智能无线温度传感器的设计

智能无线温度传感器的设计
智能无线温度传感器的设计

题目智能无线温度传感器的设计

摘要

本文介绍的重点是无线温度传感的设计。硬件部分是以单片机为核心,还包括数据采集模块,模-数转换模块,无线数传模块和串行接口部分,还有一些简单的外围电路。模-数转换模块,实现对采集到的数据进行模拟量到数字量的转换。无线数传模块是通过单片机的通信口发射和接受信号。软件部分,主要是应用汇编语言。编程时要用尽量少的语句,实现系统的功能。

关键词:传感器,单片机,无线

金华职业技术学院毕业论文

目录

中文摘要 (ⅰ)

英文摘要 (ⅱ)

目录 (ⅲ)

引言 (1)

第一章硬件电路设计 (2)

1.1 系统结构设计 (2)

1.2 单片机 (2)

1.3 模-数转换模块 (3)

1.4 温度传感器 (5)

1.5 信号调理电路 (6)

1.6 无线数传模块 (6)

第二章软件系统设计 (8)

2.1系统软件结构 (8)

2.2 程序流程图 (10)

第三章系统调试 (12)

3.1 硬件调试 (12)

3.2 软件调试 (12)

3.3 软硬结合调试 (12)

总结 (14)

谢辞 (15)

附录A 程序清单 (16)

附录B 原理图 (19)

附录C 实物图 (20)

参考文献 (21)

引言

现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。近百年来,温度传感器的发展大致经历了以下三个阶段;(1)传统的分立式温度传感器(含敏感元件);(2)模拟集成温度传感器和控制器;(3)智能温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。

无线与在线式温度传感器相比较,有如下优点:

1、无线温度传感器的安装位置没有任何限制摆放灵活且无须布线。

2、无线温度传感器采用防水设计可以应用于非常潮湿的环境。

3、无线温度传感器的安装和维护非常简便。

4、减少了电缆使用量,降低了系统成本、提高了系统的可靠性。

5、如果库房翻新,无线温度传感器不存在连接电缆问题可以随意拆卸,不存在重复投资问题。

6、系统可以很方便的与空调机的自动控制系统连接。

7、无线连接方式是当今传感器发展的一个主要趋势。

现代测量中,无线温度传感器已成为日益重要的一种测量工具。现在无线温度传感器已广泛应用于粮库、油田、矿井以及饭店等需要远距离监控温度的场合。

此系统的最前端是传感器,传感器把采集到的模拟信号,经过信号调理电路,对采集到的信号进行适当调整,以适合A/D转换器的需要。A/D转换器采用MC14433,它满足本系统的要求,MC14433把模拟量转换为数字量后输出给单片机,本文采用AT89C2051作为核心控制部件,它功能比较齐全,可以满足系统设计的需要。单片机控制数据的采集,传输,它是整个系统的核心。由单片机处理后,通过无线发射模块来发射。这样就实现了无线温度传感器的功能要求。

系统的硬件部分,将部分重点的在第一章里做详细介绍。系统的软件部分,主要用汇编语言。软件部分包括单片机初始化的设计,串行通信的设计,A/D转换的设计。软件部分的内容将在第二章里做详细介绍。调试部分包括硬件调试和软件调试以及软硬件结合调试,系统调试部分的内容将在第三章里做详细介绍。

第一章 硬件电路设计

1.1 系统结构设计

智能无线温度传感器的设计,此系统的最前端是温度传感器,温度传感器把采集到的模拟信号,经过信号调理电路,对采集到的信号进行适当调整,以适合A/D 转换器的需要。AD 转换器采用MC14433,它可以满足这次设计需要的精度。MC14433把模拟量转换为数字量后输出给单片机,单片机选用AT89C2051,单片机控制数据的采集,传输,它是整个系统的核心。由单片机处理后,通过无线收发模块来收发。这样就实现了无线温度传感器的功能。结构框图如1-1所示

图1-1 系统结构框图

1.2 单片机

单片机是在一块硅片上集成了中央处理器(CPU ),内存(RAM ,ROM ,EPROM )和各

种输入输出接口(定时器,计数器,并行I/O 口,串行口,A/D 转换器以及脉冲调制器PWM 等),这样一块芯片具有一台计算机的功能,因而被称为单片微型计算机。 一、AT89C2051简介

本次设计用的单片机是AT89C2051,它的功能与AT89C51相同,而且引脚只有20脚,而这次设计只需要用到单片机的P1口和P3口,所以用AT89C51是很浪费资源和空间的,而AT89C2051的管脚能满足本系统的需要, 售价也不高,市场供应也很充足。因此本系统采用AT89C2051。引脚框图见图2-1。

图1-2 AT89C2051的引脚框图

AT89C2051单片机是ATMEL 公司生产的带2K 字节闪速可编程的低电压CMOS 8

位微

型控制器,与标准的MCS51型单片机指令集相兼容。它有一个可编程的全双工串行通信接口,能同时进行串行发送和执着收。通过RXD引脚(串行数据接收端)和TXD引脚(串行数据发送端)与外界进行通信。

P3口也可作为AT89C51的一些特殊功能口,如P3.1 TXD(串行输出口);P3.3 /INT1(外部中断1);P3.4 T0(定时器0外部输入)等。

本设计把P3.1用于串行接口部分,P1.0-P1.7作为单片机的输入部分。

二、晶体振荡电路

晶体振荡电路如图1-3所示:

内部时钟方式,利用内部振荡器在引脚XTL1和

XTL2两端跨接晶体或陶瓷谐振器,这样构成了稳定的

自激震荡器。C1和C2的值通常选择为20PF左右。 C1

和C2对频率有微调作用,晶体后陶瓷谐振器的频率

为12MHZ。

图1-3 晶体振荡电路

1.3 模-数转换模块

模-数转换模块的主要功能是完成从模拟量到数字量的转换。这个模块的核心是A/D 转换器。

本次毕业设计选择A/D转换采用芯片MC14433,A/D转换芯片种类有很多,有串行的,有并行的,但是MC14433的外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,它能满足系统的要求,且硬件电路设计比较简单,价格也实惠。所以这次设计选用MC14433。

一、MC14433的基本特点、引脚排列和功能

MC14433是美国Motorola公司推出的单片3 1/2位A/D转换器,其中集成了双积分式A/D转换器所有的CMOS模拟电路和数字电路。具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的A/D转换器,其主要功能特性如下:精度:读数的±0.05%±1字

模拟电压输入量程:1.999V和199.9mV两档

转换速率:2-25次/s

输入阻抗:大于1000MΩ

电源电压:±4.8V—±8V

功耗:8mW(±5V电源电压时,典型值)

采用字位动态扫描BCD码输出方式,即千、百、十、

个位BCD 分时在Q0—Q3轮流输出,同时在DS1—DS4端输

出同步字位选通脉冲,很方便实现LED的动态显示。

MC14433的引脚排列如1-4图所示。主要的引脚功能如

下:

图1-4 MC14433引脚图

1、Pin2(V R)—基准电压,此引脚为外接基准电压的输入端。MC14433只要一个正基准电压即可测量正、负极性的电压。此外,V R端只要加上一个大于5个时钟周期的负脉冲(V

),就能够复为至转换周期的起始点。

R

2、Pin3(V x)—被测电压的输入端,MC14433属于双积分型A/D转换器,因而被测电压与基准电压有以下关系:输出数据=(V X/V R)×1999

3、Pin9(DU)—更新显示控制端,此引脚用来控制转换结果的输出。

4、Pin14(EOC)—转换周期结束标志位。每个转换周期结束时,EOC将输出一个正脉冲信号。

5、Pin1

6、1

7、1

8、19(DS4、DS3、DS2、DS1)—多路选通脉冲输出端。DS1、DS2、DS3和DS4分别对应千位、百位、十位、个位选通信号。当某一位DS信号有效(高电平)时,所对应的数据从Q0、Q1、Q2和Q3输出。

6、Pin20、21、22、23(Q0、Q1、Q2、Q3)—BCD码数据输出端。其中Q0为最低位,Q3为最高位。该A/D转换器以BCD码的方式输出,通过多路开关分时选通输出个位、十位、百位和千位的BCD数据。

二、MC14433和单片机的接口设计

MC14433的A/D转换结果是动态分时输出的BCD码,Q0~Q3,DS1~DS4可以直接和单片机AT89C2051的P1口相连,接口电路如图1-5所示。DU和EOC相连,以选择连续转换方式,每次转换结果都送至输出寄存器。AT89C2051读取A/D转换结果可以采用中断方式,EOC端与外部中断输入端INT1相连如图中所示,也可以采用查询方式。采用查询方式时EOC端可接如任一I/O口或扩展I/O口。图中的MC1403是集成精密+2.5V电

压基准源,经电位器分压后作为A/D转换用的基准电压。满量程输入电压为2V。

图1-5 MC14433和单片机AT89C2051的接口

1.4 温度传感器

本次毕业设计采用的温度传感器是AD590,它有线性好、精度适中、灵敏度高、体积小、使用方便等优点。AD590是美国模拟器件公司生产的单片集成两端感温电流源。AD590的封装和基本应用电路如图1-6所示。

它的主要特性如下:

1、流过器件的电流(μA)等于器件所处环境的热力学温度(开尔文)度数,即:

Ir/T=1μA/K

式中:Ir—流过器件(AD590)的

电流,单位为μA;T—热力学温度,单

位为K。

2、AD590的测温范围为-55℃~

+150℃。

3、 AD590的电源电压范围为4V~

30V。电源电压可在4V~6V范围变化,电

流Ir变化1μA,相当于温度变化1K。

AD590可以承受44V正向电压和20V反图1-6 AD590的封装和应用电路向电压,因而器件反接也不会被损坏。

4、输出电阻为710MΩ。

5、精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃

范围内,非线性误差为±0.3℃

1.5 信号调理电路

信号调理电路是传感器与A/D之间的桥梁,也是测控系统中重要组成部分。信号形式的变换,放大,滤波,共模抑制及隔离等等,都是信号调理的主要功能。

信号放大电路通常由运放承担,运放的选择主要考虑精度要求(失调及失调温漂),速度要求(带宽,上升率),幅度要求(工作电压范围及增益)及共模抑制要求。常用于前置放大器的有μA741,LM741,LF347,OP-07,ICL7650等。本系统采用的是LM741,放大倍数为5倍。输出电压为0~5V。信号调理电路如1-7图所示

图1-7 信号调理电路

1.6 无线数传模块

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、数字图像传输等领域中。

一、DF发射模块

DF发射模块的等效电路图如图1-8所示

主要技术指标:

1、通讯方式:调幅AM

2、工作频率:315MHZ/433MHZ

3、频率稳定度:±75KHZ

4、发射功率:≤500MW

5、静态电流:≤0.1UA

6、发射电流:3~50MA

7、工作电压:DC 3~12V

DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。

DF数据模块具有较宽的工作电压范围

3~12V,当电压变化时发射频率基本不变,和

发射模块配套的接收模块无需任何调整就能

稳定地接收。当发射电压为3V时,空旷地传

输距离约20~50米,发射功率较小,当电压

5V时约100~200米,当电压9V时约300~

500米,当发射电压为12V时,为最佳工作电

压,具有较好的发射效果,发射电流约60毫

安,空旷地传输距离700~800米,发射功率

约500毫瓦。当电压大于l2V时功耗增大,

有效发射功率不再明显提高。这套模块的特图1-8 DF发射模块的等效电路图点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。

DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平应接近DF数据模块的实际工作电压,以获得较高的调制效果。

第二章软件设计

软件设计是系统设计的重要内容,在硬件电路设计完成后,系统功能的实现依靠软件来完成。通过对系统分析,整个软件实现数据采集、无线数传等功能。数据采集功能是温度模拟参数的A/D转换,无线数传功能是能把数据无线发射到显示模块。

全部软件采用模块化设计,在每个功能模块中,将少量与其他模块共享的变量屏蔽后,该模块均可独立于其他模块运行。这种设计有利于系统软件的修改、调试。即使以后根据需要进行系统功能扩展,也可以很方便地编写出相应的功能模块,独立调试后再添加到系统主程序中去。

2.1系统软件结构

按照系统控制功能要求,系统软件主要包括:初始化程序、采集程序、串行通信程序。系统总体结构如图2-1所示:

一、初始化程序

初始化程序包括片内RAM初始化程序、中断初始化程序、串行口初始化程序和A/D转化初始化程序。

二、采集程序

采集程序主要是把信号采集来通过MC14433把模拟信号转化成数字信号,能为单片机识用。

MC14433在DS1期间输出的千位BCD码包含过量程、欠量程和极性标志信息,这些信息所代表的意义见下表。

表2-1 DS1选通时Q0~Q3表示的输出结果

由表2-1可知:

1、Q3表示千位(1/2)数的内容,Q3=“0”(低电平)时,千位数为1;Q3=“1”(高电平)时,千位数为0。

2、Q2表示被测电压的极性,Q2=“1”表示正极性,Q2=“0”表示负极性。Q0=“1”表示被测电压在量程外,可用于仪表自动量程切换。当Q3=“0”时表示过量程;当Q3=“1”时,表示欠量程。过量程时,Vx>Vr且A/D转换输出读数为1999,欠量程时输出读数为<=179。

MC14433的DS1、DS2、DS3和DS4分别对应千位、百位、十位、个位选通信号。当某一位DS信号有效(高电平)时,所对应的数据从Q0、Q1、Q2和Q3输出,每个选通脉冲宽度为18个时钟周期,两个选通脉冲之间的间隔为2个时钟周期,以保证数据有充分的稳定时间。其脉冲时序如图2-2

DS1

DS2 DS3 DS4

单片机存放数据的格式如下:

20H D7--------D4 D3------D0 21H D7------D4 D3-------D0

三、串行通信程序

串行通信程序采用中断方式,产生一次中断发射一组数据。在数据接收过程中有定时器监控,如在发送某一个数过程中超过了规定的时间,认为发射数据有错,也将重新发射。这样实现通信数据的累加和校验、数据和信息的发送以及命令。 2.2

程序流程图

图2-3为主流程图,在主程序中主要是设初始化程序,这些初始化程序包括存储器及端口的初始化、外部中断的初始化、定时中断的初始化。而数据采集程序是在满足外部中断要求的时候进入。串行通信程序是在定时中断中执行,每一次进入定时中断都发送一次数据。定时的时间设置为数据采集一次的时间。

图2-4为串行通信流程图,串行通信程序由串行口中断开始发送,进入了中断服务程序后,先保护现场,接着是发送一组数据,后再发送一个累加和,在恢复现场。

数据传输的协议:开始 数据1、 数据2、 校验和

图2-5为MC14433的采集程序,MC14433上电后,即对外部模拟输入信号进行A/D 转换,由于EOC 和DU 端相连,每次转换完毕都有相应的BCD 码级相应的选通信号出现在Q0~Q3和DS1~DS4上,当单片机开CPU 中断,允许/INT1中断申请,并置

外部中端为边沿触发方式,在执行程序后,每次A/D转换结束时,都将A/D转换结果数据送入RAM中的20H、21H单元。这两个单元均为可位寻址。

图2-3主流程图

图2-5 MC14433数据采集流程图

第三章系统调试

3.1 硬件调试

数据采集检测电路的调试

当温度为零度输出电压应该为零伏,首先调R7使LM741的负输入端为2.732V,也就是调R7为1V。要使输出有为零则要使LM741的正输入端等于负输入端,即负输入端的电压也为2.732V,这就要调节R8的阻值,使其和R5产生的分压得到正输入端于负输入端,测的R8值为12K。这样就完成了调零部分。完成调零以后就不需要再改变其阻值了。当温度为100度的时候,输出电压应该为5V。100度的时候负输入端为3.732V,正输入端为2.732V,所以净输入等于3.732-2.732=1V,而要求输出5V,所以就要求LM741

放大5倍。输出电压的公式为U

0=R6/R10 *U

I

,所以调节R6和R10的比值为5倍,调节

R6为75K,R10为15K。

3.2 软件调试

软件调试首先是把编好的程序放在MCS51中保存后,再编译,观察有没有错误,有语法错误根据窗口的LST文件,一个一个改好,没有语法错误后,在观察寄存器和内部外部数据贮存器的数据,是不是按照自己编的来运行。子程序出错的可能发生在子程序设计过程中,也可能发生在子程序调用时。出现情况有以下几种:

一、指令疏漏

指令被疏漏的后果是该子程序的结果不能正确。这种错误还不容易发现。

二、位置不妥

有些指令从表面上看好象跟位置没关系,但是结果可能前面的一层作用被疏漏掉了,导致程序错误。

三、指令不当

例如把LJMP由于疏忽写成AJMP指令,则结果无法正确。

四、非法调用

按照子程序的说明,调用该子程序是非常容易的。但有时由于疏忽,没有按照入口要求送数出现非法调用现象,导致出错。这类错误在调试时会使人一时不知错在子程序还是调用它的程序。

3.3 软硬件结合调试

首先把软件调试好的程序烧入AT89C2051,再把要单片机放回到硬件电路中,正确

接上电源,观察数据能不能传输到显示模块去显示。

下面讨论下这个程序调试中出现过的几个问题:

一、现场的保护与恢复

该指令通过PUSH压栈指令将程序中用到的寄存器及其它资源保护起来,然后通过出栈指令按照“先进后出”原则在中断返回前依次恢复,避免干扰或破坏其它程序的正常执行。当然,工作寄存器的保存也可通过寄存器组切换的方式更为便捷地实现。由于中断的不可预测性,因此现场保护显得尤为重要,否则中断返回后无法正常运行被中断程序。

二、触发方式的正确使用

51单片机的外中断有两种触发方式:低电平触发和下跳边沿触发。为了设计正确的中断子程序,必须十分清楚地了解两种方式的差异。电平触发方式的中断标志位单片机不会自动清除,而边沿触发方式下该标志位能自动清除。这次设计的INT1中断子程序采用边沿触发方式,如果将SETB IT1指令疏漏,会导致中断不能进入的错误。

三、断点调试方法

由于中断的不可控制特性,因此中断子程序的调试常常通过仿真器的断点功能来实现。一般分两种情形:

1、看是否正常触发中断

为了查看是否正常触发中断,以排查相关的软硬件系统是否存在错误,可以简单地在中断子程序的第一条指令设置断点,然后联机全速执行。如果能进入断点,则说明触发电路等基本正常,中断初始化程序也基本正常。

2、看结果是否正常

也是采用断点法,将断点设置在需要查看的位置。如果在该处无法进入中断,则说明此前程序隐含错误,断点必须逐渐前移,一旦断点能正常进入,则一般可以断定断点后的程序可能有错误。

总结

通过这次毕业设计使我对单片机有了新的认识。特别对模拟信号和数字信号的转换方面认识比以前更深了。以前在学校也做过A/D转化的实验,但是都用ADC0809来实验A/D转的,我这次毕业设计考虑到价格和硬件电路的复杂性,所以选择MC14433,而对于MC14433开始我是一点也不知道,它是几个引脚,能实现怎么样的功能,是如何和单片机的连接的等等。可以说我是一窍不通。可这次通过自己的动手设计对MC14433的结构,以及和单片机的接口及它的软件编程应该说有了很大的认识。还有无线数据传输,我这次设计用的是DF无线发射模块,以前也没有接触过,可以说是从零开始做。刚开始根本不知道从何下手,但经过一段时间的查资料初步认识了它是如何工作的。以及对数据采集系统的信号调理电路,采样保持电路以及单片机如何控制收发数据的等等都有了很大认识。本课题虽然在功能上比在线式的温度传感器有很大的优点,但是它的价格也比在线式的要贵。这一点希望在以后能找到一种即能实现无线传感器的功能,又在价格方面实惠的方法来解决目前传感器的问题。

通过这段时间的毕业设计,我充分认识到单片机在电子技术领域的重要性,我以后会继续学习单片机把它的内部结构、接口特性、外围扩展等等搞清楚,并理论结合实际多做些实际的东西出来,切实提高自己的动手能力。总之,这次设计对我在各个方面的知识都有了很大的提高,对我受益非浅。为我进入社会搭了一座很好的桥梁!

附录A:程序清单

MC14433数据采集汇编程序

ORG 0000H

LJMP MAIN

ORG 001BH

LJMP INT1

ORG 0100H

初始化程序:

MIAN:MOV 20H,#00H

MOV 21H,#00H

SETB IT1 ;选择/INT1为边沿触发方式

MOV IE,#84H ;CPU开中断,外部/INT1中断允许外部/INT1中断服务程序:

INT1:NOP

AD1:MOV A,P1

JNB ACC.4,AD1 ;等待DS1选通信号

JB ACC.0,AD2 ;查是否过、欠量程,是则转AD2

JB ACC.2,AD3 ;查结果是正还是负,1为正,0为负

SETB 07H ;负数,符号位置1,07H为符号位位地址

AD9: AJMP AD4

AD3: CLR 07H ;正数,符号位置0

AD4: JB ACC.3,AD5 ;查千位(1/2)数为0或1,ACC.3=0时千位为1 SETB 04H ;千位数置1

AJMP AD6

AD5: CLR 04H ;千位数置0

AD6: MOV A,P1

JNB ACC.5,AD6 ;等待百位BCD码选通信号DS2

MOV A,P1

MOV R0,#20H

XCHD A,@R0 ;百位数送入20H低四位

AD7: MOV A,P1

JNB ACC.6,AD7 ;等待十位数选通信号DS3

SWAP A ;高低4位交换

INC R0 ;指向21H单元

MOV @R0,A

AD8: MOV A,P1

JNB ACC.7,AD8 ;等待个位数选通信号DS4

XCHD A,@R0 ;个位数送入21H低四位

RETI

AD2: SETB 10H ;置过、欠量程标志

RETI ;中断返回

智能仪器设计温度传感器的完整设计

指导老师: 班级: 姓名: 学号:

目录 1系统方案...................................................................................................... 错误!未定义书签。 1.1 测温模块的论证与选择................................................................. 错误!未定义书签。 1.2 电源电路切换模块的论证与选择................................................. 错误!未定义书签。 1.3 控制系统的论证与选择................................................................. 错误!未定义书签。 1.4 显示模块的论证与选择................................................................. 错误!未定义书签。 1.5键盘模块.......................................................................................... 错误!未定义书签。2系统理论分析与计算.................................................................................. 错误!未定义书签。3电路与程序设计.......................................................................................... 错误!未定义书签。 3.1电路的设计...................................................................................... 错误!未定义书签。 3.1.1系统总体框图...................................................................... 错误!未定义书签。 3.1.2 电源转换电路子系统的设计............................................. 错误!未定义书签。 3.1.3 STC89C52单片机子系统的设计........................................ 错误!未定义书签。 3.1.4电源的设计.......................................................................... 错误!未定义书签。 3.1.5温度采集电路子系统电路的设计...................................... 错误!未定义书签。 3.1.6键盘模块.............................................................................. 错误!未定义书签。 3.2程序的设计...................................................................................... 错误!未定义书签。 3.2.1程序功能描述...................................................................... 错误!未定义书签。 3.2.2程序流程图.......................................................................... 错误!未定义书签。4测试方案与测试结果.................................................................................. 错误!未定义书签。 4.1测试方案.......................................................................................... 错误!未定义书签。 4.2 测试条件与仪器............................................................................. 错误!未定义书签。 4.3 测试结果及结论............................................................................. 错误!未定义书签。

智能家居系统中无线传感器网络的设计

智能家居系统中无线传感器网络的设计 智能家居系统中无线传感器网络的设计 随着时代的发展,人们将更多的注意力放在了生活环境的安全性、舒适性和便利性上,从而 出现了智能家居的概念。智能家居控制系统使人们可以对家居内的任意电器进行数字化控制,利用计算机技术、网络通讯技术将与家居生活有关的各种设备有机地结合在一起,进行集中管理,让家居生活更加舒适、安全、有效。本文以ZigBee技术对智能家居内部进行无线网络组网,通 过ZigBee无线传感器网络节点的设计,实现节点对各种传感器信息的采集、传输和控制功能。1Zigbee技术ZigBee技术是一种强调极低耗电、极低成本的短距离无线网络技术,遵循IEEE802.15.4标准。它专注于低速率传输控制,网络容量大,时延短,提供数据完整性检查, 加密算法采用AES-128,网络扩充性强,有效覆盖范围为10~75m,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭环境,通信频率采用2.4GHz 免执照频段。ZigBee是一组基于IEEE802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。IEEE802.15.4仅定义了MAC层和物理层协议,而ZigBee联盟则对其网络层和应用层进行了标准化。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。2系统结构设计无线传感器网络系统主要由传感器、CC2430无线模块构成,结构图。 无线传感器网络采用树状结构,网络中有一个协调器,负责整个网络中数据的处理、转发以及网络的管理。终端节点(传感器节点)上电复位后,会搜索协调器节点,当能够搜索到协调器时,直接申请加入网络。当终端节点搜索不到协调器时,这时就会通过路由器节点找到协调器来加入网络。加入网络后保持待机状态,当有数据需要发送时,按照组网时的路径来收发数据信息。协调器通过串口与PC机相连,利用超级终端实现发送命令或者显示数据。3硬件电路设计本文设计的无线传感器网络系统的硬件结构主要由协调器模块,路由器模块,传感器模块,串口转换模块,供电模块以及PC机等组成。其中协调器、路由器、传感器3个模块作为主要的无线通信模块,由主控芯片CC2430作为数据处理以及无线收发器。其系统硬件电路结构示意图。3.1主控芯片选用CC2430芯片作为无线收发器和数据处理及控制器。CC2430在单个芯片上整合了ZigBee射频前端、内存和微控制器。它采用增强型8051MCU、32/64/128kB 闪存、8kBSRAM等高性能模块,还包含模拟数字转换器、几个定时器、AES-128协同处理器、看门狗定时器。32kHz晶振的休眠模式定时器、上电复位电路、掉电检测电路以及21个可编程I/O引脚。3.2无线模块设计1)协调器模块协调器节点由电压转换模块、按键模块、LCD模块、LED指示灯、时钟、处理器CC2430、天线等部分组成。CC2430的工作电压为3~3.3V,所以要用电压转换模块把电压从5V降低到3.3V左右;LED指示灯用来显示协调器节点网络状态信息(如是否组网成功);LCD模块是用户和传感器网络的交互界面,用来显示功最长能菜单,用户通过按键来选择功能菜单。其电路图。 2)传感器模块与路由器模块传感器模块亦即是终端节点模块,由传感器、处理器CC2430、天线、LED指示灯、时钟等部分组成。LED指示灯由P1.0、P1.1口控制。传感器模块就是在协调器模块的基础上去掉了LCD,而加入了传感器。传感器选用了DHT11温湿度传感器,与P0.0口相连,来负责数据采集。路由器模块与传感器模块的硬件电路相同,只是在编程实现功能上有所不同。4无线网络系统软件设计在ZigBee网络中,只有那些可以成为ZigBee协调器的设备才能建立新网络。协调器首先执行信道扫描,如果发现了一个合适的

单片机温度传感器及无线传输

通信与测控系统课程设计 报告

一、课程设计目的及要求 ①通过一个具体的项目实例,熟悉项目开发的流程,学习与通信相关的测控系统开发,包括基本知识、技术、技巧 ②锻炼硬件编程能力(C51),积累编程经验,形成代码风格,理解软件层次结构 ③常用外围器件(接口)的操作、驱动 一、实习主要任务 ①采集远端温度信息,无线收集,上位机显示信息 ②硬件配置:51系统板、DS18B20、无线数传模块IA4421、数码管 ③编程、调试,完成作品 二、硬件电路的原理框图 图一、AT89S51、数码管硬件原理图

图二、IA4421硬件原理图图三、DS18B20硬件原理图最终实现的功能: 三、软件设计及原理 1、读主程序流程图

主程序代码: #include #include #include #include #include #include #define uint unsigned int #define uchar unsigned char unsigned char m; unsigned char n; void zhuanhuan(); void delay_led(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } uint aa; uchar wei_1,wei_2,wei_3,v,wei_4,wei_5,wei_6; uint shuju;//得到的温度值 uchar temp[2]={0,0}; //存放DS18B20的温度寄存器值 uint value = 0; sbit DQ=P3^3; //数据线 void ReadSerialNumber(void); uchar sn1,sn2,sn3,sn4,sn5,sn6,sn7,sn8; //存放DS18B20的64位序列号void ow_reset(void); void tmstart (void); void ReadSerialNumber(void); void Read_Temperature(void); void write_byte(char); uint read_byte(void); void delay_18B20(uint); //void baojing(); /*******主函数**********/ void main() { m=0; //init_led();//初始化子程序 tmstart (); delay_18B20(50); /*等待转换结束*/ while(1) { m++; Read_Temperature(); delay_18B20(50);

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

智能家居系统中无线传感器网络的设计

智能家居系统中无线传感器网络的设计 摘要:本文主要介绍ZigBee无线传感器网络,将ZigBee技术应用到智能家居系统中。提出了一种以ZigBee技术为基础的智能家居系统设计方案。阐述了无线传感器网络的总体构成,CC2430无线芯片为棱心,选取了合适的ZigBee模块进行了硬件电路设计。研究并分析了ZigBe技术。设计并实现了串口收发程序,传感器程序,以及节点间的无线通信程序,并根据ZigBee协议,使节点组成树状网络,最终实现系统的监测与控制。结果表明,本系统运行稳定,达到了设计目的,有着广泛的应用前景。 关键词:智能家居;无线传感器网络;ZigBee;CC2430 随着时代的发展,人们将更多的注意力放在了生活环境的安全性、舒适性和便利性上,从而出现了智能家居的概念。智能家居控制系统使人们可以对家居内的任意电器进行数字化控制,利用计算机技术、网络通讯技术将与家居生活有关的各种设备有机地结合在一起,进行集中管理,让家居生活更加舒适、安全、有效。本文以ZigBee技术对智能家居内部进行无线网络组网,通过ZigBee无线传感器网络节点的设计,实现节点对各种传感器信息的采集、传输和控制功能。 1 Zigbee技术 ZigBee技术是一种强调极低耗电、极低成本的短距离无线网络技术,遵循 IEEE802.15.4标准。它专注于低速率传输控制,网络容量大,时延短,提供数据完整性检查,加密算法采用AES-128,网络扩充性强,有效覆盖X围为10~75 m,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭环境,通信频率采用2.4 GHz免执照频段。

ZigBee是一组基于IEEE802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。IEEE802.15.4仅定义了MAC层和物理层协议,而ZigBee联盟则对其网络层和应用层进行了标准化。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。 2 系统结构设计 无线传感器网络系统主要由传感器、CC2430无线模块构成,结构图如图1所示。 无线传感器网络采用树状结构,网络中有一个协调器,负责整个网络中数据的处理、转发以及网络的管理。终端节点(传感器节点)上电复位后,会搜索协调器节点,当能够搜索到协调器时,直接申请加入网络。当终端节点搜索不到协调器时,这时就会通过路由器节点找到协调器来加入网络。 加入网络后保持待机状态,当有数据需要发送时,按照组网时的路径来收发数据信息。协调器通过串口与PC机相连,利用超级终端实现发送命令或者显示数据。 3 硬件电路设计

(完整版)无线无源温度检测原理

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

嵌入式课程设计温度传感器-课程设计 (1)

嵌入式系统原理与应用 课程设计 —基于ARM9的温度传感器 学号:2012180401** 班级:**************1班 姓名:李* 指导教师:邱*

课程设计任务书 班级: ************* 姓名:***** 设计周数: 1 学分: 2 指导教师: 邱选兵 设计题目: 基于ARM9的温度传感器 设计目的及要求: 目的: 1.熟悉手工焊锡的常用工具的使用及其维护与修理。 2.基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊 接。熟悉电子产品的安装工艺的生产流程。 3.熟悉印制电路板设计的步骤和方法,熟悉手工制作印制电板的工艺流程,能 够根据电路原理图,元器件实物设计并制作印制电路板。 4.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。 5.能够正确识别和选用常用的电子器件,并且能够熟练使用普通万用表和数字 万用表。 6.掌握和运用单片机的基本内部结构、功能部件、接口技术以及应用技术。 7.各种外围器件和传感器的应用; 8.了解电子产品的焊接、调试与维修方法。 要求: 1.学生都掌握、单片机的内部结构、功能部件,接口技术等技能; 2.根据题目进行调研,确定实施方案,购买元件,并绘制原理图,焊接电路板, 调试程序; 3.焊接和写汇编程序及调试,提交课程设计系统(包括硬件和软件);. 4.完成课程设计报告 设计内容和方法:使用温度传感器PT1000,直接感应外部的温度变化。使用恒流源电路,保证通过PT1000的电流相等,根据PT1000的工作原理与对应关系,得到温度与电阻的关系,将得到的电压放大20倍。结合ARM9与LCD,将得到的参量显示在液晶屏上。

基于单片机的智能温度传感器的毕业设计

基于单片机的智能温度传感器的毕业设计 1.1设计目的 我国是一个农业大国,粮食是一个国家生存的根本,为了防备战争、灾害及各种突发事件的发生,粮食的安全储藏具有重要的意义。目前,我国各地区的各种大型粮库都还存在着程度不同的粮食储存变质问题,而影响粮食储藏的主要参数又是温度。根据国家粮食保护法规定,必须定期抽样检查粮库各点的粮食温度,以便及时采取相应的措施,防止粮食的变质。过去粮食温度的检测是靠人工手测进行,不但测试速度慢、测试精度低,而且人员劳动强度非常大。随着计算机和信息技术的发展,计算机测量系统越来越多的场合得到了广泛应用。传统的人工查看粮温的方法,已逐步被电子检温设备所取代,小的储粮设备一般采用小型测温仪检测粮温,大中型储粮设备已逐步配备微机测温系统。前一种方式多数采用由拨动手动开关逐点查看粮温的方法,有些也采用自动巡检方式并配备小型打印机记录粮温数据。后一种方式则可在微机机房监测粮温情况,并能利用微机对粮温数据进行分析对比。保证粮库中储藏粮食的安全,一个十分重要的条件就是要求粮食储藏温度保持在18℃~20℃之间。对于出现不正常升温或降温,要求能够迅速的测量并且报警使工作人员可以马上采取措施降温或升温。本设计采用的DS18B20是美国DALLAS公司生产的智能温度传感器。可以通过程序设定9~12位的分辨率,测量温度围为-55℃~+125℃,在-10℃~+85℃围精度为士0.5℃,DS18B20支持“一线总线”接口,用一根线对信号进行双向传输,具有接口简单容易

扩展等优点,适用于单主机、多从机构成的系统。DS18B20测量的现场温度直接以“一线总线”的数字方式传输,提高了系统的抗干扰性,适合各种恶劣环境的现场温度测量。DS18B20支持3V~ 5.5V的电压围。分辨率、报警温度可设定存储在DS18B20的E2PROM中,掉电后依然保存。 1.2 设计容 (1)一线总线制单片机中的应用。 (2)点阵式液晶显示器的使用。 (3)高级语言对单片机编程技术。 1.3 设计要求 (1)检测8个温度点数。 (2)精度要求正负0.5摄氏度 (3)体积在200*100毫米。 (4)数据传输约一公里左右。 (5)采用LCD显示。 1.4 关于一线总线DS18B20的简介 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms完成9位和12位的数字量,并且从DS18B20读出的

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压围为3.0~5.5V。 ●零待机功耗。

●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限数据。 MSB LSB MSB LSB MSB LSB DS18B20温度传感器的部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

由ATmega324p实现的数字化无线温度传感器设计方案

由ATmega324p实现的数字化无线温度传感器设计方案 1 引言 目前,大多采用的是有线多点温度采集系统,通过安装温度节点来实现对室内外温度监控。这种传统的多点采集系统需要用导线与每个温度采集节点连接,其技术成熟,制作成本相对较低。但是,在许多场合需要将传感器节点直接放置在目标地点进行现场的数据采集,这就要求传感器节点具有无线通信的能力。同时,由于无线传感器通常使用电池作为能源,所以,它对能耗要求非常高。 针对这些问题,本文提出一个无线传感器设计方案,来实现主机端与传感器节点之间的通信,并且通过选用低功耗的芯片和对软件的低功耗设计实现了低功耗的目标。本文设计主要是基于433 MHz ISM频段,无需申请就可以使用。该设计方案有许多明显的优点:传输速度快、距离远、数据稳定;采用低功耗模式,延长电池使用时间;能保证任何时候数据不丢失,提高系统的强健度。 2 系统硬件设计 所设计的无线温度传感器主要由以下几部分组成:温度测量、发射部分、接收部分、LCD 显示部分以及操控部分。系统结构图如图1所示。 2.1 温度测量电路 在温度测量电路中采用Dallas公司生产的1-Wire总线数字温度传感器DS18B20。温度测量电路如图2所示。 DS18B20是3引脚TO-92小体积封装形式;温度测量范围为-55~125℃,可编程为9-12位A/D转换精度,测温分辨率可达0.062 5℃,被测温度以带符号扩展的16位数字方式串行输出。 DS18B20内部结构主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL及配置寄存器。ROM中的64位序列号是出厂前被光刻好的,它可以看作是

基于无线传感器网络的智能家居系统的设计

学校代码: 11059 学号: 0805070053 Hefei University 毕业论文(设计)B A CH ELO R D IS S ERTATIO N 论文题目:基于无线传感器网络的智能家居系统的设计 (硬件部分) 学位类别:工学学士 学科专业:电气自动化 作者姓名:李方舟 导师姓名:储忠 完成时间: 2012-5-24

基于无线传感器网络的智能家居系统的设计(硬件部分) 中文摘要 随着电子信息技术和计算机网络技术的发展,实现家庭信息化、网络化是当今智能家居系统发展的新趋势。智能家居系统能够为人类提供更加轻松、有序、高效的现代化生活方式,是未来居住模式的必然发展趋势。因此,智能家居系统逐渐成为一个新兴的研究领域。 本文针对智能家居网络特点通过对智能家居网络分析、对比和研究,采用星状网络组建智能家居网络,对智能家居网络进行了设计与实现。利用CC2430的ZigBee 模块与各种传感器设计了一种低成本、高灵活性、通用的ZigBee无线智能家居网络控制,并最后完成了实现。 主要内容如下:采用Zigbee技术,构建无线传感器网络,研究无线传感器网络的通信机理。以及设计微处理器控制模块,通信模块、检测模块等硬件。 关键词:ZigBee;智能家居;无线网络;CC2430 Design of smart home system based on wireless sensor network(hardware) Abstract With the develop ment o f electronic information techno logy and computer network techno logy,there is the new trend of the development of smart home system to realize the ho me informatizatio n,and networking.S mart ho me system can provide more relaxed,orderly,efficient modern way of life,is the inevitable trend of the development of future residential pattern.Therefore,smart home system has gradually become a new research field. Pointing to these features of smart ho me system,in these paper,a method of adopting star network to establish smart home intranet by analyzing,comparing,researching the smart home network is given.The smart ho me networt is designed and realized,and a kind of low-cost,high-flexib ility,conventio nal wireless intelligent networt controller is accomplished by using CC2430 ZigBee module and other sensors.As fo llows:build wireless sensor networks based on Zigbee technolo gy,research communication mechanism for wireless sensor networks. And hardware design o f microprocessor control module, communication module, detection module,and so on. KEY WORD:ZigBee;smart home;wireless network;CC2430

无线温度传感器课程设计

邮电与信息工程学院 现代测控技术 课程设计说明书 课题名称:无限温度采集系统 学生学号:0941050212 专业班级:09测控技术及仪器2班 学生姓名:刘奎 学生成绩: 指导教师:李国平 课题工作时间:2012-6-20 至2012-7-4

摘要 无线温度采集系统是一种基于射频技术的无线温度检测装置。本系统由传感器和接收机,以及显示芯片组成。传感器部分由数字温度传感器芯片18B20,单片机89C52,低功耗射频传输单元NRF905和天线等组成,传感器采用电源供电;接收机无线接收来自传感器的温度数据,经过处理、保存后在LCD1602上显示,所存储的温度数据可以通过串行口连接射频装置与接收端进行交换。 数字单总线温度传感器是目前最新的测温器件,它集温度测量,A/D转换于一体,具有单总线结构,数字量输出,直接与微机接口等优点。既可用它组成单路温度测量装置,也可用它组成多路温度测量装置,文章介绍的单路温度测量装置已研制成产品,产品经测试在-10℃-70℃间测得误差为0.25℃,80℃≤T≤105℃时误差为0.5℃,T>105℃误差为增大到1℃左右。 关键词:温度采集系统;无线收发;温度传感器;89C52单片机;

Abstract Wireless temperature acquisition system based on RF technology is a kind of wireless temperature detecting device. The system consists of the sensor and receiver, and display chip. The sensor consists of digital temperature sensor18B20 chip, chip 89C52, low power RF transmission unit NRF905 and antenna components, sensors using wireless power supply; the receiver receives from the temperature data, processed, preserved in the LCD1602 display, the stored temperature data can be through the serial port connected to the RF device and the receiving terminal exchange. The digital single bus temperature sensor is the current measuring device, it sets the temperature measurement, A/D conversion in one, with a single bus structure, digital output, the advantages of direct interface with microcomputer. Not only can it consists of single channel temperature measuring device, it is also available to form a multichannel temperature measuring device, this paper introduces single temperature measurement device has been developed into products, products tested in -10℃-70 ℃measured between the error is 0.25℃,80 ℃≤T ≤105 ℃error is 0.5℃, T>105 ℃error in order to increase to about 1 ℃. Key words: temperature acquisition system; wireless transmission; temperature sensor; SCM 89C52

51单片机温度传感器课程设计.

基于单片机的温度传感器课程设计报告 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中温度传感器就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的温度传感器与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,该设计控制器使用单片机STC89S52,测温传感器使用DS18B20,用LCD实现温度显示,能准确达到以上要求。 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的温度传感器。 关键词:单片机,数字控制,温度传感器 1. 温度传感器设计内容 1.1传感器三个发展阶段 一是模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等特点,适合远距离测温、控温,不需要进行非线性校准,且外围电路简单。它是目前在国内外应用最为普遍的一种集成传感器,典型产品有AD590、AD592、TMP17、LM135等。 二是模拟集成温度控制器。模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。某些增强型集成温度控制器(例如TC652/653)中还包含了A/D转换器以及固化好的程序,这与智能温度传感器有某些相似之处。但它自成系统,工作时并不受微处理器的控制,这是二者的主要区别。 三是智能温度传感器。智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器

基于无线传感器在智能交通系统中的应用

` 毕业设计 专业:电气自动化 班级学号:201103010108 学生:旭恒指 导教师:高立兵讲师 二〇一四年三月

有色冶金职业技术学院毕业设计 基于无线传感器在智能交通系统中的应用 Based on the wireless sensor in the application of intelligent transportation system 专业班级:电气自动化1101班 学生:旭恒指导教师:高立兵 讲师系别:机电工程系 2014 年 3 月

摘要 智能交通系统将信息技术、电子控制技术及网络技术等高新技术综合应用于运输管理体系。 ZigBee作为一种新兴的无线传感器网络,具有功耗低、成本低等特点。介绍了在小区域智能交通模拟平 台上使用无线传感器网络的实例,建立了信息发布/订阅和信号控制系统。重点介绍了系统的节点硬件、ZigBee协议的数据传输以及两个子系统的软件设计针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 本文主要介绍了利用HMC1021Z巨磁阻传感器以及LPC2138微处理器、射频模块组成的无线传感网络在智能交通中的应用,本文的研究容如下:首先查阅了国外文献了解课题研究背景、磁阻传感器的工作原理以及铁磁物质对周围磁场产生影响的原理,并了解相关微处理器的结构及功能。对整个系统的方案进行设计,通过进一步学习完善已有的设计方案。将设计方案转化为电路图,画出电路版图,投片,完成硬件平台的搭建。进行软件的编程,及硬件的调试。将软件和硬件结合到一起,进行模拟路况实验。本课题参照国外智能交通系统的设计以及磁阻传感器研究成果,设计了利用巨磁阻传感器及射频模块,微处理器构成的基于无线传感网络的智能交通系统,在设计过程中得到的主要成果如下: 1、利用HMC1021Z巨磁阻传感器,传感器电路中使用滤波电路使输出信号更加稳定,该电路中还使用运算放大器,可使芯片的输出电压信号放大以便在有铁磁物体经过传感器附近时输出供处理器使用的高电平信号,实际测得巨磁阻传感器可正常运行,并可较为精确的计算通过交通信号灯的车流量大小。 2、收发单元利用射频模块,将处理器处理后的信息传送到交通信号灯控制中心,以便在不同车流量情况下更好的控制交通信号灯。经试验测量后,射频模块工作状况良好,可精确传送经处理器处理过的信息。

相关文档
最新文档