theta=jiaodu/180*pi;

rot=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1];

inv_rot=inv(rot);

pix1=[1 1 1]*rot; %变换后图像左上点的坐标

pix2=[1 u 1]*rot; %变换后图像右上点的坐标

pix3=[v 1 1]*rot; %变换后图像左下点的坐标

pix4=[v u 1]*rot; %变换后图像右下点的坐标

height=round(max([abs(pix1(H)-pix4(H))+0.5 abs(pix2(H)-pix3(H))+0.5])); %变换后图像的高度

width=round(max([abs(pix1(W)-pix4(W))+0.5 abs(pix2(W)-pix3(W))+0.5])); %变换后图像的宽度

imgn=zeros(height,width);

delta_y=abs(min([pix1(H) pix2(H) pix3(H) pix4(H)])); %取得y方向的负轴超出的偏移量

delta_x=abs(min([pix1(W) pix2(W) pix3(W) pix4(W)])); %取得x方向的负轴超出的偏移量

for y=1-delta_y:height-delta_y

for x=1-delta_x:width-delta_x

pix=[y x 1]*inv_rot; %用变换后图像的点的坐标去寻找原图像点的坐标,

%否则有些变换后的图像的像素点无法完全填充if pix(H)>=0.5 && pix(W)>=0.5 && pix(H)<=v && pix(W)<=u

imgn(y+delta_y,x+delta_x)=img(round(pix(H)),round(pix(W)));

end

end

end

figure,imshow(uint8(imgn))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% matlab练习程序(图像旋转,双线性插值)

ccc

jiaodu=45; %要旋转的角度,旋转方向为顺时针

img=imread('lena.jpg'); %这里v为原图像的高度,u为原图像的宽度

imshow(img); %这里y为变换后图像的高度,x为变换后图像的宽度

[h w]=size(img);

theta=jiaodu/180*pi;

rot=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1];

pix1=[1 1 1]*rot; %变换后图像左上点的坐标

pix2=[1 w 1]*rot; %变换后图像右上点的坐标

pix3=[h 1 1]*rot; %变换后图像左下点的坐标

pix4=[h w 1]*rot; %变换后图像右下点的坐标

height=round(max([abs(pix1(1)-pix4(1))+0.5 abs(pix2(1)-pix3(1))+0.5])); %变换后图像的高度

width=round(max([abs(pix1(2)-pix4(2))+0.5 abs(pix2(2)-pix3(2))+0.5])); %变换后图像的宽度

imgn=zeros(height,width);

delta_y=abs(min([pix1(1) pix2(1) pix3(1) pix4(1)])); %取得y方向的负轴超出的偏移量

delta_x=abs(min([pix1(2) pix2(2) pix3(2) pix4(2)])); %取得x方向的负轴超出的偏移量

for i=1-delta_y:height-delta_y

for j=1-delta_x:width-delta_x

pix=[i j 1]/rot; %用变换后图像的点的坐标去寻找原图像点的坐标,

%否则有些变换后的图像的像素点无法完全填充float_Y=pix(1)-floor(pix(1));

float_X=pix(2)-floor(pix(2));

if pix(1)>=1 && pix(2)>=1 && pix(1) <= h && pix(2) <= w

pix_up_left=[floor(pix(1)) floor(pix(2))]; %四个相邻的点

pix_up_right=[floor(pix(1)) ceil(pix(2))];

pix_down_left=[ceil(pix(1)) floor(pix(2))];

pix_down_right=[ceil(pix(1)) ceil(pix(2))];

value_up_left=(1-float_X)*(1-float_Y); %计算临近四个点的权重

value_up_right=float_X*(1-float_Y);

value_down_left=(1-float_X)*float_Y;

value_down_right=float_X*float_Y;

imgn(i+delta_y,j+delta_x)=value_up_left*img(pix_up_left(1),pix_up_left(2))+ ...

value_up_right*img(pix_up_right(1),pix_up_right(2))+ ...

value_down_left*img(pix_down_left(1),pix_down_left(2))+ ...

value_down_right*img(pix_down_right(1),pix_down_right(2));

end

end

end

figure,imshow(uint8(imgn)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

实验一 Matlab图像基本操作

一、实验目的

熟悉利用Matlab进行图像处理的基本操作,了解图像数据的存储形式及进行图像处理编程的步骤方法。

二、实验内容

1、图像读写与显示

重点函数:imread, imwrite, imshow

2、彩色图像灰度化

计算公式:Gray = R*0.299 + G*0.587 + B*0.114

3、图像马赛克

局部平均,改变窗口大小比较处理结果,如取2×2、4×4或更大尺寸的窗口

4、图像平移

分别完成图像水平方向、竖直方向和两个方向的平移

三、实验要求

1、编写代码,完成各项实验内容

2、总结实验中遇到问题及解决方案,书写实验报告

实验二图像几何变换与插值

一、实验目的

巩固图像处理编程的步骤格式,理解数据插值及图像几何变换的原理,掌握图像几何变换的实现方法。

二、实验内容

4、理解反向变换的实现思路

5、图像缩放及插值

Matlab取整命令:floor, ceil, round

分别实验最近邻插值和双线性插值

6、图像旋转及插值

以图像中心为轴实现任意角度(逆时针为正)的图像旋转,分别实验两种插值算法

三、实验要求

1、编写代码,完成各项实验内容

2、总结实验中遇到问题及解决方案,书写实验报告

matlab插值法实例

Several Typical Interpolation in Matlab Lagrange Interpolation Supposing: If x=175, while y=? Solution: Lagrange Interpolation in Matlab: function y=lagrange(x0,y0,x); n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end input: x0=[144 169 225] y0=[12 13 15] y=lagrange(x0,y0,175) obtain the answer: x0 = 144 169 225 y0 = 12 13 15 y = 13.2302

Spline Interpolation Solution : Input x=[ 1 4 9 6];y=[ 1 4 9 6];x=[ 1 4 9 6];pp=spline(x,y) pp = form: 'pp' breaks: [1 4 6 9] coefs: [3x4 double] pieces: 3 order: 4 dim: 1 output : pp.coefs ans = -0.0500 0.5333 -0.8167 1.0000 -0.0500 0.0833 1.0333 2.0000 -0.0500 -0.2167 0.7667 4.0000 It shows the coefficients of cubic spline polynomial , so: S (x )=, 169,3)9(1484.0)9(0063.0)9(0008.0,94,2)4(2714.0)4(0183.0)4(0008 .0, 41,1)1(4024.0)1(0254.0)1(0008.0232 3 23≥≤+-+---≥≤+-+---≥≤+-+---x x x x x x x x x x x x Newton’s Interpolation Resolve 65 Solution: Newton’s Interpolation in matlab : function yi=newint(x,y,xi); n=length(x); ny=length(y); if n~=ny error end Y=zeros(n);Y(:,1)=y';

matlab 图像的几何变换与彩色处理

实验四、图像的几何变换与彩色处理 一、实验目的 1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用; 2熟悉图像几何变换的MATLAB操作和基本功能 3 掌握彩色图像处理的基本技术 二、实验步骤 1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作 %%%%%%平移 >> flowerImg=imread('flower.jpg'); >> se=translate(strel(1),[100 100]); >> img2=imdilate(flowerImg,se); >> subplot(1,2,1); >> imshow(flowerImg); >> subplot(1,2,2); >> imshow(img2);

I1=imread('flower.jpg'); I1=double(I1); H=size(I1); I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1); Imshow(uint8(I1)); Title('原图'); Subplot(2,2,2); Imshow(uint8(I3)); Title('水平镜像'); Subplot(2,2,3); Imshow(uint8(I2)); Title('垂直镜像'); img1=imread('flower.jpg'); figure,imshow(img1); %%%%%%缩放 img2=imresize(img1,0.25); figure,imshow(img2); imwrite(img2,'a2.jpg');

lagrange插值分段线性插值matlab代码

Lagrange插值: x=0:3; y=[-5,-6,-1,16]; n=length(x); syms q; for k=1:n fenmu=1; p=1; for j=1:n if(j~=k) fenmu=fenmu*(x(k)-x(j)) p=conv(p,poly(x(j))) end end c(k,:)=p*y(k)/fenmu end a=zeros(1,n); for i=1:n for j=1:n a(i)=a(i)+c(j,i) end end 输出结果: fenmu = -1 p = 1 -1 fenmu = 2 p = 1 -3 2 fenmu = -6 p = 1 -6 11 -6 c = 0.8333 -5.0000 9.1667 -5.0000 fenmu = 1 p = 1 0 fenmu =

-1 p = 1 - 2 0 fenmu = 2 p = 1 -5 6 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 fenmu = 2 p = 1 0 fenmu = 2 p = 1 -1 0 fenmu = -2 p = 1 -4 3 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 fenmu = 3 p = 1 0 fenmu = 6 p = 1 -1 0 fenmu = 6 p = 1 -3 2 0 c = 0.8333 -5.0000 9.1667 -5.0000 -3.0000 15.0000 -18.0000 0 0.5000 -2.0000 1.5000 0 2.6667 -8.0000 5.3333 0 a =

基于MATLAB的图像复原

基于MATLAB的图像复原 摘要 随着信息技术的发展,数字图像像已经充斥着人们身边的任意一个角落。由于图像的传送、转换,或者其他原因,可能会造成图像的降质、模糊、变形、质量下降、失真或者其他情况的图像的受损。本设计就针对“图像受损”的问题,在MATLAB环境中实现了利用几何失真校正方法来恢复被损坏的图像。几何失真校正要处理的则是在处理的过程,由于成像系统的非线性,成像后的图像与原图像相比,会产生比例失调,甚至扭曲的图像。 图像复原从理论到实际的操作的实现,不仅能改善图片的视觉效果和保真程度,还有利于后续的图片处理,这对医疗摄像、文物复原、视频监控等领域都具有很重要的意义。 关键字:图像复原;MATLAB;几何失真校正

目录 摘要 (1) 1 MATLAB 6.x 信号处理 (1) 2 图像复原的方法及其应用 (13) 2.1 图像复原的方法 (13) 2.2 图像复原的应用 (14) 3 几何失真校正实现 (15) 3.1 空间变换 (15) 3.1.1 已知()y x r,和()y x s,条件下的几何校正 (16) 3.1.2 ()y x r,和()y x s,未知条件下的几何失真 (16) 3.2 灰度插值 (17) 3.3 结果分析 (19) 参考文献 (20) 附录 (21)

1 MATLAB 6.x信号处理 (1)对MATLAB 6 进行了简介,包括程序设计环境、基本操作、绘图功能、M文件以及MATLAB 6 的稀疏矩阵这五个部分。MATLAB的工作环境有命令窗口、启动平台、工作空间、命令历史记录与当前路径窗口这四部分。M文件的编辑调试环境有四个部分的设置,分别是:Editor/Debugger的参数设置,字体与颜色的设置,显示方式的设置,键盘与缩进的设置。MATLAB采用路径搜索的方法来查找文件系统的M文件,常用的命令文件组在MATLAB文件夹中,其他M文件组在各种工具箱中。基本操作主要是对一些常用的基本常识、矩阵运算及分解、数据分析与统计这三方面进行阐述。MATLAB的基本操作对象时矩阵,所以对于矩阵的输入、复数与复数矩阵、固定变量、获取工作空间信息、函数、帮助命令进行了具体的描述。矩阵运算是MATLAB的基础,所有参与运算的数都被看做为矩阵。MATLAB中共有四大矩阵分解函数:三角分解、正交分解、奇异值分解以及特征值分解。数据分析与统计包括面向列的数据分析、数据预处理、协方差矩阵与相关系数矩阵、曲线拟合这四部分。MATLAB 中含有丰富的图形绘制寒素,包括二维图形绘制、三维图像绘制以及通用绘图工具函数等,同时还包括一些专业绘图函数,因此其具有很强大的绘图功能。简单的二维曲线可以用函数plot来绘制,而简单的三维曲线图则用plot3来绘制。在绘制图形时,MATLAB自动选择坐标轴表示的数值范围,并用一定的数据间隔标记做标注的数据,当然自己也可以指定坐标轴的范围与数据间隔。专业的绘图函数有绘梯度图制条形图、饼图、三维饼图、箭头图、星点图、阶梯图以及等高线。M文件时用户自己通过文本编辑器或字处理器生成的,且其之间可以相互调用,用户可以根据自己的需要,自我编写M文件。M文件从功能上可以分为底稿文件与函数文件两类,其中底稿文件是由一系列MATLAB语句组成的,而函数文件的第一行必须包含关键字“function”,二者的区别在于函数文件可以接受输入参数,并可返回输出参数,而底稿文件不具备参数传递的功能;在函数文件中定义及使用的变量大都是局部变量,只在本函数的工作区内有效,一旦退出该函数,即为无效变量,而底稿文件中定义或使用的变量都是全局变量,在退出文件后仍为有效变量。稀疏矩阵是一种特殊类型的矩阵,

实验5 双线性插值

实验五图像的空间变换 一、实验目的 1、学习图像空间变换,并通过实验体会空间变换的效果,对其作出分析。 2、掌握利用最邻近插值和双线性插值算法(灰度插值)实现图像的缩放。 3、掌握MATLAB编程环境中基本的图像处理函数。 二、实验要求 1.读入图像,对其利用最邻近插值和双线性插值法进行缩放变换,要求先使用IPT函数进行变换,然后自己编写函数实现; 2.对比上述得到的结果。 三、实验原理 图像的空间变换,也称几何变换或几何运算,包括图像的平移、旋转、镜像变换、转置、缩放等。几何运算可改变图像中各物体之间的空间关系,这种运算可以看成是将各物体在图像内移动。 空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的像素值与目标图像上(x,y)处的像素值对应起来,并具有以下关系: x=X(u,v),y=Y(u,v) (即由(u,v)计算对应(x,y))(1.1) 或u=U(x,y),v=V(x,y) (即由(x,y)计算对应(u,v))(1.2) 其中X(u,v)、Y(u,v)、U(x,y)、V(x,y)均为变换。由(1.1)对应的变换称作向前映射法也叫像素移交法,而由(1.2)对应的变换称作向后映射法也叫像素填充法,向后映射法是向前映射法的逆。 最简单的插值算法是最邻近插值,也称为零阶插值。最邻近插值算法简单,在许多情况

下都能得到令人满意的结果,但是当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。双线性插值算法计算量比零阶插值大,但缩放后图像质量高,不会出现像素值不连续的的情况,这样就可以获得一个令人满意的结果。最邻近点插值取插值点的4个邻点中距离最近的邻点灰度值作为该点的灰度值。设插值点(i,j)到周边4个邻点fk(i,j)(k =1,2,3,4)的距离为dk(k =1,2,3,4),则:g(i,j)=fk(i,j),dl =min{d1,d2,d3,d4},l=1,2,3,4 。 双线性插值是利用了需要处理的原始图像像素点周围的四个像素点的相关性,通过双线插值算法计算得出的。对于一个目的坐标,通过后映射法得到其在原始图像的对应的浮点坐标(i+u,j+v),其中i,j均为非负整数,u,v为[0,l]区间的浮点数,则这个像素的值f(i+u,j+v)可由原图像中坐标为(i,j)、(i+l,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)×(1-v)×f(i,j)+(1-u)×v×f(i,j+1)+u×(1-v)×f(i+l,j)+u×v×f(i+l,j+1),其中f(i,j)表示源图像(i,j)处的的像素值,以此类推,这就是双线性内插值法。 如下图所示,已知(0,0)、(0,1)、(1,0)、(1,1)四点的的灰度,可以由相邻像素的灰度值f(0,0)和f(1,0)在X方向上线性插值求出(x,0)的灰度f(x,0),由另外两个相邻像素f(0,1)和f(1,1)在X方向上线性插值可求出(x,1)的灰度f(x,1),最后由f(x,0),f(x,1)在Y 方向上进行线性插值就可以得到(x,y)的灰度f(x,y)。 四、实验代码

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

基于matlab的图像分析

目录 1 引言 (1) 2 基于MATLAB的FFT算法实现 (2) 2.1系统总体流程图 (2) 2.2 FFT运算规律及编程思想 (2) 2.2.1图像信号的采集 (2) 2.2.2 DIT-FFT算法的基本原理 (3) 2.2.3 FFT算法的运算规律及编程思想 (5) 3 Matlab程序实现 (7) 3.1程序运行结果 (7) 3.2对比结果分析 (8) 4 系统人机对话界面 (9) 4.1 GUI简介 (9) 4.2 界面设计 (9) 4.3 运行调试 (10) 5 Matlab软件简介 (11) 6 心得体会 (12) 参考文献 (13) 附录Ⅰ (14) 附录Ⅱ (18)

1 引言 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks 公司出品的商数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。它以矩阵运算为基础,把计算、可视化、程序设计融合在一个简单易用的交互式工作环境中,是一款数据分析和处理功能都非常强大的工程适用软件。它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数据滤波、傅立叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱位语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便的完成语音信号的处理和分析以及信号的可视化。数字信号处理是MATLAB重要应用的领域之一。 对于有限长序列x(n),若要求其N点的傅里叶变换(DFT)需要经过2N次复数乘法运算和N*(N-1)次复数加法运算。随着N的增加,运算量将急剧增加,而在实际问题中,N往往是较大的,如当N=1024时,完成复数乘法和复数加法的次数分别为百万以上,无论是用通用计算机还是用DSP芯片,都需要消耗大量的时间和机器内存,不能满足实时的要求。因此,DFT的这种运算只能进行理论上的计算,不适合对实时处理要求高的场合。因此,研究作为DSP的快速算法的FFT是相当必要的,快速傅里叶变换(FFT)是为提高DFT运算速度而采用的一种算法,快速算法的种类很多,而且目前仍在改进和提高,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。基于本学期所学的DIT-FFT的运算规律和编程思想以及Matlab的学习和使用,本课设要求在Matlab环境下编写基2 DIT-FFT算法实现对离散信号的快速傅里叶变换,再与Matlab软件自带的FFT函数实现对离散信号的傅里叶变换进行比较,如果得到的频谱相同,那么我们编写的程序就是正确的。本次课程设计是实现对选定图片进行FFT计算、还原(IFFT计算),并与系统FFT函数做对比,进行分析。如果有能力可以选做系统人机对话界面。用GUI界面完成人机交互方便使用的。本课程设计主要是对数字信号的分析。

matlab旋转+双线性插值

自己写的Matlab旋转+双线性插值图像函数效果图: 源码: clear all; I = imread('original.jpg');

[Height,Width,RGB] = size(I); II = I;%当角度为0时直接输出 %本程序是以左上角为坐标原点 %angle_j是旋转角度,正值是按顺时针旋转,负值时按逆时针旋转 angle_j = 181; %angle是弧度 angle = 2*pi*angle_j/360; %将angle转成正值 while(angle < 0) angle = 2 * pi + angle; end %约束在0-2π内 while(angle > 2 * pi) angle = angle - 2 * pi; end %tag是判断下面的while循环有没有执行过 tag = 0; while(angle > 0) %超过90度的旋转,都先旋转90度,直到角度在0°-90°之间 %原理是旋转90度整数倍时,信息是不丢失的 if angle >= pi/2 a = pi/2; angle = angle - pi/2; elseif0 < angle < pi/2 a = angle; angle = 0; end if tag == 0 tag = 1; else I = II; [Height,Width,RGB] = size(I);%在旋转后的图像上继续旋转,从而实现大于90° 的旋转 end %正向变换用 sina = sin(a); cosa = cos(a); %逆向变换用_m == _minus sina_m = sin(-a); cosa_m = cos(-a); %旋转后图像的长度和宽度 II_height = round(sina * Width + cosa * Height); II_width = round(sina * Height + cosa * Width); II = ones(II_height,II_width,3); %先转成unit8。或者下面赋值0-1规划一下。否则imshow全是白色。 II = im2uint8(II); %%%%%%%%%%%%%%%%%%%%正向映射%%%%%%%%%%%%%%%%%%%%%%%%

拉格朗日插值matlab程序

拉格朗日插值的调用函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); L=0.0; for j=1:n T=1.0; for k=1:n if k~=j T=T*(z-x0(k))/(x0(j)-x0(k)); end end L=T*y0(j)+L; end y(i)=L; end 四个图在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2=lagrange(x0,y0,x); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b',x,y2,'-r',x,y3,'-r')

l5和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.4:1]; y0=1./(1+25*x0.^2); y1=lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y1,'-b') l10和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.2:1]; y0=1./(1+25*x0.^2); y2= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y2,'-b') l20和fx在一起: x=[-1:0.05:1]; y=1./(1+25*x.^2); x0=[-1:0.1:1]; y0=1./(1+25*x0.^2); y3= lagrange(x0,y0,x); plot(x,y,'-r') hold on plot(x,y3,'-b')

MATLAB实现图像的平移缩放和旋转要点

数字图像处理课程设计 题目图像的几何变换重建 系 (部) 信息工程系 班级 姓名 学号 指导教师 2013 年 12 月 16 日至 12 月 27 日共 2 周 2013年 12 月 27 日

数字图像处理课程设计任务书

课程设计成绩评定表

目录 1 引言 (4) 1.1课程设计的目的.......................... 错误!未定义书签。 1.2课程设计的任务.......................... 错误!未定义书签。 1.3课程设计的要求.......................... 错误!未定义书签。 1.4开发工具................................ 错误!未定义书签。2设计内容 (4) 2.1设计内容 (4) 2.2 系统框图 (4) 3 设计方案 (5) 3.1功能模块的划分 (5) 3.2算法描述 (5) 3.3实现主要功能的原理和方法 (8) 3.3.1最近邻域插值法 (8) 3.3.2双线性插值法 (8) 4功能模块的具体实现 (10) 4.1 模块功能 (10) 4.2流程图 (11) 4.3程序清单及各模块的实现效果图 (11) 4.4 系统仿真与调试 (21) 5 总结与体会 (22) 参考文献 (22) 附录 (23)

1 引言 2设计内容 2.1设计内容 我选取的是图像的几何变换,设计内容如下, (1)能够读取和存储图像。 (2)实现图像的平移、缩放、旋转几何变换。 (3)分别采用最近邻插值和双线性插值技术进行图像重建。 (4)编写代码实现上述功能。 图2-1系统框图 本次课设所做的图像几何变换包括平移变换、缩放变换和旋转变换。缩放变换和旋转变换均用双线性插值变换和最近邻插值变换两种方法来做,对图像进行处理后再存储。

数字图像处理(Matlab复习代码)

双线性插值法 I_=imread('test.jpg'); I=rgb2gray(I_); A=0.7;B=0.7;%失真像素坐标 [i,j]=size(I); m=round(i*A);n=round(j*B); temp=zeros(m,n);%产生m*n矩阵 G=[A0;0B]; for x=1:m for y=1:n ab=[x,y]/G;%取得x/A,y/B a=ab(1)-floor(ab(1));%权值 b=ab(2)-floor(ab(2)); %防溢出处理 if ab(1)<1 ab(1)=1; end if ab(1)>i ab(1)=i; end if ab(2)<1 ab(2)=1; end if ab(2)>j ab(2)=j; end %定义内插值坐标 ab11=[floor(ab(1))floor(ab(2))]; ab12=[floor(ab(1))ceil(ab(2))]; ab21=[ceil(ab(1))floor(ab(2))]; ab22=[ceil(ab(1))ceil(ab(2))]; temp(x,y)=(1-a)*(1-b)*I(ab11(1),ab11(2))+... a*(1-b)*I(ab12(1),ab12(2))+... (1-a)*b*I(ab21(1),ab21(2))+... a*b*I(ab22(1),ab22(2)); end end imshow(uint8(temp)),title('0.7倍双线性');最近邻法 I_=imread('test.jpg');%读入原始图像 I1=rgb2gray(I_); [i,j]=size(I1); m=round(i*1.5);n=round(j*1.5); m_=round(i*0.7);n_=round(j*0.7); %1.5倍最邻近 TEMP=zeros(m,n);%产生m*n矩阵 for i=1:m for j=1:n TEMP(i,j)=I1(round(i/1.5),round(j/1.5)); end end subplot(1,3,1),imshow(I1),title('原图') TEMP1_5=uint8(TEMP); subplot(1,3,2), imshow(TEMP1_5),title('1.5倍最邻近') 全局预测下的图像分割 I_=imread('test.jpg'); I=rgb2gray(I_); [m,n]=size(I); %统计直方图 zhifangtu=zeros(1,255);% for i=1:1:m for j=1:1:n zhifangtu(I(i,j)+1)= zhifangtu(I(i,j)+1)+1; end end plot(zhifangtu); %阈值处理 final=zeros(m,n); for x=1:1:m for y=1:1:n AA=I(x,y); if AA>120 final(x,y)=255; else final(x,y)=0; end end end imshow(uint8(final));

matlab插值法,迭代法程序

数值分析作业 姓名王建忠 学号132080202006 学院能源与动力工程 专业机械电子工程 2013年12月16日

https://www.360docs.net/doc/777326872.html,grange插值多项式程序 function f=nalagr(x,y,xx) %x为节点向量 %y为节点函数值 %xx是插值点 syms s if(length(x)==length(y)) n=length(x); else disp('x和y的维数不相等!'); return; end f=0.0; for(i=1:n) l=y(i); for(j=1:i-1) l=l*(s-x(j))/(x(i)-x(j)); end; for(j=i+1:n) l=l*(s-x(j))/(x(i)-x(j));%计算拉格朗日基函数end; f=f+l;%计算拉格朗日插值函数 simplify(f); if(i==n) if(nargin==3) f=subs(f,'s');%计算插值点的函数值else f=collect(f);%将插值多项式展开 f=vpa(f,6);%将插值多项式的系数化成6位精度的小数 end end end >>x=[-2,-1,0,1];%已知节点向量y=[3,1,1,6];%节点函数值向量 f=nalagr(x,y) f= 0.5*s^3+ 2.5*s^2+ 2.0*s+ 1.0 >>f=nalagr(x,y,0) f=1 >>

2.牛顿插值多项式程序 function[p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量,t为待估计的点,可以为数字或向量。%输出参数中p2为所求得的牛顿插值多项式,z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[]; y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1)chaS(1)]; cl=cell(1,n-1); for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1-x(j)]); cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0;

MATLAB数字图像处理几何变换傅里叶变换

Matlab数字图像处理实验指导 实验目的: 通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。 实验环境: Matlab变成 实验一图像的几何变换 实验内容:设计一个程序,能够实现图像的各种几何变换。 实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。 实验原理: 图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。 设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为: x1=s(x0,y0) y1=t(x0,y0) 其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。 一、图像平移 图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。

二、图像镜像 镜像变换又分为水平镜像和垂直镜像。水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。 三、图像转置 图像转置是将图像像素的x坐标和y坐标呼唤。图像的大小会随之改变——高度和宽度将呼唤。

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

图像的几何变换及其matlab实现

数字图像处理论文--图像的几何变换及其MATLAB实现 学院:理学院专业:信息与计算科学 班级:信计1012 姓名: 学号:任课老师: 集美大学理学院 二○一三年十一月二十八日

目录 摘要 (1) 一、何谓数字图像处理 (1) 二、数字图像几何变换简介 (1) 三、MATLAB图像处理工具介绍 (1) 四、图像几何变换的MATLAB实现 (2) 4.1图像几何变换的概述 (2) 4.2 图像的平移变换 (2) 4.3 图像的比例缩放 (4) 4.4 图像的镜像变换 (5) 4.5 图像的旋转变换 (7) 4.6 图像的剪取 (8) 五、图像几何变换的应用以及技术局限 (10) 参考文献 (10)

摘要:图像变换就是把图像从空间域转换到变换域(如频率域)的过程。图像变换可以使人们从另一角度来分析图像信号的特性,利用变换域中特有的性质,使图像处理过程更加简单、有效。图像变换是许多图像处理与分析技术的基础,而几何变换是图像变换中最基础也是应用最广泛的技术之一,本文基于MATLAB的图像处理工具,通过改变图像像素的空间位置或估算新空间位置上的像素值,从而实现图像的平移、缩放、旋转、镜像变换、图像插值等几何变换。 关键字:图像变换、几何变换、MATLAB 一、何谓数字图像处理 数字图像处理(Digital Image Processing),就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。 二、数字图像几何变换简介[3] 今天数字技术时代,我们身边接触到很多的数字图像,而对数字图像的处理往往会遇到需要对图像进行几何变换的一些问题。图像几何变换是图像显示技术中的一个重要组成部分。在图像几何变换中主要包括图像的缩放、旋转、移动、剪取等内容。无论照片、图画、书报、还是医学X光和卫星遥感图像等领域都会用到这些技术。通过图像的几何变换技术,可以显著提高图像处理效率和质量,为更进一步的图像处理奠定基础。 三、MATLAB图像处理工具介绍[1] MATLAB全称是Matrix Laboratory(矩阵实验室),一开始它是一种专门用于矩阵数值

双线性插值

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。例如已知的红色数据点与待插值得到的绿色点如图1所示: 图1 假如我们想得到未知函数在点的值,假设我们已知函数 在, , , 及四个点的值。首先在 x 方向进行线性插值,得到 然后在 y 方向进行线性插值,得到 这样就得到所要的结果, 如果选择一个坐标系统使得的四个已知点坐标分别为(0, 0)、(0, 1)、(1, 0) 和(1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为 这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值 不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使 图像轮廓在一定程度上变得模糊。 双线性插值法的MATLAB源代码为: I=imread('lena.jpg'); %读入原图像 [nrows,ncols,z]=size(I); %读取图像矩阵大小,方便后面操作 K = str2double(inputdlg('please input scale factor (must between 0.2 - 5.0)', 'INPUT scale factor', 1, {'0.5'})); width = K * nrows; height = K * ncols; J = uint8(zeros(width,height,z)); widthScale = nrows/width; heightScale = ncols/height; for x = 5:width - 5 % 5是为了防止矩阵超出边界溢出 for y = 5:height - 5 for z=1:3 xx = x * widthScale; % xx, yy为原坐标,x,y为新坐标 yy = y * heightScale; if((xx/double(uint16(xx))==1.0)&&(yy/double(uint16(yy))==1.0)) J(x,y,z) = I(int16(xx),int16(yy),z); %若xx,yy为整数,直接赋值 else a = double(uint16(xx)); b = double(uint16(yy)); x11 = double(I(a,b,z)); % x11 <- I(a,b) x12 = double(I(a,b+1,z)); % x12 <- I(a,b+1) x21 = double(I(a+1,b,z)); % x21 <- I(a+1,b) x22 = double(I(a+1,b+1,z));% x22 <- I(a+1,b+1) J(x,y,z) = uint8((b+1-yy)*((xx-a)*x21+(a+1-xx)*x11)+(yy-b)* ((xx-a)*x22+(a+1-xx)*x12)); %用双线性插值计算公式计算 end end end end

相关文档
最新文档