雷电浪涌防护一级的测试波形的选择

雷电浪涌防护一级的测试波形的选择
雷电浪涌防护一级的测试波形的选择

雷电浪涌防护一级的测试波形的选择

——8/20 波形和10/350 波形的比较研究

本文以Dion Neri 和Bruce Glushakow 所著的白皮书为基础,该白皮书经IEEE审核后被确定为学术

理论性文件。

开始论述之前,我们先关注一下这样一个事实:多年来,美国的浪涌保护器(又称瞬态电压抑制器TVSS)的测试方案都以ANSI/IEEE C62.41(美国国家标准委员会/电气电子工程师协会C62.41标准)为测试规范。而在实际应用中,按照该标准进行设计、生产、测试的浪涌保护器在全球市场上取得了良好的应用效果。

一、历史回顾:10/350 作为一级测试波形的由来

在1995年以前,包括美国在内的大多数国家都采用8/20 波形测试浪涌保护器,“国际电气规范”(IEC)也采用相同的做法。但此后,在IEC 61643标准文件中,却对安装在建筑物进线处的浪涌保护器引入了新的“配电系统1级防护”测试方案。为了适应IEC 61643对冲击脉冲电流(I imp)的要求,测试机构不得不将测试波形改为10/350。而这一变化的所谓“理论基础”是:10/350的波形更接近于直接雷击的波形参数,因此,在对此类进行浪涌保护器(IEC称SPD)的有效性测试时采用10/350波形比8/20波形更合适。

然而,在经过大量可靠的跟踪调查之后,IEEE认为对测试方案做出类似的改动根本不具备充分的理由,因此仍然坚持采用8/20波形。但在现实中,IEC引入的“配电系统1级防护”测试新方案却在浪涌保护器市场上造成了混乱:在某些欧洲生产商的鼓动下,“配电系统1级浪涌保护器” 在设计、生产上按照10/350测试脉冲为参考,采用真空管作为防护元件,并宣称该种保护器成为所谓“主流”。他们依据很简单:“既然直接雷击的波形只能用10/350波形的脉冲进行模仿,所以,ANSI/IEEE所主张的8/20波形的测试规范就不足以起到防护直接雷击的作用。”

二、IEC选择10/350 的技术依据按照IEC的“新要求”,测试“防护直接雷击的浪涌保护器”时应采用10/350波形冲击脉冲,而测试“防护间接雷击的浪涌保护器”时应采用8/20波形。

从右图可见,100kA的10/350波形脉冲的放电强度是20kA的 8/20 波形脉冲的125倍。

125 × 0.4 = 50

照此类推:我们可以得出以下结论:

如果使用压敏电阻MOV作为浪涌抑制元件,设计一个能防护100kA 的10/350 波形的冲击脉冲的保护器,它所具备的放电能力必须相当于防护2500kA的8/20波形冲击脉冲的能力。

以上结论的计算过程发表在IEC的规范文件中,并以此作为理论依据证明:“按10/350波形测试设计的保护器的防护能力比按8/20波形测试的保护器要高20倍以上。”

三、对10/350波形的采用的争议

我们讨论这样的结论是否正确之前,先看看这样一些事实:

1.按8/20设计的浪涌保护器的实际应用状况

多年来,在所有采用ANSI/IEEE标准测试的低压浪涌保护器的市场上,至今没有,也没有必要设计出浪涌能力在2500kA的保护器。其原因在于:

(1)多年现实的应用告诉我们:即使是在雷电现象最恶劣的地方,浪涌能力在8/20波形400kA的保护器所具有的防护水平,对付极端恶劣的直接雷击事件都已经绰绰有余。

(2)在世界范围内,采用8/20测试波形的保护器在保护敏感电子设备免遭直接雷击的打击时所表现出的性能一直非常稳定可靠。

2.IEC内部关于是否应该采用10/350波形也存在争议

1995年,10/350测试波形首先出现在IEC 61312-1 标准文件中。但在此前后,IEC内部对是否采用10/350波形存在着不同的看法,这种反对意见随着人们对直击雷认识的提高,反对的声音也越来越高。

在1995年召开的TC 81委员会会议上,通过多方游说,18个选举国家中的14个对10/350测试波形议案投了赞成票,并通过议案。2000年,在对“IEC 61312-3:2000”修改案进行投票时,19个选举国家中投赞成票的国家减少为13个。从此我们可以看出,到2000年,在IEC内部有近1/3的国家对10/350测试波形持反对态度。

四、IEEE 对直击雷的研究

在IEC 61312-1 标准文件推出以后,IEEE C 62.41.2-2002 标准文件对“首次雷击(first-stroke lightning) 进行了评估,评估范围包括了IEC 61312文件中规定的“半峰值时间”为350毫秒的冲击脉冲(10/350波形),并得出以下结论:

“IEC所谓‘高能量浪涌的防护要求’是建立在有限的数据分析基础之上,其原因在于:当我们把这样的‘要求’和按照IEEE C62 系列文件所设计的浪涌保护器的实际应用效果相比较时,就发现这种‘要求’不可靠。”

IEEE的这次评估审查了以下三方面的问题:

(1)10/350波形是谁首先提出的,依据是什么?

(2)在决定浪涌保护器的测试波形时,到底应该以什么样的技术数据为依据?

(3)10/350波形和直接雷击的相似性到底有多少?

1.什么叫10/350 波形?

10/350 是表示冲击脉冲电流时间变化的数据。其中10(微秒)表示冲击脉冲到达90%电流峰值的时间,而350表示从电流峰值到半峰值的时间(T2)。

事实上,不管成因是否为雷击,任何一个持续时间在350毫秒的高峰值电流(Ipeak)对于任何一种以半导体元件为主的保护器都是致命的。

现在我们可以明确:

IEC 61312-1 标准文件的制定者们采用了10/350波形这个事实。然而,通过该标准文件的IEC TC 81委员会会议还在其标准文件中宣称“采用10/350测试波形的理由就是:常见雷击的‘半峰值’时间就是350毫秒。”

2.确定10/350测试波形到底应该以什么样的技术数据为基础?

既然IEC 确定10/350波形是根据这样的理由,现在我们对这种理由的正确性做出分析。

(1)IEC 61643-1号文件将IEC 61312-1指定为雷电浪涌测试参数的唯一规范性文件。(请参见IEC

61643-1号文件143页的附录A)

(2)IEC 61643-1号文件有关雷电电流的参数的确定依据仅仅只是凭借于1975年和1980年发表在国际电气杂志上的两篇文章。

现在,我们就对这两篇文章进行分析。

▲1975年文章

在分析K·Berger结论之前,我们先看看IEC 61312-1文件的测试波形的选择依据:

IEC 61312-1文件的主要依据是“首次阳性雷击 (first positive str oke)”的参数。对于这种做法,TC 81委员会在该文件的附录A中这样解释到:“我们认为,在所有的闪电中,90%的闪电为阴性,10%为阳性。但由于首次阳性闪电的构成为:首次雷击+长时雷击,所以首次阳性放电能量很大,因此,雷击的峰值参数应该以此作为依据。就1级防护来说,尽管首次阳性雷击的出现机率低于10%,但其各项数据可以涵盖所有闪电中的99%,因此,雷电参数的峰值,如电流峰值参数I peak,闪电电荷参数Q f ,短时雷击参数Q s,具体能量参数W/Q,都应该以此为依据。另外,大多数阴性闪电的峰值远远低于首次阳性直击雷,虽然有些阴性闪电的参数可以比首次阳性直击雷还要高,但比例在所有闪电中不足1%,因此可以忽略不计。

换句话说,IEC 61312-1文件的制定者们认为:只要他们考虑到了那些出现虽然机率较低,但持续时间较长的“首次阳性雷击(first positive stroke)”,就可以确保“安全”。但对于这样的结论,连1975年文章的作者K·Berger自己都认为是片面的。

1975年,从事雷电研究的瑞士电气工程师K·Berger在国际电气杂志上发表文章,认为直击雷的电流波形近似10/350波形。

现在我们来分析一下他得出该结论的关键因素:

雷击采集地点:位于瑞士Lugano湖边附近的San Salvatore山上的一所雷电监测站。

问题1:将高塔引雷造成的回击雷当成直击雷

K·Berger文章中所提到的阳性云—地闪电的探测地点是位于有高塔的山顶上,这和位于山顶的没有高塔的其它建筑的雷电情况不同。有高塔的山顶建筑会引雷。事实上,在K·Berger探测到的所有闪电中,除一次例外,其余的闪电的构成都是先由高塔向上引雷,然后是向下的雷击。而的IEC 61312-1文件却以此为依据,将这种山顶高塔回击雷当作所谓“占自然雷击10%的阳性直击雷”。然而在现实环境中,高塔引雷所引发的回雷击事件在所有雷击事件中的比例还远不到1%。

现在我们知道,IEC 61312-1文件的制定者们以K·Berger的研究结果为依据,把阳性的回击雷(positive return strokes) 看作是首次阳性直击雷,并得出结论:“首次阳性雷击”的电流峰值I peak比阴性的雷击要高得多。但这种认识却是值得怀疑的,依据如下:

20世纪末,“美国国家雷电探测网NLDN”对6千万次闪电进行了研究,结果显示:阳性或阴性的云—地高峰值电流闪电(LPCCG)占其中的146万次,比例为2.46%。而对于所有I max>75kA的闪电,阴性云—地高峰值电流闪电在数量上大大超过阳性云—地高峰值电流闪电。由此可见,IEC有关阴性雷和阳性雷电流大小的结论是站不住脚的

问题2:对阳性回击闪电的波形和阴性闪电的波形的理解

IEC 61312-1文件认为,阳性回击闪电的波形和阴性闪电的波形存在着很大的差异。然而,“美国国家雷电探测网NLDN”的研究却证明这两种波形在很大程度上是类似的。

▲1980年文章

1980年,国际电气杂志发表的一篇文章认为,雷击事件的电流波形近似10/350波形。IEC再次接受了文章的观点。但在国际范围内,包括欧洲其它的权威机构,对此种观点并没有表示赞成。例如总部位于法国的知名非政府国际组织“大型配电系统国际理事会(CIGRE)”的专家们就对此持反对态度,其双语杂志《Electra》也拒绝刊登任何支持类似观点的学术文章。

(CIGRE成立于1921年,其创建宗旨是促进各国电气工程师及专家之间的知识信息交流,并开展学术研究。)

3.10/350波形和直接雷击的相似性到底有多少:雷击持续时间研究

说实话,雷击事件可能是自然界中最难以琢磨的现象之一。其中的主要原因是由于雷电现象研究本身难度很大,因此,在现阶段最可靠的依据就是实际应用效果和大规模的调查研究的结果。目前,大量的研究证明以下的事实是值得信赖的:

(1)2001年,“高压电气工程”的作者J·R·Lucas 在其文章中提出,在计算雷电浪涌时,回击雷过程中出现的高电流是唯一比较特殊的情况。在这一过程中,电流的波形可以表示为:

i = I(e-alpha x t– e-beta x t)

其中波前时间为0.5~10毫秒,波尾时间为30~200毫秒。

但通常来说,雷击电流波形的波前时间应为6毫秒,波尾时间为25毫秒(即6/25)

(2)韩国电力公司进行一项为期5年的研究。结果发现,在他们所监测到的雷击中,95%的半峰时间不到22毫秒,而平均峰值时间为10.82毫秒。

(3)1977年,在日本举行的一项研究中,发现平均半峰时间为40毫秒。

(4)美国国家海洋&大气管理局(NOAA) 经研究提出:“回击雷的峰值电流的变化范围在5~200kA,而半峰时间的变化范围在20~50毫秒。

从以上研究中我们看出:除了回击雷这一例外(0.5~10 / 30~200),大多数直击雷的比较接近8/20波形。

五、IEEE采用的直击雷测试波形

在对雷电浪涌环境,测试波形及测试程序进行了广泛深入的调查研究之后,IEEE最终确定应用于浪涌保护器测试的波形,并在IEEE C62.41.2-2002标准文件中推荐采用:

(1)配电系统C,B类:1.2/50 ~ 8/20 混合波,前者用于电压测试,后者用于电流冲击测试。

(2)配电系统A类:100kHz 环波(模拟低幅瞬态电压和电磁射频干扰)

IEEE 有关雷电浪涌防护的标准文件包括C62.45-2002,C62.41.1-2002及C62.41.2-2002,技术材料总共292页。按照IEEE标准设计生产的浪涌保护器广泛应用在世界上电子设备最敏感,数量最密集的地方,实际应用效果在世界范围长期得到肯定。

防雷电安全知识

防雷电安全知识 闪电是云与之间或云与地之间的一种自然放电现象。一次闪电通常由3—4次、甚至几十次闪击组成,持续时间约达1/4秒。有红、白等等色之分,又有枝状、片状、线状等形态之别。然而,球状闪电人的一生就难得一见。球状闪电行踪不定、快慢不一地曲折飘游,球状闪电多产生于大雷雨之时或大雷雨过后的一段时间内,常在闪电折角处和云地闪击中的地面附近产生,是由带电离子和自由电子组成的等离子体凝结块,常随风和沿着对其有吸引力的电线、金属管道等飘移。据有关史料记载,球状闪电的直径,大至数米,小则几厘米,一般以15—40厘米为常见。它的颜色有黄、白、橙、红等多种,主要是与当时空气的成分不同有关。 雷暴常出现在春夏之交或炎热的夏天,大气中的层结处于不稳定时容易产生强烈的对流,云与云、云与地面之间电位差达到一定程度后就要发生放电,有时雷声隆隆、耀眼的闪电划破天空,常伴有大风、降雨或冰雹,雷暴天气总是与发展强盛的积雨云联系在一起。在天气预报中,常说的雷雨大风等强对流天气,就是指伴有强风或冰雹这种雷暴天气。 由于雷暴的发生发展与积雨云联系在一起,从雷暴云的出现到消失,它有很强的局地性和突发性,水平范围只有几公里或十几公里,在时间尺度上也仅有2-3小时,因此,这种中小尺度天气系统在预报上有一定的难度。 强雷暴是一种灾害性天气,雷电会引起雷击火灾,大风刮倒房屋,拔起大树,果木蔬菜等农作物遭冰雹袭击后损失严重,甚至颗粒无收,有时局部地区暴雨还会引起山洪爆发、

泥石流等地质灾害。 在哪些地方容易遭雷击 一般来说,雷击容易发生在土壤电阻率较小和土壤电阻率变化明显的地方。有金属矿床的地区、河床、地下水出口处、山坡与稻田接壤处、山坡和山脚下、河边、湖边、海边、低洼地区和地下水位高的地方,都是容易遭受雷击的地方。一些孤立的铁塔、烟囱等高大建(构)筑物,也容易遭受雷击。当雷雨来临时,由于树木比较高大,容易受雷电袭击。在雷雨天应远离大树,并尽可能下蹲,双脚并拢。 如何预防触电事故恶劣天气预防触电应注意以下几点: 1.大风、雷雨等恶劣天气中,应尽量减少外出。如必须外出行走时,应仔细地观察地形、谨慎行路,以免踩到电线。应避免在电线杆、铁塔等电力设施附近走动,遇到垂落的电线也应绕行。 2.外出行走时不要赤脚。 3.在室内,如遇雷雨大风天气,应及时将正在运转的电器关闭,并拔出插头;不要赤手赤脚去修理带电的线路或设备;如果不慎浸水,应立即切断电源,以防止正在使用的电器因进水、绝缘损坏而发生事故。 4.雨天在外行走时,要注意观察,不要与路灯杆、信号灯杆及落地广告牌的金属部分接触,有积水的地方应绕行。 5.发现配电盘、厢式变电站等电力设施被水淹没后,在自己与其他人员不靠近的同时,要及时通知供电部门进行处理。 被雷击后可以采取如下办法急救: 1.伤者就地平卧,松解衣扣、腰带等。

避雷器与浪涌保护器的区别

概念 1.避雷器 过电压限制器。当过电压出现时,必雷器两端子间的电压不超过规定定值,是电气设备免受过电压损坏;过电压作用后,又能使系统迅速恢复正常状态。 2.阀片 具有非线性伏安特性的电阻片,在过电压时呈低电阻。从而限制避雷器上的电压,而在正常工频电压下呈高阻,能限制通过避雷器的电流。 3.避雷器的额定电压 是施加到避雷器端子间最大允许工频电压有效值,按照此电压所设计的避雷器能在所规定的动作负载实验中确定暂过电压下正确地工作他是表明避雷器运行特性的一个重要参数。但它不等于系统额定电压。 4.避雷器的残压 放电电流通过避雷器时,其端子间的最大电压值 5.雷电冲击电流 一种8/20波形的冲击电流。因设备调整的限制,视在伯谦时间的实测值为7~9us,波尾中值时间为18-20us。 6.操作冲击电流 视在波前时间大于30us而小于100us,波尾在半峰值时间紧似为视在波前时间2倍的冲击电流。

7.方波冲击电流 迅速上升最大值,在规定时间内大体保持恒定,然后迅速降到零值的冲击波。 8.陡波冲击电流 具有视在波前时间为1us的冲击电流。 9.冲击电流耐受能力(冲击电流迫流容量) 在规定的波形(方波、雷电和线路放电等)情况下,非线性电阻片耐受通过电流的能力,以电流的幅值和次数表示。 10.动作负载试验 用于确定避雷器在规定的条件下可靠重复动作的能力。 模拟雷电过电压动作的实验称为雷电冲击动作负载试验。 模拟操作过电压动作的实验成为操作冲击动作负载试验。 11.避雷器的保护范围 以避雷器到被保护设备之间倒显得最大允许长度,在该范围内被保护设备上的过电压不超过规定值。 12.避雷器的持续电流 在持续运行电压下流过避雷器的电流,以峰值或有效值表示。13.避雷器的持续运行电压 在运行中允许持久地施加在避雷器端子上的工频电压有效值。14.避雷器工频参考电压 在工频参考电流下测出的避雷器上的工频电压最大峰值除以2 15.避雷器的直流参考电流

浪涌保护器选型

电涌保护器选型 随着国际信息潮流的冲击、微电子科技的沸腾和通讯、计算机及自动控制技术的日新月 异,建筑开始走向高品质、高功能领域,形成了一种新的建筑形式——智能建筑。由于在智能建筑中存在众多信息系统,《建筑物防雷设计规范》GB50057-94(2002年版)(以下简称《防雷规范》)提出了安装电涌保护器的相关要求,以保证信息系统的安全稳定运行,笔者仅对其中使用的电涌保护器的产品选型提几点自己的看法。电涌保护器从本质上看就是一种等电位连接用的材料而已,其选型就是指在不同的防雷区内,按照不同雷击电磁脉冲的严重程度和等电位连接点的位置,决定位于该区域内的电子设备采用何种电涌保护器,实现与共用接地体等电位联结。笔者将从电涌保护器的最大放电电流Imax、持续工作电压Uc、保护电压Up、漏电流Ip、告警方式等方面进行论述。按照《防雷规范》第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流。”即电涌保护器的最大钳位电压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。最大放电电流按照《防雷规范》第6.4.6条规定,在LPZOA、LPZOB与LPZ1区的交界处安装电涌保护器其最大放电电流计算如下:根据《防雷规范》规定的“全部雷电流的50%流入建筑物的防雷装置。另50%流入引入建筑物的各种外来导电物、电力线缆、通信线缆等设施”, 表一:首次雷击的雷电流参量 雷电流参数一类防雷建筑物二类防雷建筑物三类防雷建筑物 I幅值(KA)200 150 100 T1波头时间( s)350 350 350 雷电波经建筑物引入的电力线缆、信息线缆、金属管道等分解,总配电间的低配供电线缆雷电流的分流值计算表如表二,线路屏蔽时,通过的雷电流降低到原来的30%,根据《通信局(站)雷电过电压保护工程设计规范》YD/T5098-2001中规定的脉冲为10/350 s波形的电荷量 约为8/20 s模拟雷电波波形电荷量的20 ..倍,具体计算如下: 表二:供电线缆雷电流分流值表 雷电流参数一类防雷建筑二类防雷建筑三类防雷建筑 I幅值(KA)200 150 100 供电线缆总分流值(kA)33.33 25 16.67 每根电缆分流值(kA)11.11 8.33 5.56

SPD(避雷器、电涌保护器、浪涌保护器)的选择

低压配电系统中电涌保护器的选择及安装 [日期:2005-10-24] 来源:转引自“中国防雷商务网”作者:[字体:大中小] 近年来,随着现代化水平的不断提高,民用建筑物内安装的电子信息设备和计算机设备越来越多,电子信息设备一般工作电压较低,耐压水平也很低,极易受到雷电电磁脉冲的危害,因此设有信息系统设备的民用建筑物,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施。建立完善的雷电浪涌过电压保护措施是电气工程设计的重要组成部分,为此本文提出了在实际工程中,如何根据被保护建筑物的特点选择电涌保护器,如何根据低压电源系统的不同形式安装电涌保护器及有关的注意事项。可供工程设计人员实际应用中参考。 1.电涌(浪涌、避雷器)保护器(英文缩写为SPD,以下简称SPD)的分类 (1)开关型SPD,又称雷电流避雷器,这种SPD在没有电涌时为高阻抗,但一旦响应电压电涌时其阻抗就突变为低值,用作这种非线性装置的常见例子有放电间隙,气体放电管,闸流晶体管(可控硅)及三端双向可控硅开关。这类S PD有时称为克罗巴型SPD。 (2)限压型SPD,这种SPD在没有电涌时为高阻抗,但随着电涌电流和电压的增加其阻抗会不断减小,用作这类非线性组件的例子是压敏电阻和抑制二极管,这类SPD有时称为箝压型SPD。 (3)联合型SPD,这种SPD由电压开关型部件和限压型部件联合组装在一起,根据二者的联合参数和应用电压特性可组合装成具有电压开关﹑限压或这两种特性兼有的联合型SPD。 2.SPD的主要性能、指标 (1)最大持续运行电压Uc: 可以持续施加于电涌保护器的最大交流有效值电压或最大直流电压,等于电涌保护器的额定电压。 (2)冲击电流Iimp:

浪涌保护器的安装

浪涌保护器的有关知识和安装 电涌保护器(SPD)工作原理和结构 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。按用途分: (1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

预防雷电的安全知识大全

预防雷电的安全知识大全 预防雷电的安全知识 一、雷电 1、雷暴云的起电 雷暴云中正负不同极性电荷区的形成过程,称为雷暴云的起电过程。雷暴云中存有着强烈的上升气流和各种尺度及不同相态的水成物粒子,通过扩散、离子捕获、粒子间的碰撞分离等过程,使不同尺度的粒子携带上不同极性的电荷,在气流和重力作用下不同极性电荷发生分离,形成正负不同极性的电荷区。当雷暴云中局地电场超过约400kV/m时,就能够产生闪电。 2、雷电的分类 (1)云闪。 通常情况下,一半以上的闪电放电过程发生在雷暴云内的主正、负电荷区之间,称作云内放电过程,云内闪电与发生几率相对较低的云间闪电和云-空气放电一起被称作云闪。 (2)地闪。另一类闪电则是发生于云体与地面之间的对地放电,称为地闪。一次完整的地闪过程定义为一次“闪电,其持续时间为几百毫秒到1秒钟不等。一次闪电包括一次或几次大电流脉冲过程,称为“闪击”,其中的快变化部分叫“回击”。闪击之间的时间间隔一般为几十毫秒。闪电放电能够辐射频带很宽的电磁波,从几Hz到上百个GHz。 3、雷击的几种形式

a、直接雷击 闪电直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 b、感应雷击 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 c、雷电波侵入 因为雷电对架空线路或金属管道的作用,雷电波可能沿着这些管线侵入屋内,危及人身安全或损坏设备。 d、雷击电磁脉冲 是一种作为干扰源的雷电流及雷电电磁场产生的电磁场效应。指闪电直接击在建筑物防雷装置和建筑物附近所引起的效应。绝绝大部分是通过连接导体的干扰,如雷电流或部分雷电流、被雷电击中的装置的电位升高以及电磁辐射的耦合传导。 4、雷击的一般选择性 (1)雷击经常发生在有金属矿床的地区、江河湖海岸、地下水出口处,山坡与稻田接壤的地上和具有不同电阻率土壤的交界地段易遭雷击。 (2)在湖沼、底洼地区和地下水位高的地方也容易遭受雷击。此外地面上的设施状况,也是影响雷击选择性的重要因素。 (3)高耸建筑物、构筑物容易发生雷击,金属结构的建筑物,内部有大量金属体的厂房,或者内部经常潮湿的房间,因导电性好,易发生雷击。

安全防范系统雷电浪涌防护技术要求GA-T670-2006

安全防范系统雷电浪涌防护技术要求 GA/T 670-2006 中华人民共和国公安部2006-12-14发布2007-06-01实施 前言 本标准的附录A、附录B为资料性附录。 本标准由全国安全防范报警系统标准化技术委员会(SAC/TC 100)提出并归口。 本标准起草单位:广西地凯科技有限公司、全国安全防范报警系统标准化技术委员会(SAC/TC100)秘书处、广西壮族自治区公安厅技防办。 本标准主要起草人:王东生、刘希清、张凡夫、施巨岭、张跃、马宁。 1 范围 本标准规定了安全防范系统雷电防护的基本要求,着重规定了安全防范系统雷电浪涌防护的具体要求。 本标准适用于安全防范系统雷电防护的设计、实施和检验等。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18802.1—2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法(IEC 61643-1:1998,IDT) GB 50057-1994(2000年版) 建筑物防雷设计规范 GB 50343-2004 建筑物电子信息系统防雷技术规范 GB 50348-2004 安全防范工程技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 安全防范系统security and protection system:SPS 以维护社会公共安全为目的,运用安全防范产品和其他相关产品,所构成的入侵报警系统、视频安防监控系统、出入口控制系统、防爆安全检查系统等;或由这些系统作为子系统组合或集成的电子系统或网络。 [GB 50348-2004,2.0.2] 3.2 直击雷direct lightning flash 闪击直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 [GB 50057-1994(2000年版)附录8] 3.3 雷电感应lightning induction 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 [GB 50057-1994(2000年版)附录8] 3.4 雷电浪涌lightning surge 与雷电放电相联系的电磁辐射,所产生的电场和磁场能够耦合到电气(电子)系统中而产生破坏性的冲击电流或电压。 3.5 雷电活动区分类classification of thunder and lightning active zone

雷电相关安全知识

雷电相关安全知识 雷电相关安全知识 一、雷电的产生 空中的.尘埃、冰晶等物质在云层中翻滚运动的时候,经过一些 复杂过程,使这些物质分别带上了正电荷与负电荷。地面的凸出物、金属等会被感应出正电荷,随着电场的逐步增强,雷云向下形成下 行先导,地面的物体形成向上回流,二者相遇即形成对地放电。这 就容易造成雷电灾害。 二、雷电的主要特点 冲击电流大、时间短、雷电流变化梯度大、冲击电压高:强大的电流产生的交变磁场,其感应电压可高达上亿伏。 三、雷电造成的破坏 当雷电直接击在建筑物上,强大的雷电流使建(构)筑物水份受热汽化膨胀,从而产生很大的机械力,导致建筑物燃烧或爆炸。另外,当雷电击中接闪器,电流沿引下线向大地泻放时,这时对地电位升高,有可能向临近的物体跳击,称为雷电“反击”,从而造成火灾 或人身伤亡。而感应到正在联机的导线上就会对设备产生强烈的破 坏性。当雷电接近架空管线时,高压冲击波会沿架空管线侵入室内,造成高电流引入,这样可能引起设备损坏或人身伤亡事故。如果附 近有可燃物,容易酿成火灾。 四、雷电发生时如何注意人身安全 当雷电发生时,应尽量避免使用家电设备,如收音机、电视机、计算机、电话机等,室外天线和电源线要接地良好,空调器、电冰箱、抽油烟机也要停止使用,以防感应雷和雷电波的侵害。房屋门 窗要关闭好,有条件的家庭,门窗可安装金属网罩并接地良好,以

防球形闪电入室。如果人在户外,雷雨时应及时进入有避雷设施的 场所,不要在孤立的电杆、房檐、大树、烟囱下躲避。当雷电距离 很近时,不要撑开带铁杆的雨伞,头顶上方要避开金属物,不要使 用手机,避免直击雷的袭击。在水田劳动或者在河里游泳,应立即 离开水中,以防雷电通过水的传导而遭雷击。在雷雨中,若感到头、颈、身体有麻木的感觉,这是即将遭受雷击的先兆,应立即躺下。 雷暴天气出门,最好穿胶鞋,这样可以起到绝缘的作用。万一遇到 被雷电击昏者,应立即进行人工呼吸和外部心脏挤压按摩,并及时 送往医院抢救。

雷电浪涌防护一级测试波形的选择

雷电浪涌防护一级测试波形的选择——8/20波形和10/350 波形的比较研究 本文以Dion Neri 和Bruce Glushakow 所著的白皮书为基础,该白皮书经IEEE审核后被确定为学术理论性文件。 开始论述之前,我们先关注一下这样一个事实:多年来,美国的浪涌保护器(又称瞬态电压抑制器TVSS)的测试方案都以ANSI/IEEE C62.41(美国国家标准委员会/电气电子工程师协会C62.41标准)为测试规范。而在实际应用中,按照该标准进行设计、生产、测试的浪涌保护器在全球市场上取得了良好的应用效果。 一、历史回顾:10/350 作为一级测试波形的由来 在1995年以前,包括美国在内的大多数国家都采用8/20 波形测试浪涌保护器,“国际电气规范”(IEC)也采用相同的做法。但此后,在IEC 61643标准文件中,却对安装在建筑物进线处的浪涌保护器引入了新的“配电系统1级防护”测试方案。为了适应IEC 61643对冲击脉冲电流(I imp)的要求,测试机构不得不将测试波形改为10/350。而这一变化的所谓“理论基础”是:10/350的波形更接近于直接雷击的波形参数,因此,在对此类进行浪涌保护器(IEC称SPD)的有效性测试时采用10/350波形比8/20波形更合适。 然而,在经过大量可靠的跟踪调查之后,IEEE认为对测试方案做出类似的改动根本不具备充分的理由,因此仍然坚持采用8/20波形。但在现实中,IEC引入的“配电系统1级防护”测试新方案却在浪涌保护器市场上造成了混乱:在某些欧洲生产商的鼓动下,“配电系统1级浪涌保护器” 在设计、生产上按照10/350测试脉冲为参考,采用真空管作为防护元件,并宣称该种保护器成为所谓“主流”。他们依据很简单:“既然直接雷击的波形只能用10/350波形的脉冲进行模仿,所以,ANSI/IEEE所主张的8/20波形的测试规范就不足以起到防护直接雷击的作用。” 二、IEC选择10/350 的技术依据 按照IEC的“新要求”,测试“防护直接雷击的浪涌保护器”时应采用10/350波形冲击脉冲,而测试“防护间接雷击的浪涌保护器”时应采用8/20波形。 从右图可见,100kA的10/350波形脉冲的放电强度是20kA的 8/20 波形脉冲的125倍。125 × 0.4 = 50 照此类推:我们可以得出以下结论: 如果使用压敏电阻MOV作为浪涌抑制元件,设计一个能防护100kA 的10/350 波形的冲击脉冲的保护器,它所具备的放电能力必须相当于防护2500kA的8/20波形冲击脉冲的能力。 以上结论的计算过程发表在IEC的规范文件中,并以此作为理论依据证明:“按10/350波形测试设计的保护器的防护能力比按8/20波形测试的保护器要高20倍以上。” 三、对10/350波形的采用的争议 我们讨论这样的结论是否正确之前,先看看这样一些事实: 1.按8/20设计的浪涌保护器的实际应用状况 多年来,在所有采用ANSI/IEEE标准测试的低压浪涌保护器的市场上,至今没有,也没

浪涌保护器(SPD)的设置及应用现状

浪涌保护器(SPD)的设置及在福建省的应用现状 作者:福建省建筑设计研究院林卫东 杭州鸿雁电器公司谢文平 摘要:为减少雷电电磁脉冲、开关浪涌等对设备所造成的损坏,本文分析了建筑物内电气设备要设置浪涌保护器(SPD)的原因,列出了部分防雷规范、规定及标准,介绍了选用设置各种电源浪涌保护器和信号浪涌保护器的方法;同时本文简述了浪涌保护器在福建省的应用现状,对常用几个厂家的产品进行了市场信息比较,指出浪涌保护器在福建省各个地区必将得到进一步普及。关键词:浪涌保护器(SPD)应用选用设置电压保护水平放电电流雷电电磁脉冲 (转载请保留电气论坛https://www.360docs.net/doc/8410045982.html, 版权!) 在地球上,雷电时时刻刻都存在,国际电工委员会(IEC)将雷电称之为电子化时代的一大公害。据统计,在任一时刻平均有2000多个雷暴在进行着,火灾、爆炸、建筑物破坏、人畜伤亡、设备损坏等无不与之相连,雷暴被联合国列为十大自然灾害之一,它严重影响着人类的各种活动。我国每年因雷害造成的损失达100亿元人民币。 当人类社会进入电子信息时代后,雷灾出现的特点与以往有极大不同,可概括为:(1)受灾面积大大扩大,雷害从电力、建筑这两个传统领域扩展到几乎所有行业,特别是与高新技术关系最密切的领域,如航天航空、国防、邮电通信、计算机、电子工业、石油化工、金融证券等。(2)入侵方式从平面入侵变为立体入侵,从闪电直击和雷电波沿线传输变为空间闪电的脉冲电磁场从立体空间入侵到任何角落,无孔不入地造成灾害,因而防雷工程已从防直击雷、感应雷进入防雷电电磁脉冲(LEMP)。(3)雷灾的经济损失和危害程度大大增加了。有时候雷电袭击对象本身的直接经济损失并不太大,而由此产生的间接损失和影响却难以估量。例如,1999年8月27日下午3点,某寻呼台遭受雷击,导致该台中断数小时,其直接损失是有限的,但间接损失大大超过直接损失。 产生上述现象的根本原因是雷灾的主要对象已集中在微电子设备上,雷电本身并没有变,而是随着科学技术的发展,微电子技术的应用渗透到各种生产和生活领域,微电子器件极端灵敏这一特点很容易受到无孔不入的LEMP的作用,造成微电子设备的失控或者损坏。为此,当今时代的防雷工作的重要性、迫切性、复杂性大大增强了,雷电的防御已从直击雷防护进入到感应雷、雷电电磁脉冲等的防护。当然,来自电路的开、断操作,感性和容性负载的开关操作及来自短路电流的阻断等引起的开关浪涌也是造成微电子设备失控或损坏的原因之一。美国的调查数据表明,在保修期内出现问题的电气产品中,有63%是由于浪涌造成的。 一、浪涌保护器的设置原因 雷电防护包括针对建筑物的直击雷防护,以及针对建筑物内设备、人员的雷电波侵入防护和雷击电磁脉冲防护两大部分。 多数人对直击雷防护并不陌生,但对雷电电磁脉冲防护的认识仍非常有限。雷击发生时,大约50%的雷电流将沿接闪——引下线通路直接泄放入地,频率成分非常复杂的雷电流快速通过引下线时会感应出极强的电磁场,建筑物中的管线相对切割磁力线产生感应电流(即雷击电磁脉冲),间接导致设备损坏和人员伤亡;另一方面,至少有50%的雷电流将沿着进出建筑物的管线泄放,对人员和设备构成直接威胁。因此,雷电波侵入与雷击电磁脉冲防护已成为现代防雷设计的重中之重。依据IEC61024-1的说明,室内雷电保护的主要防护措施是:浪涌保护器安装和等电位连接。等电位连接的目的,在于减小保护区间内,各金属部件和各系统之间的电位差。对非带电金

小学生防雷电安全知识

精选版doc 小学生防雷电安全知识 一、室内防雷 1、立即关闭电视、电脑,注意千万不要使用电视机的室外天线,因为雷电一旦击中电视的天线,雷电就会沿着电缆线传入室内,威胁电器和人生安全。 2、尽可能的关闭各类家用电器,拔掉一切电源插头,以防雷电从电源线入侵,造成火灾或人员触电伤亡。 3、不要触摸或靠近金属水管以及与屋顶相连的上下水管道,不要在电灯下站立。尽量不要使用电话、手机,以防雷电波沿通信信号线入侵,造成危险。 4、关好门窗。打雷时,不要开窗户、不要把头或手伸出窗外。广东省球雷活动比较频繁,对钢筋水泥框架结构的建筑物来说,一般关闭门窗可以预防侧击雷和球雷的侵入。 5、不要在室外参加体育活动,如赛跑、打球、游泳等。 6、不宜使用花洒冲凉。这主要是因为万一建筑物被雷直击时,巨大的雷电流将沿着建筑物的外墙、供水管道流入地下,雷电流有可能沿着水流导致淋浴者遭雷击伤亡。同时也不要去触摸水管、煤气管道等金属管道。 二、室外防雷 1、最好就近进入避雷装置良好的建筑物内,这是最安全的。千万不要进入庄稼地的小棚房,小草棚,因为在那里避雷雨很容易遭受雷击。 2、要远离高烟囱、铁塔、电线杆等物体,否则是很危险的。 3、打雷下雨时,注意不要打金属骨架雨伞,或者扛举长形物体;不要骑摩托车或者自行车。可以躲进有金属车身的汽车内,一旦汽车被雷击中,金属会将电流导入地下。 4、不要惊慌,不要奔跑,最好双脚并拢,双手抱膝就地蹲下,越低越好。 5、不宜躲在大树底下。强大的雷电流通过大树流入地下向四周扩散时,会在不同的地方产生不同的电压,在两脚之间产生跨步电压。 6、不宜到室外收取晾晒在铁丝上的衣物。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合! .

防雷电安全知识

防雷电安全知识 雷电是发生在雷暴云(积雨云)云与云、云与地、云与空气之间的击空放电现象,常伴有强烈的闪光和隆隆的雷声,强雷暴是一种灾害性天气,雷电会引起火灾、电力中断事故、干扰通讯、甚至造成人身伤害,为保证安全,提高安全防范能力,特编辑防雷电安全知识,请各单位在职工中宣传、教育: 一、雷雨天气电工作业的有关规定: 1、在工作中遇雷、雨、大风或其他任何情况威胁到工作人员的安全时,工作负责人或专职监护人可根据情况,临时停止工作。 2、雷雨、大风天气或事故巡线,巡视人员应穿绝缘鞋或绝缘靴;尽量避免在雷电天气巡线。 3、杆塔上作业应在良好天气下进行,在工作中遇有6级以上大风及雷暴雨、冰雹、大雾、沙尘暴等恶劣天气时,应停止工作。特殊情况下,确需在恶劣天气进行抢修时,应组织人员充分讨论必要的安全措施,经本单位主管生产的领导(总工程师)批准后方可进行。 4、在冰雪、霜冻、雨雾天气进行高处作业,应采取防滑措措施。5、雷雨天不应携带电雷管,并应停止爆破作业。在强电场附近不得使用电雷管。 6、雨天在户外操作电气设备时,操作杆的绝缘部分应有防雨罩或使用带绝缘子的操作杆,并戴绝缘手套。 7、在1OkV跌落式熔断器与lOkV电缆头之间,宜加装过渡连接装臵,使工作时能与跌落式熔断器上桩头有电部分保持安全距离。在lOkV跌落式熔断器上桩头有电的情况下,末采取安全措施前,不得在跌落式熔断器下桩头新装、调换电缆尾线或吊装、搭接电缆终端头。如必须进行上述工作,则应采用专用绝缘罩隔离,在下桩头加装接地线。工作人员站在低位,伸手不得超过跌落式熔断器下桩头,并设专人监护。上述加绝缘罩工作应使用绝缘工具,雨天禁止进行以上工作。8、雷电时,严禁进行倒闸操作和更换熔丝(保险丝)工作。 9、雷雨天气,需要巡视室外高压设备时,应穿绝缘靴,并不得靠近避雷器和避雷针。 10、雷电时,严禁测量线路绝缘。 11、雷电时,禁止在室外变电所或室内的架空引入线上进行检修和试验。 二、通用防雷电避险知识: (一)室外防雷: 1、在哪些地方容易遭雷击:一般来说,雷击容易发生在土壤电阻率较小和土壤电阻率变化明显的地方。有金属矿床的地区、河床、地下

浪涌防护

电子设备的浪涌防护 浪涌 浪涌顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。 浪涌电压是指的超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。 浪涌电流是指电源接通瞬间或是在电路出现异常情况下产生的远大于稳态电流的峰值电流或过载电流。 在电子设计中,浪涌主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,由于电路本身的非线性有可能高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰叫做浪涌.它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等. 而浪涌保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感. 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。供电系统浪涌的产生 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。 外部原因: 雷击对地闪电可能以两种途径作用在低压供电系统上: (1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。 (2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。 直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达 100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。 间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。 内部原因: 内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和

(安全生产)安全知识竞赛试题

一、选择题 1.未满___的儿童,不能像大人一样到马路上骑自行车。因为马路上车很多,容易出危险。A.10岁B.11岁√ C.12岁 2.骑自行车时,千万不要与___抢道;不要双手撒把骑车。 √A.机动车B.自行车C.行人 3.火车运行途中,不要把___的任何部分伸到车窗外,也不要乱走动,以免碰伤,烫伤。 √A.身体B.物品C.食品 4.地铁到站或启动时要留意听清___,以免造成提前下车或过站。 A.别人说话B.收音机√C.广播 5.船在水上航行,受___条件影响较大。 A.身体B.健康√C.气候 6.电器起火时,要先___。 A打家里电话报警√B切断电源C用灭火器灭火 7.放烟花爆竹应该在哪里放? A人多的地方√B堆放着易燃物处C 草地上 8.衣服着火时,需___。 A 扑在地上打滚√ B 用手拍身上的火 9. 当油起火时,应用___。 √A 泡沫灭火器B干粉灭火器C 1211灭火器 10. 点蚊香要在___的地方点。 A 窗口B桌子上√C 空地上 11.足球比赛时___ . A.穿带铁钉的足球鞋√B.穿普通的足球鞋 12.上体育课时,要穿___ . √A. 运动服B. 礼服 13.上体育课时,___ . A. 可带别针、小刀等金属硬物√ B.不带与体育课无关的物品 14.初学游泳的人___ . √A. 应准备一些防护用品B. 可直接下水游泳 15.在单杠、双杠练习时,周围应摆放___ . √A. 海绵垫B. 纸张 16.要饮用___水。 √A、优质B、自来C、白开D、泉 17.冷饮有___作用。 A、生病√ B、消暑 C、润喉 D、凉爽 18.食物中毒是___。 √A、非常危险B、一般危险 C、没什么大不了 D、很可怕 19.平时要注意___的意识。 √A、自我保护B、中毒C、眼睛D、身体 20.放置时间___的食品,不能吃。 A、不久√ B、过久 C、短

SPD浪涌保护器一级防雷与二级防雷的区别

SPD浪涌保护器一级防雷与二级防雷的区别分级防护 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。 第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。 第三级防雷器是对LEMP和通过第二级防雷器的残余雷击能量进行保护。 1、第一级保护 目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V。入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA。 该级电源防雷器应是连接在用户供电系统入口进线各相和大地之间的大容量电源防雷器。一般要求该级电源防雷器具备每相100KA以上的最大冲击容量,要求的限制电压小于1500V,称之为CLASS I级电源防雷器。这些电磁防雷器是专为承受雷电和感应雷击的大电流以及吸引高能量浪涌而设计的,可将大量的浪涌电流分流到大地。它们仅提供限制电压(冲击电流流过电源防雷器时,线路上出现的最大电压称为限制电压)为中等级别的保护,因为CLASS I级保护器主要是对大浪涌电流进行吸收,仅靠它们是不能完全保护供电系统内部的敏感用电设备的。 第一级电源防雷器可防范10/350μs、100KA的雷电波,达到IEC规定的最高防护标准。其技术参考为: 雷电通流量大于或等于100KA(10/350μs);残压值不大于

低压配电系统浪涌保护器及雷电浪涌防护_潘家利

文章编号: 1001-5191(2002)02-0061-03 低压配电系统浪涌保护器及雷电浪涌防护 潘家利1,周茂华2 (1.海南省防雷技术中心,570203; 2.海南省气候中心,570203) 摘 要:介绍在设备电源线路上安装的低压配电系统浪涌保护器(Surg e protectiv e Device 简称SPD )的基本要求及电涌保护系统最常见的元件及浪涌保护器主要的技术参数。为微电子设备及信息系统减少雷电浪涌的危害找出相应的防护措施。 关键词:浪涌保护器;雷电浪涌防护;多级保护中图分类号: P 427.32  文献标识码:A Surge Protector and Lightning Surge Protective Device for LV Distribution System PAN J ia-li,ZHOU M ao-hua (H ainan Lightning Protection Technology Center ,570203;Hainan Climate Center ,570203)Abstract : This paper made an introduction to the basic requirem ents,the most comm on components and main technical parameters of surge protectiv e de v ice (SPD ),which is installed in the LV distribution system on equipm ent pow er supply circuits,providing correspo nding protection measures against lightning surge damages to the microelectronic equipm ent and information system. Key words :surg e protective device (SPD );protection against lightning surge ;multi -stag e protection 收稿日期:2002-04-18 作者简介:潘家利(1970-),男,海南省文昌人,海南省防雷技术中心工程师,现从事防雷工作。 现在我们已经进入微电子、计算机技术、通信技术迅猛发展的信息化、网络化的时代。先进的测量、保护、监控、电信和计算机等电子产品正日益广泛地应用于各建筑物中。信息通讯系统(ASDL 、ISDN 、DDN 专线)及电子设备间的信息交流都通过数据及高频信号进行传递。这些微电子仪器设备普遍存在着绝缘程度低、过电压电流耐受能力差的致命弱点。一旦遭受雷击过电压的冲击,轻则造成这些电子系统运行失灵,重则造成设备的永久性损坏,严重时还可能造成人员伤亡。因此,对这些微电子设备系统进行雷电浪涌防护十分必要。 1 浪涌保护器SPD 及雷电电涌防护 自富兰克林发明避雷针以来,避雷针(包括避雷带、避雷网)对直击雷的防护是有效的防雷手段。它是通过吸引(更准确讲是拦截)下行的雷电通道,并将雷电主放电电流经过引下线及接地装置疏导到大地,以保护避雷针保护范围内的物体免遭雷击,但 它只能起泄放雷电流50%的作用,其它50%通过引入建筑物的各种外来导电物、电力线、通信线等设施的途径泄放入地[1] 。因此对于敏感的微电子设备较易受到雷电浪涌的危害。另外,电源中还有由带电容器的功率因数校正负载开关的频繁切换动作引起的浪涌。 1.1 浪涌保护器常用的元件 1.1.1 气体放电管 气体放电管是一种间隙式的防雷保护元件。当放电管两极之间施加一定电压时,便在极间产生不均匀电场。在此电场的作用下,管内气体开始游离。当外加电压增大到使极间场强超过气体的绝缘强度时,两极之间的间隙将放电击穿,由原来的绝缘状态转化为导电状态。导通后放电管两极之间的电压维持在放电弧道所决定的残压水平。这种残压一般很低,从而使得与放电管并联的电子设备免受电压的损坏。 第23卷 第2期 广 西 气 象 V ol.23 N o.22002年6月 J O U T U RN AL O F GU AN GX I M ET EO RO LO GY J un.2002

浪涌保护器

浪涌保护器(SPD)的基本原理及应用 河北建设集团张海军 摘要:本文主要介绍SPD的基本原理、分类与应用。 关键词:SPD;基本原理:分类;应用 1 引言 电涌保护器(Surge Protective Device,SPD)又称浪涌保护器,是用于带电系统中限制瞬态过电压和导引泄放电涌电流的非线性防护器件,用以保护耐压水平低的电器或电子系统免遭雷击及雷击电磁脉冲或操作过电压的损害。近年来,电子信息系统(如电视、电话、通信、计算机网络等)发展迅猛,电子信息设备大量涌现和普及。这类系统和设备往往比较昂贵和重要,其工作电压、耐压水平很低,极易受到雷电电磁脉冲的危害,为此需采用SPD做过电压保护。 由于各国遵循的标准不一样,产品的规格没有统一,参数的标识也各自有侧重,远不如其他电气产品规范,这就给设计选型带来很大不便。在工程设计中,常见品牌按产地划分主要可分为国产产品、欧洲产品和美洲产品。国产产品参数设置较乱,规格多样,残压较高。规范产品的型号设置有的仿欧洲产品,有的遵循国标定参数,大部分产品都标注In与Imax。由于国产产品对应用场所要求较低,建筑物等级不高,设备耐压值大,所以一些参数要求可适当放松。 欧洲产品一般标注最大放电电流,产品型号也是根据这个参数设定的。例如欧洲某着名品牌XXX65、XXX40,其中数值65、40就

是Imax。但我国标准明确规定要用标称放电电流In来进行选型,这是目前在工程设计中遇到的一个尴尬情况。经查该产品资料,XX65的In值不超过20 kA,XX40的In值不超过15 kA。如果依照GB50343建议值,这两种产品只能用于设备末端三级保护,但在实际设计中,却装在了一、二级上,这明显与国家标准的选型参数不符,且残压较高,普通型号一般超过1 200 V,一旦接线环境不好,很容易突破设备耐压值。一般欧系产品Uc值较小,且投机取巧标注线电压,因此在选型时,较容易出现误导。 2 SPD概述 2.1 SPD的工作原理 电涌保护器适用于220/380V低压电源保护,是一种非线性元件,根据IEC标准规定,电涌保护器是主要抑制传导过来的线路过电压和过电流的装置。电涌保护器起到保护作用,基本要求是必须承受预期通过的雷电电流,并且通过电涌最大钳压,有效熄灭在雷电流通过后产生的工频续流,把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但至少包含一个非线性电压限制元件。常用电涌保护器有MOV(Metal Oxide Varistor)同气体放电管等。电涌包含强大的能量因此不能被阻止。基于这种原因,保护敏感电气设备免受电涌损坏的策略是把电涌从设备分流后流入大地。

《安全常识-灾害防范》之预防雷电的安全知识

预防雷电的安全知识 雷电的基本知识 雷暴云的起电 雷暴云中正负不同极性电荷区的形成过程,称为雷暴云的起电过程。雷暴云中存在着强烈的上升气流和各种尺度及不同相态的水成物粒子,通过扩散、离子捕获、粒子间的碰撞分离等过程,使不同尺度的粒子携带上不同极性的电荷,在气流和重力作用下不同极性电荷发生分离,形成正负不同极性的电荷区。当雷暴云中局地电场超过约400kV/m时,就可以产生闪电。 2、雷电的分类 (1)云闪。 通常情况下,一半以上的闪电放电过程发生在雷暴云内的主正、负电荷区之间,称作云内放电过程,云内闪电与发生几率相对较低的云间闪电和云-空气放电一起被称作云闪。 (2)地闪。另一类闪电则是发生于云体与地面之间的对地放电,称为地闪。一次完整的地闪过程定义为一次“闪电,其持续时间为几百毫秒到1秒钟不等。一次闪电包括一次或几次大电流脉冲过程,称为“闪击”,其中最强的快变化部分叫“回击”。闪击之间的时间间隔一般为几十毫秒。闪电放电可以辐射频带很宽的电磁波,从几Hz到上百个GHz。 3、雷击的几种形式 a、直接雷击 闪电直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 b、感应雷击 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。

c、雷电波侵入 由于雷电对架空线路或金属管道的作用,雷电波可能沿着这些管线侵入屋内,危及人身安全或损坏设备。 d、雷击电磁脉冲 是一种作为干扰源的雷电流及雷电电磁场产生的电磁场效应。指闪电直接击在建筑物防雷装置和建筑物附近所引起的效应。绝大多数是通过连接导体的干扰,如雷电流或部分雷电流、被雷电击中的装置的电位升高以及电磁辐射的耦合传导。 4、雷击的一般选择性 (1)雷击经常发生在有金属矿床的地区、江河湖海岸、地下水出口处,山坡与稻田接壤的地上和具有不同电阻率土壤的交界地段易遭雷击。 (2)在湖沼、底洼地区和地下水位高的地方也容易遭受雷击。此外地面上的设施状况,也是影响雷击选择性的重要因素。 (3)高耸建筑物、构筑物容易发生雷击,金属结构的建筑物,内部有大量金属体的厂房,或者内部经常潮湿的房间,因导电性好,易发生雷击。 (4)在旷野,即使建筑物不高,但是由于它比较孤立、突出,因而也比较容易遭雷击;如田间的休息凉亭、草棚、水车棚、工具棚等。 (5)烟囱冒出的热气和烟囱排出的大量含有导电微粒和游离分子气团,它比空气易于导电,等于加高了烟囱,易引发雷击。 5、海南雷电活动的基本情况 海南是全国最严重的雷击高发区重灾区,年平均雷暴日数以113天,最高达149天。儋州平均雷暴日数以118.3天,最高达139天。 海南年平均落雷密度为11.53次/Km2,高居全国之冠。落雷密度海南岛东部、北部、西部、中部高,西南部、南部、东南部略低。 每年的一月到十二月都有雷击发生。集中时段为4-10月。 每年因雷击事故,造成50-60人的伤亡和近亿元的经济损

相关文档
最新文档