高二数学正弦定理2

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

考点17 正弦定理和余弦定理【2019年高考数学真题分类】

温馨提示: 此题库为Word版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word文档返回原板块。 考点17 正弦定理和余弦定理 一、选择题 1.(2019·全国卷Ⅰ文科·T11)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-1 4,则b b = () A.6 B.5 C.4 D.3 【命题意图】本题考查正弦定理及余弦定理推论的应用. 【解题指南】利用余弦定理推论得出a,b,c的关系,再结合正弦定理边角互换列出方程,解出结果. 【解析】选A.由已知及正弦定理可得a2-b2=4c2,由余弦定理推论可得-1 4=cos A=b2+b2-b2 2bb ,所以b2-4b2 2bb =-1 4 ,所以3b 2b =1 4 ,所以 b b =3 2 ×4=6,故选A. 二、填空题 2.(2019·全国卷Ⅱ理科·T15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π 3 ,则△ABC的面积为. 【命题意图】考查余弦定理以及三角形面积公式的应用. 【解析】因为cos B=b2+b2-b2 2bb , 又因为b=6,a=2c,B=π 3 ,可得c2=12, 1

解得c=2√3,a=4√3, 则△ABC的面积S=1 2×4√3×2√3×√3 2 =6√3. 答案:6√3 3.(2019·全国卷Ⅱ文科·T15)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=. 【命题意图】考查正弦定理、同角三角函数基本关系的运用. 【解析】已知b sin A+a cos B=0,由正弦定理可得sin B sin A+sin A cos B=0,即sin B=-cos B, 又因为sin2B+cos2B=1,解得sin B=√2 2,cos B=-√2 2 ,故B=3π 4 . 答案:3π 4 4.(2019·浙江高考·T14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=,cos∠ABD= . 【命题意图】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想. 【解析】在△ABD中,由正弦定理有:bb sin∠bbb =bb sin∠bbb , 而AB=4,∠ADB=3π 4 ,AC=√bb2+bb2=5, sin∠BAC=bb bb =3 5 ,cos∠BAC=bb bb =4 5 ,所以BD=12√2 5 . cos∠ABD=cos(∠BDC-∠BAC) =cosπ 4cos∠BAC+sinπ 4 sin∠BAC=7√2 10 . 2

人教版高中数学高二-高考中的正、余弦定理

高考中的正、余弦定理 山西省盂县旧党校 马志君 045100 近几年高考题中常有正、余弦定理与平面向量、三角交汇解决问题,请看下面例示。 一、 求角、边 例1 (2007浙江理)已知△ABC 的周长为2+1,且sinA+sinB=2sinC , (1) 求边AB 的长(2)若△ABC 的面积为 61sinC ,求角C 的度数 分析:(1)由正弦定理求(2)由余弦定理求 解:(1)由题意及正弦定理,得 AB+BC+AC=2+1,BC+AC=2AB 两式相减,得AB=1 (2) 由△ABC 的面积 21BC ·AC ·sinC=61sinC 得BC ·AC=3 1 由余弦定理,得 cosC=BC AC AB BC AC ?-+2222=BC AC AB BC AC BC AC ?-?-+22)(22=2 1 所以C=60° 二、 求三角形周长的最值 例2 (2007全国II 理)在△ABC 中,已知内角A= 3π,边BC=23,设内角B=x ,周长为y (1) 求函数y=f (x )的解析式和定义域 (2) 求y 的最大值 分析:(1)要求y=f (x )的解析式,需由正弦定理求出AC 、AB (2)可由正弦、余弦的有界性求y 的最大值 解:(1)△ABC 的内角和A+B+C=π 由A=3 π,B >0,C >0,得0<B <32π,应用正弦定理,知 AC=A BC sin sinB=3 sin 32πsinx=4sinx AB=A BC sin sinC=4sin (3 2π-x ) 因为y=AB+BC+AC 所以y=4sinx+4sin (3 2π-x )+23 (2)因为y=4(sinx+23cosx+2 1sinx )+23 (0<x <32π)

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

正弦余弦历年高考题及详细答案

正 余 弦 定 理 1.在 ABC ?中,A B >是sin sin A B >的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2、已知关于x 的方程2 2 cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是 ( ) (A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= . 4、如图,在△ABC 中,若b = 1,c =3,23 C π ∠=,则a= 。 5、在ABC ?中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =, sin cos 2B B +=,则角A 的大小为 . 6、在?ABC 中,,,a b c 分别为角,,A B C 的对边,且2 7 4sin cos 222 B C A +-= (1)求A ∠的度数 (2)若3a =,3b c +=,求b 和c 的值 7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状. 8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c . A B 3 23 π

1、解:在ABC A B ?>中,2sin 2sin sin sin a b R A R B A B ?>?>?>,因此,选C . 2、【答案】由题意可知:211cos cos cos 2sin 222 C C A B -= ??= ,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+- cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=, 所以ABC ?一定是等腰三角形选C 3、【命题立意】本题考察正弦定理在解三角形中的应用. 【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得 1sin 60 A =得1 sin 2 A = ,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin 90 1.C == 4、【命题立意】本题考查解三角形中的余弦定理。 【思路点拨】对C ∠利用余弦定理,通过解方程可解出a 。 【规范解答】由余弦定理得,222121cos 33 a a π +-???=,即220a a +-=,解得1a =或2-(舍)。【答案】1 【方法技巧】已知两边及一角求另一边时,用余弦定理比较好。 5、【命题立意】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生的推理论证能力和运算求解能力。 【思路点拨】先根据sin cos B B +=B ,再利用正弦定理求出sin A ,最后求出A. 【规范解答】由sin cos B B += 12sin cos 2B B +=,即sin 2B 1=,因为0

高二数学正弦余弦定理测试题

余弦定理训练题 1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.62 D.219 解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A.5719 B.217 C.338 D.-5719 解析:选A.c2=a2+b2-2abcos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由asin A=csin C得sin A=5719. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a22?2a?2a=78. 答案:78 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状. 解:法一:根据余弦定理得 b2=a2+c2-2accos B. ∵B=60°,2b=a+c, ∴(a+c2)2=a2+c2-2accos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练 一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2abcos C B.c2=a2-b2-2bccos A C.b2=a2-c2-2bccos A D.cos C=a2+b2+c22ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.1213 B.513 C.0 D.23

正余弦定理高考真题.doc

高一(下)数学(必修五)第一章 解三角形 正弦定理、余弦定理高考真题 1、(06湖北卷)若ABC ?的内角A 满足2 sin 23 A =,则sin cos A A += A. 15 3 B .153- C .53 D .53- 解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23 A A A +=+=,故选A 2、(06安徽卷)如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则 A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 解:111A B C ?的三个内角的余弦值均大于0,则111 A B C ?是锐角三角形,若222 A B C ?是锐角三角形,由211211211sin cos sin()2 sin cos sin()2sin cos sin()2A A A B B B C C C πππ?==-??? ==-???==-??,得21 2 121222A A B B C C πππ? =-?? ?=-??? =-?? ,那么,2222 A B C π ++=,所以222A B C ?是钝角三角形。故选D 。 3、(06辽宁卷)ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量 (,)p a c b =+ ,(,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 【解析】222//()()()p q a c c a b b a b a c ab ?+-=-?+-= ,利用余弦定理可得2cos 1C =,即1cos 23 C C π = ?=,故选择答案B 。 【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。 4、(06辽宁卷)已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A. 3 2 B.3 C. 158 D. 157 解:依题意,结合图形可得15tan 215A =,故22 1522tan 15152tan 7151tan 1() 215 A A A ? = ==--,选D 5、(06全国卷I )ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B = A .1 4 B .34 C . 24 D .23 解:ABC ?中,a 、b 、c 成等比数列,且2c a =,则b =2a , 222cos 2a c b B ac +-==2222 423 44 a a a a +-=,选B. 6、06山东卷)在△ABC 中,角A 、B 、C 的对边分别为a 、 b 、 c ,A =3 π,a =3,b =1,则c =

正余弦定理及面积

第15课时 解三角形-2 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足4)(22 =-+c b a ,且C=60°,则ab 的值为( ) A . 34 B .348- C . 1 D . 3 2 2.△ABC 的三个内角A ,B ,C 所对的边分别为c b a ,,,a A b B A a 2cos sin sin 2=+,则 =a b (A ) (B ) ( C (D 3.已知2 10 cos 2sin ,= +∈αααR ,则=α2tan A. 34 B. 43 C.43- D.3 4- 4.在△ABC 中, ,3,4 AB BC ABC π ∠==则sin BAC ∠ = 5.在锐角中ABC ?,角,A B 所对的边长分别为,a b .若2sin ,a B A 则角等于 A. 12 π B.6π C. 4 π D.3π 6.△ABC 的内角A 、B 、C 的对边分别为c b a ,,.己知A —C=90°,b c a 2=+,求 C . 7.在ABC ?中,内角A ,B ,C 的对边分别为c b a ,,已知. b a c B C A -= -2cos cos 2cos (I )求 A C sin sin 的值; (II )若2,41cos ==b B ,求ABC ?的面积S 。 8.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ?的面积为3;求,b c . 9.在?ABC 中,内角A ,B ,C 的对边分别为c b a ,,.已知cos A = 2 3 ,sin B C . (Ⅰ)求tan C 的值; (Ⅱ)若a ?ABC 的面积. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 。已知 (1)求证: (2)若ABC 的面积。 11.三角形ABC 的内角A 、B 、C 的对边分别为c b a ,,,已知c a B C A 2,1cos )cos(==+-,求C. 12.在△ABC 中,62,3==b a ,A B 2= (I)求A cos 的值; (II)求c 的值. ,sin()sin()444 A b C c B a π ππ =+-+=2B C π -= a =

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

高中数学必修5正余弦定理教案

高中数学必修5正余弦定理教案 ●教学目标 (一)知识目标 1.三角形的有关性质; 2.正、余弦定理综合运用. (二)能力目标 1.熟练掌握正、余弦定理应用; 2.进一步熟悉三角函数公式和三角形中的有关性质; 3.综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题. (三)德育目标 通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化. ●教学重点 正、余弦定理的综合运用. ●教学难点 1.正、余弦定理与三角形性质的结合; 2.三角函数公式变形与正、余弦定理的联系. ●教学方法 启发式 1.启发学生在求解三角形问题时,注意三角形性质、三角公式变形与正弦、余弦定理产生联系,从而综合运用正弦、余弦定理达到求解目的; 2.在题设条件不是三角形基本元素时,启发学生利用正、余弦建立方程,通过解方程组达到解三角形目的. ●教具准备 投影仪、幻灯片

第二张:例题1、2(记作§5.9.4 B) Ⅰ.复习回顾 师:上一节课,我们一起研究了正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用,这一节,我们将综合正、余弦定理、三角函数公式及三角形有关性质来求解三角形问题.首先,我们一起回顾正、余弦定理的内容(给出投影片§5.9.4 A). Ⅱ.讲授新课 师:下面,我们通过屏幕看例题.(给出投影片§5.9.4 B) [例1]分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cos α,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的. 解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则 α αααcos sin 222sin 2sin ?+=+=x x x x x 22cos +=∴α① 又由余弦定理可得x2=(x+1)2+(x+2)2-2(x+1)(x+2)cos α② 将①代入②整理得: x2-3x-4=0 解之得x1=4,x2=-1(舍) 所以此三角形三边长为4,5,6. 评述: (1)此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程; (2)在求解过程中,用到了正弦二倍角公式,由此,要向学生强调三角公式的工具性作用,以引起学生对三角公式的重视. [例2]分析:由于题设条件中已知两边长,故而联想面积公式S△ABC = 2 1AB ·AC ·sin A ,需求出sin A ,而△ABC 面积可以转化为S△ADC +S△ADB ,而S△ADC =21AC ·AD sin 2 A ,S△AD B =21AB ·AD ·sin 2A ,因此通过S△AB C =S△ADC +S△ADB 建立关于含有sin A ,sin 2A 的方程,而

漫谈数学的两重性

漫谈数学的两重性 摘要:数学在人类文明的进程中发挥了巨大的作用,人类对数学本质的认识随着数学的发展也应该是多视角的。通过对数学多个侧面的考察分析,揭示了数学在不同方面都折射出两重性的特点:数学是演绎的科学,也是归纳的事实;数学的真理性和数学基础中存在着裂缝;数学是工具,也是文化;数学是发现的,也是发明的;数学是抽象的,也是直观的。 关键词:数学演绎归纳真理文化发现发明抽象直观 数学在人类社会的历史演化中发挥着巨大的作用,数学是人类思维智慧的结晶,是人类文化和文明的思想瑰宝。数学理论的形成过程,就是人类对科学真理不断探索和追求的过程。巴尔扎克曾经说过,没有数学,我们整个文明大厦将坍塌成碎片。数学作为人类心灵最崇高和独特的作品,永恒矗立在人类理性发展的巅峰之上。 人类对数学本质的认识随着数学的发展与时俱进。关于数学的定义,最为引人注目的有两个,一个是恩格斯在十九世纪给出的:数学是研究客观世界数量关系和空间形式的科学。一个是数学的当代定义:数学是关于模式和秩序的科学。前一个直观,后一个抽象,人们对此见仁见智。我们认为,这两个定义的观点是一种继承关系,是数学发展历史积淀的必然结果。前者反映了数学的本源,后者是从数学的抽象过程和抽象结构方面对数学本质特征的阐释,反映了数学发展的当代水平。 美国著名数学家柯朗(Courant.R)在《数学是什么》中揭示了数学具有两重性的特点。他写道:“数学作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理和对完美境界的追求。它的基本要素是逻辑和直觉、分析和推理、一般性和特殊性。虽然不同的流派各自强调数学不同的侧面,然而,正是这些相互对立的侧面之间相互渗透和相互辨析,才构成了数学科学的生命力、实用性和崇高价值。”因此,对数学的两重性,我们应该有一个深入的了解。 一、数学是演绎的,也是归纳的

相关文档
最新文档