圆切线长定理弦切角定理切割线定理相交弦定理

圆切线长定理弦切角定理切割线定理相交弦定理
圆切线长定理弦切角定理切割线定理相交弦定理

圆切线长定理弦切角定理切割线定理相交弦定

集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

切线长定理、弦切角定理、切割线定理、相交弦定理

以及与圆有关的比例线段

[学习目标]

1.切线长概念

切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理

对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个)

4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段

定理图形已知结论证法

相交弦定理⊙O中,AB、CD为

弦,交于P.

PA·PB=

PC·PD.

连结AC、BD,证:

△APC∽△DPB.

相交弦定理的推论⊙O中,AB为直

径,CD⊥AB于P.

PC2=PA·PB.用相交弦定理.

切割线定理⊙O中,PT切⊙O于

T,割线PB交⊙O于

A

PT2=PA·PB连结TA、TB,证:

△PTB∽△PAT

切割线定理推论PB、PD为⊙O的两

条割线,交⊙O于

A、C

PA·PB=

PC·PD

过P作PT切⊙O于

T,用两次切割线定

圆幂定理⊙O中,割线PB交

⊙O于A,CD为弦

P'C·P'D=r2-

OP'2

PA·PB=OP2-

r2

r为⊙O的半径

延长P'O交⊙O于

M,延长OP'交⊙O

于N,用相交弦定理

证;过P作切线用

切割线定理勾股定

理证

8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

切线长定理弦切角定理切割线定理相交弦定理

切线长定理弦切角定理切割线定理相交弦定理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直 线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相 等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆 外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆 外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5) 圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定 理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦 定理 ⊙O中,AB、CD为 弦,交于P. PA·PB= PC·PD. 连结AC、BD,证: △APC∽△DPB.

相交弦定理的推论⊙O中,AB为直 径,CD⊥AB于P. PC2=PA·PB.用相交弦定理. 切割线定理⊙O中,PT切⊙O于 T,割线PB交⊙O于 A PT2=PA·PB连结TA、TB,证: △PTB∽△PAT 切割线定理推论PB、PD为⊙O的两 条割线,交⊙O于 A、C PA·PB= PC·PD 过P作PT切⊙O于 T,用两次切割线定 理 圆幂定理⊙O中,割线PB交 ⊙O于A,CD为弦 P'C·P'D=r2- OP'2 PA·PB=OP2- r2 r为⊙O的半径 延长P'O交⊙O于 M,延长OP'交⊙O 于N,用相交弦定理 证;过P作切线用 切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

切割线定理(一)(含解析)

切割线定理(一)? 2011 菁优网

一、解答题(共10小题,满分100分,每小题10分) 1、(10分)(2010?江汉区)如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC 的外接圆的半径为r. (1)若∠E=30°,求证:BC?BD=r?ED; (2)若BD=3,DE=4,求AE的长. 2、(10分)(2009?淄博)如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD. (1)求BD的长; (2)求∠ABE+2∠D的度数; (3)求的值. 3、(10分)(2008?苏州)如图,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A为圆心,AM为半径作⊙A交BM于N,AN的延长线交BC于D,直线AB交⊙A于P,K两点,作MT⊥BC于T. (1)求证:AK=MT; (2)求证:AD⊥BC; (3)当AK=BD时,求证:. 4、(10分)(2008?濮阳)如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC; (2)当时,①求tan∠ABE的值;②如果AE=,求AC的值.

5、(10分)(2007?厦门)已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP, (1)若∠AOP=60°,求∠OPB的度数; (2)过O作OC、OD分别交AP、BP于C、D两点, ①若∠COP=∠DOP,求证:AC=BD; ②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由. 6、(10分)(2007?天津)如图,⊙O和⊙O′都经过点A、B,点P在BA延长线上,过P作⊙O的割线PCD交⊙O于 C、D两点,作⊙O′的切线PE切⊙O′于点E.若PC=4,CD=8,⊙O的半径为5. (1)求PE的长; (2)求△COD的面积. 7、(10分)(2007?庆阳)如图EB是⊙O的直径,A是BE的延长线上一点,过A作⊙O的切线AC,切点为D,过B 作⊙O的切线BC,交AC于点C,若EB=BC=6,求:AD,AE的长. 8、(10分)(2007?河池)如图1,已知正方形ABCD的边长为,点M是AD的中点,P是线段MD上的一动点 (P不与M,D重合),以AB为直径作⊙O,过点P作⊙O的切线交BC于点F,切点为E. (1)除正方形ABCD的四边和⊙O中的半径外,图中还有哪些相等的线段(不能添加字母和辅助线); (2)求四边形CDPF的周长; (3)延长CD,FP相交于点G,如图2所示.是否存在点P,使BF?FG=CF?OF?如果存在,试求此时AP的长;如果不存在,请说明理由.

相交弦定理、切割线定理、割线定理综合训练

相交弦定理、切割线定理、割线定理 一、单选题 1.如图,与切于点,是的割线,如果, 那么的长为() A. B. C. D. 2.是外一点,切于,割线交于点、,若, 则的长是() A. B. C. D. 二、填空题 3.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则 DE=_____. 4.如图⊙的半径为,弦,的长度分别为,,则弦,相交所 夹的锐角__________. 5.已知弦和弦相交于内一点,,,,则________. 6.如图,的直径与弦相交于点,若,,,则________. 7.如图,切于,是的割线,如果,,则的长为________.

8.如图,、是的割线,,,,则 ________. 9.如图,是的切线,为切点,是的割线,,, 则________. 三、解答题 10.如图,在半径为的中,直径与弦相交于点,,.求的大小; 求弦的长. 11.如图,⊙O直径AB和弦CD相交于点E,AE=4,EB=8,∠DEB=30°,求弦CD长. 12.如图,弦AB和弦CD相交于⊙O内一点E,AD=CB,求证:AB=CD.

13.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长. 14.如图,中,弦与弦相交于点,且.求证:. 15.如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC 的长.

参考答案 1.B 2.C 3.. 4.75°. 5. 6. 7. 8.9 3 9.5 10.(1);(2). CD 11.235 12.详见解析. 13.215 14.详见解析. 15.6.

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.

椭圆中的“类切割线定理”

椭圆中的“类切割线定理” ——2016 年高考四川卷理科第20 题 江苏省东海县教师进修学校徐明 【原题呈现】 22 xy (2016年全国高考四川卷理科第20题)已知椭圆E: 2 2 1(a b 0)的两个焦点与短ab 轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T. (I)求椭圆E的方程及点T的坐标; (II )设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l 交于点P. 证明:存在常数,使得|PT |2 |PA| |PB |,并求的值. 【考情综述】 在高考中,解析几何综合题的地位是无人可以撼动的,无论是四川卷还是其它省市卷或全国卷,解答题中必有它的身影,并且往往还是以压轴题(倒数第二题)的身份出现.究其原 因,是其在中学数学中的地位决定的.解析几何倡导用代数方法研究几何问题,把代数的知识和方法系统地用于研究几何之中,数形结合的思想和方法使代数、几何获得统一.通过解析几何学习,可以使学生对已学知识融会贯通,把数和形的研究紧密地结合起来,提高综合应用数学知识的能力.同时,系统地掌握解析几何的基础知识,也会为今后学习高等数学奠定坚实的基础. 就全国高考四川卷中的解析几何综合题而言,近三年的理科试题都位于整卷第20 题的 位置,统一以直线与椭圆的位置关系为素材,主要考查直线、椭圆、曲线与方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想方法,并考查数学思维的严谨性、深刻性与灵活性. 从考查内容看,试题同样以两问的形式进行设置,第一问一般是“求椭圆的方程”,这一问都是送分题,往往是要求考生熟练掌握椭圆的标准方程和简单几何性质.如2013 年“已知椭圆的焦点坐标,椭圆过定点,求椭圆的离心率”;2014 年“已知椭圆的焦距,短轴的两个端点与长轴的一个端点构成正三角形,求椭圆的方程”;2015 年“已知椭圆的离心率,过特 殊点的特殊直线被椭圆截得的弦长(本质是椭圆过定点),求椭圆的方程”等.由此可见,今年的第一问设置较前几年难度有所增加,其难度在于:第一问中就要动用直线与椭圆联立方程组,使用“判别式”,无形中增加了运算量. 试题的第二问才是试题或者整卷中的“亮点”,也是难点,是考生发挥能力的“舞台”.这一问往往以定量或定性的方法研究直线与椭圆间形成的某指定几何元素或结构间的关系,要求考生灵活进行转化与化归、准确进行运算与求解、严密进行推理与论证.如2013 年“过定点的动直线与椭圆交于M,N两点,求线段MN 上满足221212的Q 点轨迹|AQ|2 |AM |2 |AN |2 方程”,要求考生熟练运用韦达定理、弦长公式,正确处理参数关系,从定量运算中探索动点的定性特征;2014 年“F 为椭圆左焦点,T 为左准线上动点,过F 作TF 的垂线交椭圆于点P,Q,证明OT 平分线段PQ,求|TF |最小值”,要求考生熟练运用韦达定理、弦长公式、|PQ| 斜率公式,除作定性分析外,还会用基本不等式对相关数据进行最值求解; 2015 年“是否存 在与定点P不同的定点Q,使得|QA| |PA |恒成立”,在要求考生熟练运用韦达定理的同时,|QB| |PB | 对考生转化与化归的能力提出较高要求.相比较而言,今年的第二问回到了对“韦达定理、弦长公式”的考查上,特别是动因的减少(定直线上已知斜率的动点),降低了试题的思维强度. 虽然今年是全国高考四川省自主命题的最后一年,解析几何综合题延续了自己的风格,但在今后的全国高考中,解析几何综合题的难度依然不会降低,考查的重点依然会聚焦在定点、定值问题,范围、最值问题等问题上,核心方法依然是“设而不求”,在进行弦长、斜率、距离等几何量的计算过程中巧妙运用韦达定理,只是考查内容有可能从椭圆的“一枝独秀”,发展到与抛物线“争奇斗艳”. 【考点解读】 在《2016 年普通高等学校招生全国统一考试(四川卷)数学(理)考试说明》中,对圆锥曲线的考试

初三数学相交弦定理和切割线定理人教版

初三数学相交弦定理和切割线定理 一. 本周教学内容:相交弦定理和切割线定理 二. 重点、难点: 1. [例 BP [例 证明: 作DN ∥EC ,交MF 于N ,则∠1=∠2,∠C=∠4 由弦切角定理得:∠3=∠1 ∴ ∠2=∠3 ∴ DN=DF 由切割线定理,CB CA CE ?=2 DA DB DF ?=2 ∵ AC=DB ∴ CB=DA ∴ 2 2 DF CE = CE=DF ∴ CE=DN 又 ∵ ∠5=∠6 ∴ DNM CEM ???(AAS ) ∴ CM=MD [例3] 已知PT 切⊙O 于T ,PBA 为割线,交OC 于D ,CT 为直径,若OC=BD=4cm ,AD=3cm ,求PB 长。 解:

设TD=x ,BP=y ,由相交弦定理得:TD CD DB AD ?=? 即x x )8(43-=? 61=x ,22=x (舍) 由切割线定理,BP AP PT ?=2 由勾股定理,222TD PT PD += ∴ 22TD BP AP PD +?= ∴ )7(6)4(2 2 ++=+y y y ∴ y =[例4] F ,若BC=9,解: 连AB ,∴ ∠1=∴ EF CE =由切割线定理得:1441692 =?=?=CF CB AC ∴ AC=12 [例5] P 为弦AB 上一点,C 在圆O 上,OP ⊥PC ,求证: (1)PB PA PC ?=2 (2)若证明: (1)延长CP

解: (2)易知32 1 == OC PM ,设x AP =,y MB = 由相交弦定理,MN CM MB AM ?=?,即27)63(3)3(=+?=+y x ① 由垂径定理,CP=PD ,故在CPO Rt ?中有20462 2 2 =-=PC ∴ 由(1)结论,20)3(=+y x ② 由①—②得:37+ =x y 代②得,0203 162=-+x x ∴ 0601632 =-+x x ,3 61 28±-= x (舍负) ∴ AP 长为 3 61 28+- [例6] 如图,AB 切⊙O 于B ,OB 交割线ACD 于E ,AC=CE=3,OE= 2 5 ,求AB 长。 解: 设⊙O 半径为r ,DE=a ,延长BO 交⊙O 于K 由相交弦定理,ED CE BE EK ?=?,故a r r 3)2 5)(25(=-+ ① 由AB 切⊙O 于B 知BE AB ⊥,故AD AC EB AE AB ?=-=2 2 2 ∴ )6(3)2 5(62 2 a r +=-- ② 由②—①得:018522 =--r r ,2 9 1= r ,22-=r (舍) ∴ 32)2 529(62 22=--=AB ,AB=24 [例7] 如图,⊙O 中直径AE ⊥BF ,M 为OE 中点,BM 延长交⊙O 于C ,连AC ,求ABC ?中三个内角的正切值。 解:易知?=∠= ∠452 1 BOA C ∴ 145tan tan =?=C 连CF 、CE ∵ BF 为直径 ∴ ?=∠90BCF 又 ∵ ?=∠90BOM ∴ BCF BOM ??~

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

切线长定理、弦切角定理、切割线定理、相交弦定理37508

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上 一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条 切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可 得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹 角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交弦定 理 ⊙O中,AB、CD为弦, 交于P. PA·PB=PC·PD. 连结AC、BD,证:△APC ∽△DPB.

相交弦定理的推论⊙O中,AB为直径,CD ⊥AB于P. PC2=PA·PB. (特殊情况) 用相交弦定理. 切割线定理⊙O中,PT切⊙O于T, 割线PB交⊙O于A PT2=PA·PB 连结TA、TB,证:△PTB ∽△PAT 切割线定理推论PB、PD为⊙O的两条割 线,交⊙O于A、C PA·PB=PC·PD 过P作PT切⊙O于T, 用两次切割线定理 (记忆的方法方法) 圆幂定理⊙O中,割线PB交⊙O 于A,CD为弦P'C·P'D=r2-OP'2 PA·PB=OP2-r2 r为⊙O的半径 延长P'O交⊙O于M, 延长OP'交⊙O于N,用 相交弦定理证;过P作切 线用切割线定理勾股定 理证 8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。 图1 解:由切线长定理知:AF=AB=1,EF=CE

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

圆的切线之经典练习题

圆的切线之----- A 班经典练习题 班级 姓名 一、选择题: 1、“圆的切线垂直于经过切点的半径”的逆命题是( ) A 、经过半径外端点的直线是圆的切线; B 、垂直于经过切点的半径的直线是圆的切线; C 、垂直于半径的直线是圆的切线; D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、如图,在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F , 若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + 3、如图,正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF ∶FD =( ) A 、1∶2 B 、1∶3 C 、1∶4 D 、2∶5 4、如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD =BE ,BD =AF ,连结DE 、DF 、EF ,则∠EDF =( ) A 、900-∠P B 、900- 21∠P C 、1800-∠P D 、450-2 1 ∠P ? 第3题图 O F E D C B A ? 第4题图 P O F E D B A ?第6题图 C O E D B A 二、填空题: 5、已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB =780,点C 是⊙O 上异于A 、B 的任一点,则∠ACB = 。 6、如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E ,AB =9,CD =4,则四边形ABCD 的面积为 。 7、如图,⊙O 为Rt △ABC 的内切圆,点D 、E 、F 为切点,若AD =6,BD =4,则△ABC 的面积为 。 8、如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,过⊙O 上A 点的直线AD ∥OC , 若OA =2,且AD +OC =6,则CD = 。

初中数学-证明圆的切线经典例题

初中数学-证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,

∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC, ∴∠1=∠2. ∵DM⊥AC, ∴∠2+∠4=900 ∵OA=OD, ∴∠1=∠3. ∴∠3+∠4=900. D C

圆幂定理及其证明

圆幂定理 圆幂的定义:一点P 对半径R 的圆O 的幂定义如下:22 OP R - 所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。 (1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 如图,AB 、CD 为圆O 的两条任意弦。相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。所以△APD ∽△BPC 。所以 AP PD AP BP PC PD PC BP =??=? (2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点 的两条线段长的比例中项。 如图,PT 为圆切线,PAB 为割线。连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以 2PT PA PT PA PB PB PT =?=? (3) 割线定理:从圆外一点P 引两条割线与圆分别交于 A.B.C.D 则有 PA·PB=PC·PD 。 这个证明就比较简单了。可以过P 做圆的切线,也可以连接CB 和AD 。证相似。

存在:PA PB PC PD ?=? 进一步升华(推论): 过任意在圆O 外的一点P 引一条直线L1与一条过圆心的直线L2,L1与圆交于 A 、 B (可重合,即切线),L2与圆交于 C 、 D 。则PA·PB=PC·PD 。若圆半径为r ,则 2222()()||PC PD PO R PO R PO R PO R ?=-?+=-=-(一定要加绝对值,原因见下)为定值。这个值称为点P 到圆O 的幂。(事实上所有的过P 点与圆相交的直线都满足这个值) 若点P 在圆内,类似可得定值为2222||R PO PO R -=- 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。(这就是“圆幂”的由来)

相关文档
最新文档