高中数学必修五正余弦定理

高中数学必修五正余弦定理
高中数学必修五正余弦定理

姓名____________ 2012年____月_____日 第___次课 正、余弦定理

一。知识回顾:在初中我们知道:(1)在三角形中,大边对大角、大角对大边的边角关系; (2)在直角三角形中,sinA=a c ,sinB=b c ?c=sin a A ,c=sin b B

?sin a A =sin b B ,又Q sinC=1?sin a A =sin b B =sin c C

二。学习提纲: <一>.正弦定理: (1)概念:在一个三角形中,各边与它所对应角的正弦比相等,即:

sin a A =sin b B =sin c C (2)证明: j r C

①几何证明法:(略,同学们自己证明) ②向量证明: 证明:(如图)当?ABC 为锐角三角形时, A B 过A 作单位向量j r ⊥AB u u u r ,则j r 与AB u u u r 的夹角为2π,j r 与BC uuu r 的夹角为2π-B ,j r 与CA u u u r 的夹角为2π+A ; 设AB=a,BC=c,AC=b. Q AB u u u r +BC uuu r +CA u u u r =0r ,∴j r g (AB u u u r +BC uuu r +CA u u u r )=j r g 0r

∴j r g AB u u u r +j r g BC uuu r +j r g CA u u u r =0 ∴|j r |g |AB u u u r |g cos 2π+|j r |g |BC uuu r |g cos(2π-B )+|j r |g |CA u u u r |g cos 2

π+A )=0 ∴asinB=bsinA,即:sin a A =sin b B

同理可得:sin b B =sin c C ,故:sin a A =sin b B =sin c C

当?ABC 为钝角三角形或直角三角形时,同样可证明得到:sin a A =sin b B =sin c C

(3)正弦定理的变形:

①asinB=bsinA; csinB=bsinC; asinC=csinA;

②a :b:c=sinA:sinB:sinC

③sin a A =sin b B =sin c C

=2R (R 为?ABC 外接圆的半径) ?a=2RsinA; b=2RsinB; c=2RsinC ? sinA=2a R sinB=2b R sinC=2c R

(二)余弦定理: (1)概念:三角形中任何一边的平方等于其他两边的平方的和减去这两边与他们的夹角的余弦的积的两倍,即: 2a =2b +2c -2bccosA; 2b =2a +2c -2accosB; 2c =2a +2b -2abcosC

变形:2sin A=2sin B+2sin C-2sinBsinCcosA 2sin B=2sin A+2sin C-2sinAsinCcosB 2sin C=2sin A+2

sin B-2sinAsinBcosC 求角:cosA=2222bc b c a +- , cosB=2222c a c b a +-, cosC=222

b 2a

c ab

+- 变形:cosA=222sin sin sin 2sin sin A B C A B +-,cosB=222sin sin sin 2sin sin A C B A C +-,cosC=222sin sin sin 2sin sin A B C A B

+- (2)勾股定理:2c =2a +2b

推广:A 为锐角→222a b c <+;A 为直角→222a b c =+;A 为钝角→222a b c >+

(3)三角形的面积公式: ①ABC S ?=12ah ②ABC S ?=12absinC=12bcsinA=12

acsinB

③ABC S ?(p=12(a+b+c) ④ABC S ?=4abc R

(4)对于任意的三角形,都有:sinA>0

①A+B+C=π; sin(A+B)=sinC ;cos(A+B)=-cosC ③sin 2A B +=cos 2

C , cos 2A B +=sin 2C ④sinA>0 ⑤若A>B,则有:sinA>sinB ⑥ CosAcosBcosC>0是△ABC 为锐角三角形的充要条件

⑦ CosAcosBcosC=0是△ABC 为直角三角形的充要条件 ⑧ CosAcosBcosC<0是△ABC 为钝角三角形的充要条件 注意:在三角形中,应该满足成立三角形的条件:

① 任意两边之和大于第三边;

② 大边对大角,小边对小角;最大角要大于60°,最小角要小于60°;

③ A+B+C=π

应用举例:

1.在△ABC 中,若A>B 是sinA>sinB 的( )

A.充分不必要条件

B.必要不充分

C. 充要条件

D. 既不充分也不必要

2. 在△ABC 中,a=λ,A=45°,则满足此条件的三角形的个数有( )

A. 0

B. 1

C. 2

D.无数个

3. 在△ABC 中,°,则c=_______.

4. 在△ABC =2bsinA,则B=_____.

5.在△ABC 中,,∠A=4π,则∠B=_______.

6.在△ABC 中,AB=4,AC=7,BC 边上的中线AD=

72

, 那么BC=________.

7. 在△ABC 中,bcosA=acosB 则三角形为__________ 8.在△ABC 中,A,B 均为锐角且cosA>sinB, 则△ABC 是________.

9.(bixiu5P10)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a,b,c ,且a=2bsinA.

(1)求B 的大小 (2)求cosA+sinC 的取值范围

10. (bixiu5P12)(2010山东)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若,b=2,

,则角A 的大小为__________。

11. (bixiu5P12)(2010山东)已知:在△ABC 中,∠A, ∠B 、∠C 的对边分别为a 、b 、c 。

若且∠A=75o,则b=___________

12.在△ABC 中,2cos

2A =2b c c +,试判断△ABC 的形状? 13.设A 为△ABC 的最小角,求sinA+cosA 的取值范围

见证高考:

(2006年,天津)1.在△ABC 中,AC=2,BC=1,cosC=

34 (1)求AB 的值 (2)求sin(2A+C)的值

(2007,上海)3. 在△ABC 中。a 、b 、c 分别是三个内角A 、B 、C 的对边,若a=2,C=

4π,cos 2

B , 求△AB

C 的面积

.

(新阳教育中心:重庆教学部陈老师供稿)

人教A版高中数学必修五讲义及题型归纳:正余弦定理

解三角形 模块一:正余弦定理 在△ABC 中的三个内角A ,B ,C 的对边,分别用a ,b ,c 表示. 1.正弦定理:在三角形中,各边的长和它所对的角的正弦的比相等,即a sin A =b sin B =c sin C =2R . ① a =2R sin A ,b =2R sin B ,c =2R sin C ; ② sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; ③ a:b:c =sin A :sin B :sin C . ④ 面积公式:S =1 2 ab sin C =1 2 bc sin A =1 2 ac sin B . 2.正弦定理用于两类解三角形的问题: ① 已知三角形的任意两个角与一边,求其它两边和另一角; ② 已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其它的边与角. 3.余弦定理:三角形任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍,即:{c 2=a 2+b 2?2ab cos C ,b 2=a 2+c 2?2ac cos B ,a 2=b 2+c 2?2bc cos A. 变形式为:{ cos C =a 2+b 2?c 2 2ab , cos B =a 2+c 2?b 2 2ac ,cos A =b 2+c 2?a 22bc . 4.余弦定理及其变形常用来解决这样两类解三角形的问题: ① 已知两边和任意一个内角解三角形; ② 已知三角形的三边解三角形. 考点1:正弦定理 例1.(1)在ABC ?中,角A ,B ,C 所对应的边分别为a ,b ,c .若4 A π=,3 B π = ,a =, 则(b = ) A .1 B C .2 D .【解答】解:因为4 A π = ,3 B π = ,a =, 所以,由正弦定理 sin sin a b A B = ,可得:sin sin a B b A ===g

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

必修五正弦定理和余弦定理

必修五第一讲 正弦定理 知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C . 2.解三角形:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 题型分析 [例1] 在△ABC 中,已知a [解] A =180°-(B +C )=180°-(60°+75°)=45°.由 b sin B =a sin A 得,b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A = c sin C 得, c =a sin C sin A =8×sin 75°sin 45°=8×2+642 2=4(3+1).∴A =45°,b =46,c =4(3+1). [变式训练]在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由 a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由 b sin B = c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64,∴b =20×2+64 =52+5 6. [例2] 在△ABC [解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32,∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b = c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. [变式训练]在△ABC 中,若c =6,C =π3 ,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22.∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4 , ∴B =π-π3-π4=5π12,b =c sin B sin C =6·sin 5π12sin π3=3+1.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

(完整版)必修五正余弦定理习题练习

必修五正余弦定理习题练习 一.选择题(共5小题) 1.(2015?秦安县一模)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=() A.B.C.D. 2.(2016?太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为() A.B.C. D. 3.(2016?大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是() A.等腰三角形B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形 4.(2016?宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C. D.或 5.(2014?新课标II)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.1 二.填空题(共6小题) 6.(2015?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为______. 7.(2015?重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=______. 8.(2015?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=______. 9.(2015?北京)在△ABC中,a=3,b=,∠A=,则∠B=______.10.(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=______.11.(2013?福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为______.

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

必修五正余弦定理公式1

B 1.1 正弦、余弦定理 一、知识点 1.正弦定理: 2sin sin sin a b c R A B C ===外(R 为外接圆的半径) (1)C R c B R b A R a sin 2,sin 2,sin 2=== C B A c b a sin :sin :sin ::= 注意:利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理 一:正弦定理 1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即 R C c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形 (1)R A a C B A c b a 2sin sin sin sin ==++++ (2)?? ???C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)?? ???B c C b A c C a A b B a sin sin sin sin sin sin === (4)R abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====? 以下是ABC ?内的边角关系:熟记 (5)B A B A b a >?>?>sin sin (大边对大角) (6)B A B A cos cos (7)?? ???+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系 (8)2 cos 2sin C B A += (9)若AD 是ABC ?的角平分线,则 AC DC AB DB = 思考题: 1:若B A sin sin =,则B A ,有什么关系? 2:若B A 2sin 2sin =,则B A ,有什么关系? 3:若B A cos cos =,则B A ,有什么关系? 4:若2 1sin > A ,则角A 的范围是什么?

解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形. 例1:已知ABC ?,根据下列条件,解三角形. (1)10,45,60=?=∠?=∠a B A . (2)?=∠==120,4,3A b a . (3)?=∠==30,4,6A b a . (4)?=∠==30,16,8A b a . (5)?=∠==30,4,3A b a . 思考:在已知“边边角”的情况下,如何判断三角形多解的情况 判断方法:(1)用正弦定理:比较正弦值与1的关系 (2)作图法:用已知角所对的高与已知角所对的边长比较. 练习:(1)若?=∠==45,12,6A b a ,则符合条件的ABC ?有几个? (2)若?=∠==30,12,6A b a ,则符合条件的ABC ?有几个? (3)若?=∠==45,12,9A b a ,则符合条件的ABC ?有几个? 例2:根据下列条件,判断三角形形状. (1)C B A 2 22sin sin sin =+. (2)C B A cos sin 2sin = (3)B b A a cos cos = (4)A b B a tan tan 22=

必修五正弦定理和余弦定理讲义

1.1 正弦定理和余弦定理 一、正弦定理: 在一个三角形中,各边和它所对角.......的正弦的比相等,即:A a sin =B b sin =C c sin 注意:(1)正弦定理中,各边与其对角的正弦严格对应;(2)正弦定理中的比值是一个定 值,具有一定几何意义,即为三角形外接圆的直径:A a sin =B b sin =C c sin =2R [ R 指的是三角形外接圆半径 ];(3)正弦定理主要实现三角形中的边角互化.................;(4)S =C ab sin 2 1=A bc sin 21=B ac sin 2 1;(5)常用的公式: ①A +B +C =π,sin(A .....+.B)..=.sinC ....,. cos(A .....+.B)..=-..cosC ....,.tan(A .....+.B)..=-..tanC ....,. sin 2B A +=cos 2C ,cos 2B A +=sin 2C ;②a =2RsinA ,b =2RsinB ,c =2RsinC ;③A >B ?a >b 【大角对大边】;④a +b >c ,a -b <c ;⑤a :b :c =sinA :sinB :sinC ;⑥a sinB =bsinA ,bsinC =csinB ,a sinC =csinA 。 例1:下列有关正弦定理的叙述:(1)正弦定理只适用于锐角三角形;(2)正弦定理不适用于直角三角形;(3)在某一确定的三角形中,各边与它所对角的正弦的比是一定值;(4)在△ABC 中,sinA :sinB :sinC = a :b :c 。其中正确的个数有( ) A :1个 B :2个 C :3个 D :4个 【解析】:B 变式练习1:在△ABC 中,角A :角B :角C =2 :1 :1,则a :b :c 等于( ) A :4 :1 :1 B :2 :1 :1 C :2 :1 :1 D :3 :1 :1 【解析】:C 变式练习2:在△ABC 中,角A :角B :角C =4 :1 :1,则a :b :c 等于( ) A :4 :1 :1 B :2 :1 :1 C :2 :1 :1 D :3 :1 :1 【解析】:D 例2:在△ABC 中,a =2,b =1,∠A =450 ,∠B =___________。 【解析】:30度 变式练习1:在△ABC 中,a =3,b =2,∠B =450,则∠A =___________。 【解析】:60度120度 变式练习2:在△ABC 中,a =15,b =10,∠A =600,则cosB =___________。 【解析】:3 6

人教A版高中数学必修五正、余弦定理练习题

正、余弦定理练习题 一、单项选择题 1.△ABC 中,a (sin B -sin C )+b (sin C -sin A )+c (sin A -sin B )=() (A )1(B )0(C )2 1(D )π 2.△ABC 中,sin A =2sin Cc os B ,那么此三角形是() (A )等边三角形(B )锐角三角形(C )等腰三角形(D )直角三角形 3.△ABC 中,sin A :sin B :sin C =3:2:4,那么c os C =() (A )- 41(B )-32(C )32(D )4 1 4.在△ABC 中,A B B A 22sin tan sin tan ?=?,那么△ABC 一定是() A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 5、在△ABC 中,一定成立的等式是() A.a sinA=b sinB B.a cosA=b cosB C .a sinB=b sinAD.a cosB=b cosA 6、若 c C b B a A cos cos sin ==则△ABC 为 () A .等边三角形 B .等腰直角三角形 C .有一个内角为30°的直角三角形 D .有一个内角为30°的等腰三角形 7、在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 A .38 B .37 C .36 D .35. 8、△ABC 的三边分别是a 、b 、c ,且其面积S=a b c 222 4 +-,角C=()度 A .30B .45C .60D .不确定

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

北师版高数必修五第8讲:正弦定理和余弦定理

正弦定理和余弦定理 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点:掌握正弦定理和余弦定理的概念,定义,公式的变形应用 教学难点:公式的变形,解直角三角形的应用边与角之间的关系及变形,判断三角形的形状 1、 正弦定理:在一个三角形中,各边的长和它所对角的正弦的比相等,即ABC ?中,若,,A B C ∠∠∠所对的边分别为,,a b c 则____________ 2、 解三角形 一般地,我们把三角形的三个角及其________分别叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。 利用正弦定理可以解决以下两类解三角形问题: (1) 已知三角形的任意两角与一边,求其他边和角,有__________解; (2) 已知三角形的两边与其中一边的对角,求其他的边和角。 3、 正弦定理的常见公式拓展: ① 2sin sin sin a b c R A B C ===(R 为ABC ?的外接圆半径) ②2sin ,2sin ,2sin a R A b R B c R C ===(边化角公式) ③sin ,sin ,sin 222a b c A B C R R R = ==(角化边公式) ④::sin :sin :sin a b c A B C =

⑤ 2sin sin sin sin sin sin a b b c c a R A B B C C A +++===+++ ⑥ 2sin sin sin a b c R A B C ++=++ 4、 余弦定理 ①定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍。 ②定义式: ________________________ 5、 余弦定理的变形式和特例 ①222222222 cos ,cos ,cos 222a b c c a b b c a C B A ab ac bc +-+-+-=== ②22290C c a b =?=+o ③22260C c a b ab =?=+-o ④222120C c a b ab =?=++o ⑤2 2 2 30C c a b =?=+o ⑥222 45C c a b =?=+o 6、 余弦定理可以解决的两类三角形问题 (1) 已知三边长,求三个内角; (2) 已知两边长和它们的夹角,求第三边长和其他角。 类型一:已知三角形两角及任意一边,解三角形;已知三边长,求夹角。 例1:(2015山东潍坊一中月考)在ABC ?中,已知8,60,75,a B C =∠=∠=o o 则b 等于() A. D.22 3 练习1:在ABC ?中,若60A ∠=o ,45B ∠=o ,BC =则AC =() 练习2:在ABC ?中,已知2,30,45,a B A ===o o 求b 例2:在ABC ?中,若1,2,a b c ===试求A 练习3:在ABC ?中,若1,2,a b c ===试求B 练习4:在ABC ?中,若1,2,a b c = ==试求C

高中数学常用公式与证明专题

1 高中数学常用公式与证明专题 本专题由北京大学教材研究所审定 依据《普通高中课程标准》编写 1.不等式的基本性质: (1)对称性:b a >?a b < (2)传递性:b a >,c b >?c a > (3)可加性:b a >?c b c a +>+ (4)加法:b a >,d c >?d b c a +>+ (5)保号性:b a >,0>c ?bc ac >;0>b a ,0>>d c ?bd ac > (7)乘方:0>>b a ?n n b a >(n ∈N*) (8)开方:0>>b a ?n n b a >(n ∈N*) 2.均值不等式定理: (1)四种形式: 整式形式:ab b a 22 2 ≥+, ab b a 222-≥+(a ,b ∈R ,当且仅当b a =时取“=”号) 2 )2 (b a ab +≤(a ,b ∈R ,当且仅当b a =时取“=”号) 根式形式:2a b +≥a ,b ∈R +,当且仅当b a =时取“=”号) 分式形式:2≥+b a a b (0>ab ),2-≤+b a a b (0x ,则21 ≥+x x ;若0

正余弦定理高考真题.doc教学文稿

高一(下)数学(必修五)第一章 解三角形 正弦定理、余弦定理高考真题 1、(06湖北卷)若ABC ?的内角A 满足2 sin 23 A =,则sin cos A A += A. 153 B .153- C .53 D .53 - 解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25 (sin cos )1sin 23 A A A +=+=,故选A 2、(06安徽卷)如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则 A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 解:111A B C ?的三个内角的余弦值均大于0,则111A B C ?是锐角三角形,若222 A B C ?是锐角三角形,由211211211sin cos sin()2 sin cos sin()2sin cos sin()2A A A B B B C C C πππ?==-?? ? ==-?? ? ==-?? ,得21 2121222A A B B C C πππ? =-???=-???=-??,那么, 2222 A B C π ++=,所以222A B C ?是钝角三角形。故选D 。 3、(06辽宁卷)ABC V 的三内角,,A B C 所对边的长分别为,,a b c 设向量 (,)p a c b =+u r ,(,)q b a c a =--r ,若//p q u r r ,则角C 的大小为 (A)6π (B)3π (C) 2 π (D) 23π 【解析】222//()()()p q a c c a b b a b a c ab ?+-=-?+-=u r r ,利用余弦定理可得 2cos 1C =,即1cos 23 C C π = ?=,故选择答案B 。 【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。 4、(06辽宁卷)已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A. 3 2 B.3 C. 158 D. 157 解:依题意,结合图形可得15tan 215A =,故22 1522tan 15152tan 7151tan 1() 215 A A A ? = ==--,选D 5、(06全国卷I )ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B = A .1 4 B .34 C . 24 D .23 解:ABC ?中,a 、b 、c 成等比数列,且2c a =,则b =2a , 222cos 2a c b B ac +-==2222 423 44 a a a a +-=,选B.

相关文档
最新文档