超疏水高分子薄膜的研究进展(1)剖析

超疏水高分子薄膜的研究进展(1)剖析
超疏水高分子薄膜的研究进展(1)剖析

超疏水高分子材料的研究进展

摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。

关键词:超疏水,高分子材料,自清洁

Developments of super-hydrophobic Ploymeric material

Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end.

Key Words: super-hydrophobic, polymeric membrane, self-cleaning.

引言

自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。

随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

防冰冻、减阻、及油水分离等方面的潜在应用,人们已经认识到疏水性材料对实际应用的巨大影响[13-16]。因此,近年来,研究人员对与水接触角大于 150°的薄膜也就是具有自然界中荷叶效应的表面研究倾注了极大的兴趣和热情。目前,智能超疏水高分子材料已成为材料研究的一个热点,许多新颖的制备材料和工艺得到不同程度的发展。

图1.1 (a)水滴在荷叶表面(b)荷叶表面的汞滴

1.超疏水高分子材料的表面结构特征

德国生物学家Barthlolott和Neihuis通过对近300种植物叶表面进行研究[17,18],认为这种自清洁的特征是具有微米结构的乳突和覆盖在表面的疏水蜡状物质存在共同作用引起的。后来的研究表明,多孔的粗糙表面也可以制备超疏水表面,如蜡烛灰的沉积表面,其表面的接触角高达171°,滚动角小于2°.它的表面结构呈现由纳米颗粒组成的多孔的网状结构。

根据目前对粗糙表面的浸润性研究结果,超疏水表面主要可以通过两种方法来制备:一种是利用疏水材料来构建表面粗糙结构;另一种方法是在粗糙表面修饰低表面能的物质[19]。除少数高分子材料(如PVA等)外,大多数高分子是疏水材料。因此,要制备超疏水高分子材料,重点是构建与超疏水对应的粗糙表面结构。

2.超疏水高分子材料制备方法

2.1模板印刷法

模板印刷法就是用一种模型平面或者立体模型作为模板,在其上选择一种材料用印刷板压制方法,当把模型移除后就只剩下与模型的相反模板凹模板或阴模模具,利用此凹模板通过类似的方法就可以制备出原模型的复制品[20-25]。

清华大学的王晓工[26]教授以荷叶表面作为模板将聚二甲基硅氧烷(PDMS)的预聚体压印在荷叶表面上得到了与荷叶表面完全相反的PDMS结构,再以此为

模板得到与PDMS模板表面形貌相反的微-纳米结构,这种微-纳米结构就与荷叶表面的结构完全一致。制得的表面与水的接触角达到156°。Feng 等[27]利用多孔氧化铝作为模板将聚丙烯腈溶液挤入凝固液中固化,制备出接触角高达173°的针状阵列聚丙烯腈纳米纤维。

该种方法工艺简单, 准确有效,成本低,而且可以大面积的制备,但模板的使用寿命短。

2.2气相沉积法

气相沉积法包括物理气相沉积法(PVD)、化学气相沉积法(CVD)等。它是利用各种疏水性物质通过物理或者化学的方法将其沉积到基底表面形成膜的过程。

Julianna A等[ 28], 在聚丙烯膜表面利用气相沉积法,沉积了多孔晶状聚丙烯涂层, 使聚丙烯膜呈现超疏水性, 接触角达到169°,其接触角提高了42°。Takai[29]等用三甲基甲氧基硅烷作为前驱体, 利用微波等离子体增强化学气相沉积技术,在聚甲基丙烯酸甲酯塑料与玻璃的基体上制备了接触角大于150°的超疏水膜。

2.3溶胶-凝胶法

溶胶-凝胶法(Sol-gel法)是指将含有高化学活性组分的化合物作为前驱体,在酸或碱条件下进行水解产生具有活性的羟基,经过水解缩合反应形成溶胶,伴随着水解缩合反应的进行溶胶的粘度会进一步增加,最后形成凝胶,经过一段时间的干燥成为干凝胶。将溶剂去掉后,有时会留下一些微纳米孔,这些孔结构使材料具有了超疏水性能[30-34]。

Minami小组[35--38]在玻璃片上运用溶胶-凝胶法制备了Al

2O

3

凝胶薄膜,然后

将其放在沸水中浸泡进行表面处理,在30s的短时间内就可得到具有类花状

(flower-like)结构的多孔Al

2O

3

薄膜,再用氟硅烷修饰这种薄膜,可以得到

与水接触角呈165°的超疏水性透明薄膜。

溶胶-凝胶法制备超疏水表面反应条件比较温和,常温常压下即可,成本低、周期短、可以大面积制备并且对基底属性要求低,但存在的不足是:制备得到的表面结构可控性比较差,力学性能也不高,工艺过程比较复杂,还存在溶剂污染等缺点。

虽然超疏水材料的研究历史并不长,但超疏水材料的独特的性能和广泛的应用前景,引起的研究者们对超疏水材料越来越大的兴趣[45-47]。智能超疏水材料的使用将会给人们的日常生活和工农业生产带来极大的便利和高附加产值。例如: 超疏水界面材料用在室外天线上, 可以防积雪, 从而保证高质量的接收

信;超双疏界面材料可涂在轮船的外壳、燃料储备箱上, 可以达到防污、防腐的效果用于微量注射器针尖上, 可以减少昂贵的药品在针尖上的黏附及由此带来的对针尖的污染;也可用它来修饰纺织品, 做防水和防污的服装等[48-50]。超疏水高分子薄膜在抗菌、防污、减流、防伪包装等上有广泛的应用前景。

近年来尽管研究者一直在努力,但是在实际的生产生活中超疏水高分子薄膜并未能广泛应用, 许多问题还亟待解决。超疏水高分子材料的制备过程中多涉及到较昂贵的原料,而且许多方法涉及到特定贵重设备、苛刻的制备条件和较长的制备周期, 并且很难进行大规模的生产[51,52]。因此,超疏水高分子薄膜的应用研究刚刚开始, 实现其广泛的应用仍然需要研究者的更多努力;探索简便可行的制备条件和技术、拓展成本较低的原料,制备性能稳定、持久、耐腐蚀的超疏水材料等都将是超疏水高分子材料的研究重点。

参考文献

[1] N.J. Shirtcliffe, G.I. McHale, M. Newton, J. Polym Sci., Part B: Polym. Phys. 49(2011) 1203 .

[2] 姚同杰.超疏水材料的制备和应用[C] .吉林.吉林大学。2009.6.

[3] 江雷,冯琳.仿生智能纳米界面材料【M】.北京.化学工业出版社.2007.

[4] X. Yao, Y. Song, L. Jiang, Adv. Mater. 23 (2011) 719.

[5] https://www.360docs.net/doc/8417443774.html,i,Z.Chen,C.J.Lin,J.Nanoeng.Nanomannuf.1(2011)18.

[6] J. Bico, C. Marzolin, D. Quere, Europhys. Lett. 47 (1999) 220–226..

[7] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood, T.J. McCarthy, angmuir15 (1999) 3395–3399.

[8] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 16

(2000) 5754–5760.

[9] A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132 (2001) 31–41.

[10] L. Feng, S.H. Li, Y.S. Li, H.J. Li, L.J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L.

Jiang, D.B. Zhu,Adv. Mater. 14 (2002) 1857–1860.

[11] A. Lafuma, D. Quere, Nat. Mater. 2 (2003) 457–460.

[12] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299 (2003) 1377–1380.

[13] J.P. Zheng, R.Y. Liang, M. Hendrickson, E.J. Plichta, J. Electrochem. Soc. 155

(2008)A432–A437.

[14] K. Liu, X. Yao, L. Jiang, Chem. Soc. Rev. 39 (2010) 3240..

[15] L. Leger, J.F. Joanny, Rep. Prog. Phys. 55 (1992) 431 .

[16] Barthlott W, Neinhuis C.Planta, 1997,202:1.

[17] Neinhuis C, Barthlott W.Annals of Botany,1997,79:667.

[18] 郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,6.

[19] 傅爱红,李春福.超疏水表面的研究及制备技术[J].材料导报A,2012,5.

[20] Liu Bin,He Yaning,Fan Yin,et al.Fabricating super-hydrophobic louts-leaf-like surfaces

through soft-lithographic imprinting [J] Macromolecular Rapid Commun 2006,27 (21),1859. [21] Feng L, Song YL, Zhai J, et al. Creation of a Super-hydro-phobic Surface from an

Amphiphilic Polymer [ J]. AngewChem, 2003, 42(7): 800-802.

[22] U. Mock, R. Forster, W. Menz, J. Ruhe, J. Phys.: Condens. Matter 17 (2005)

S639–S648.

[23] P.P. Goodwyn, E. De Souza, K. Fujisaki, S. Gorb, Acta Biomater. 4 (2008)

766–770.

[24] K.Y. Yeh, K.H. Cho, L.J. Chen, Langmuir 25 (2009) 14187–14194.

[25] M. Ma, R.M. Hill, G.C. Rutledge, J. Adhes. Sci. Technol. 22 (2008) 1799–1817.

[26] JuliannaA, SandraE, JilskaM, Geoff W. Stevens, fabricationof a super-hydrophobic

polypropylenemembrane by depositionof aporous crystallinepolypropylenecoating[J]. J

Membr Sci,2008, 318, 107-110.

[27] Atsushi Hozumi,Osamu Takai,Preparation of uilra water-repenent films by microwave

plasma-enhanced CVD [J] Thin solid Films,1997,303.

[28] 郭志光、周峰、刘维民溶胶-凝胶法制备仿生超疏水薄膜[J] 化学学报,2006.64(8).

[29] T adanaga K,Katata N, Minami T,J Am Geramsoc ,1997.80:3213

[30] Y.Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi, C.S. Liu, O. Takai, Thin Solid Films 457 (2004) 122–127.

[31] Z. Cui, Q.J. Wang, Y. Xiao, C.H. Su, Q.M. Chen, Appl. Surf. Sci. 254 (2008)

2911–2916.

[32] A. Marmur, Langmuir 19 (2003) 8343–8348.

[33] H.Y. Erbil, C.E. Cansoy, Langmuir 25 (2009) 14135–14145.

[34] E. Bormashenko, Colloids Surf. A: Physicochem. Eng. Aspects 324 (2008) 47–50.

[35] T adanaga K, Katata N, Minami T, J Am Geramsoc ,1997.80:1040

[36] Tadanage T, Morinaga J,Matsuda A,Minami T.Chen Mater,2000,12:590

[37] D.Oner, T, J, Mc Carthy,Langmuir 2000,16,7777

[38] Yoshimitsu, A.Nakajima, K.Hashimoto,T Watananable, T he 7th china-janpan Bilateral

Symposium.Beijing.China 2000.p110

[39] Erbil H Y ,Demirel A L,Avvi Y,Mert O,Science,2003,299:1377

[40] Lu X,Zhang C,Han Y,Macromol Rapid Commun ,2004,25:1606

[41] Xie Q D,Fan G Q,Zhao N,Guo X L,et al.Adv Mater 2004,16:1830

[42] L.L. Cao, A.K. Jones, V.K. Sikka, J.Z. Wu, D. Gao, Langmuir 25 (2009) 12444–12448.

[43] S.A. Kulinich, M. Farzaneh, Appl. Surf. Sci. 255 (2009) 8153–8157.

[44] A.J. Meuler, J.D. Smith, K.K. Varanasi, J.M. Mabry, G.H. McKinley, R.E. Cohen, ACS

Appl. Mater. Interfaces 2 (2010) 3100–3110.

[45] S.A. Kulinich, S. Farhadi, K. Nose, X.W. Du, Langmuir 27 (2011) 25–29.

[46] R. Menini, Z. Ghalmi, M. Farzaneh, Cold Reg. Sci. Technol. 65 (2011) 65–69.

[47] S.A. Kulinich, M. Farzaneh, Cold Reg. Sci. Technol. 65 (2011) 60–64.

[48] L. Yin, Q. Xia, J. Xue, S.Q. Yang, Q.J. Wang, Q.M. Chen, Appl. Surf. Sci. 256 (2010)

6764–6769.

[49] H. Murase, K. Nanishi, H. Kogure, T. Fujibayashi, K. Tamura, N. Haruta, J. Appl.

Polym. Sci. 54 (1994) 2051–2062.

[50] S.A. Kulinich, M. Farzaneh, Surf. Sci. 573 (2004) 379–390.

[51] L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, J. Aizenberg, ACS

Nano 4 (2010) 7699–7707.

[52] H. Wang, L.M. Tang, X.M. Wu, W.T. Dai, Y.P. Qiu, Appl. Surf. Sci. 253 (2007)

8818–8824.

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展 分子一班 张雷 3013207391 Abstract : 摘要:具有超疏水性、超双疏性等的微纳复合材料在人们的日常生活和国民生产各个部门都有着广泛的应用前景,因而也引起科学界的广泛关注。由于固体表面的浸润性决定于其表面的化学组成和表面形貌,因此通过改变固体的表面自由能和表面形貌可以实现对固体材料表面浸润性控制。近些年来,这方面的研究吸引了许多科学家和课题组的注意。可以说,超疏水、超双疏材料的制备正成为一个研究的热点问题。本文在查阅有关文献的基础上,分析中国在超疏水、超双疏材料制备方面的进展。 关键词:超疏水、超双疏、表面改性、润湿性

1、背景: 表面润湿性是指液体(通常为水)在固体材料表面的铺展能力。它是固体表面的重要性质之一, 许多物理化学过程,如吸附、润滑、黏合、分散和摩擦等均与表面的润湿性密切相关1。研究表明, 固体表面的润湿性是由其化学组成和微观几何结构共同决的, 定外场如光、电、磁、热等对固体表面的润湿性也有很大的影响2。固体表面的润湿性通常用水滴在其表面上形成的接触角来衡量, 接触角小于9 0°的表面称为亲水表面,大于9 0°的表面称为疏水表面, 而超疏水固体表面是指与水的接触角为1 5 0°以上的表面。 自然界中存在很多超疏水表面, 最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应Lotus-effect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等3。受这些自然界中现象的启发,许多课题组都开展了超疏水材料制备方面的研究。 2、超疏水材料制备方法分类: 2.1 模板法: 江雷课题组组报道了一种以多孔氧化铝为模板制备超疏水材料的方法2。具体是将一定孔径的氧化铝模板覆盖在聚碳酸酯(PC)膜上,然后加热PC膜将其溶化并将其压入模板的孔内,最后除去模板即可得到纳米棒状的阵列结构。将模板制备成圆筒状重复上述过程可以得到大面积的阵列PC纳米棒。

超疏水材料研究进展

超疏水材料的研究进展 2015年5月3日

超疏水材料的研究进展 摘要:超疏水性材料因为它独特的性质,而在很多方面得到了广泛的应用。近年来,许多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本原理和一些自然界中的超疏水表面现象,重点介绍近几年超疏水表面应用的最新研究进展。最后,对超疏水表面研究的未来发展进行了展望。 关键词:超疏水、仿生、润湿、功能化表面 自然界中,经亿万年的自然选择,许多生物的表面都表现出优良的超疏水性能,比如荷叶、花生叶、莲叶等植物表面和水黾、鲨鱼表皮、沙漠甲虫、蝴蝶翅膀等动物体表。一直以来,这类自然现象都启发着各领域的科学工作者们,尤其是近几十年,仿生超疏水表面以其优越的防腐蚀、自清洁、防覆冰、抗菌等性能,在防腐、自清洁、建筑防水、流体减阻、防污等领域都有广泛的应用[1]。因此,对超疏水材料进行总结和展望,对这种材料的发展有重要的意义。 1超疏水原理 超疏水表面的定义可以从字面意思上进行理解,即指难以湿润的表面,固体表面的湿润性作为固体表面重要的特性之一,不仅受到固体表面粗糙度的影响,还受固体表面化学成分的影响,我们可以用液体与固体的接触角θ来作为是否湿润的判断依据。接触角越大,表面的疏水效果越好,反之亦然[2]。当θ=0°时,所表现为完全湿润;当θ<90°时,表面为可湿润,也叫做亲液表面;当θ>90°时,表面则为不湿润的疏离表面;当θ=180°时,则为完全不湿润。一般θ>150°被称为超疏水表面[3]。 接触角是衡量表面疏水性涂层湿润性的主要指标,但并不是唯一指标,在实际应用中还可以根据前进角、后退角的大小来考虑其动态过程。前进角与后退角是液滴前进或后退时与固体表面所成的临界角度。但是如果不断增加或减小固体

基于超亲水超疏油原理的网膜及其在油水分离中的应用_袁腾

2014年6月 CIESC Journal June 2014第65卷 第6期 化 工 学 报 V ol.65 No.6 基于超亲水超疏油原理的网膜及其在油水分离中的应用 袁腾1,陈卓2,周显宏3,涂伟萍1,胡剑青1,王锋1 (1华南理工大学化学与化工学院,广东省绿色化学产品技术重点实验室,广东 广州 510640;2华南理工大学 轻工与食品学院,广东 广州 510640;3东莞理工学院化学与环境工程学院,广东 东莞 523808) 摘要:综述了基于超亲水超疏油原理的网膜的研究进展及其在油水分离中的应用。首先介绍了研究的理论基础,包括构筑超亲水超疏油网膜的理论基础及膜分离原理,膜的基本性能及影响因素,液桥原理在超亲水超疏油膜中的应用以及该类膜的结构、制备的原材料和制备的基本方法。然后全面综述了刺激响应超亲水超疏油膜,超亲水及水下超疏油膜,无机结晶纳米线超亲水超疏油膜,分子刷结构超亲水超疏油膜及可用于含油乳液分离的网膜等的研究进展。最后指出了目前在该领域的研究中存在的一些问题,主要包括膜分离的基本理论,制备膜的原材料、膜通量、膜寿命及应用范围等,并对未来的发展进行了展望。 关键词:特殊润湿性;微纳二元粗糙结构;刺激响应;重组装;薄膜;油水分离 DOI :10.3969/j.issn.0438-1157.2014.06.001 中图分类号:TB 381;TB 383;TQ 208.8 文献标志码:A 文章编号:0438—1157(2014)06—1943—09 Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation YUAN Teng 1, CHEN Zhuo 2, ZHOU Xianhong 3, TU Weiping 1, HU Jianqing 1, WANG Feng 1 (1Guangdong Provincial Key Laboratory for Green Chemical Product Technology , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640, Guangdong , China ; 2School of Light Industry and Food Sciences , South China University of Technology , Guangzhou 510640, Guangdong , China ; 3College of Chemistry and Environmental Engineering , Dongguan University of Technology , Dongguan 523808, Guangdong , China ) Abstract : This paper reviews the research progress of membranes based on the principle of superhydrophilicity and superoleophobicity and its application in the oil-water separation. First, the fundamentals of the research are introduced, including those for preparing superhydrophilic and superoleophobic membranes and separation process, basic properties of membranes and influencing factors. The applications of liquid bridge principle in the superhydrophilic and superoleophobic membranes, membranes structures, general raw materials and prepared methods are also introduced. Then a comprehensive overview is given on the research progress of current common 2014-01-06收到初稿,2014-03-04收到修改稿。 联系人:王锋。第一作者:袁腾(1987—),男,博士研究生。 基金项目:国家自然科学基金项目(50903031);中央高校基本科研业务费专项资金(2013ZM0072);广东省重大科技专项计划项目(2010A080406002);广东省省部产学研项目(2010A080405006,2010A080404008);广州市国际科技交流与合作专项(2012J5100043);广东省绿色化学产品技术重点实验室开放基金(GC201201);深圳市新型锂离子电池与介孔正极材料重点实验室开放课题(20120213);广东高校轻化工清洁生产工程技术研究中心开放课题。 Received date : 2014-01-06. Corresponding author : WANG Feng, fengwang@https://www.360docs.net/doc/8417443774.html, Foundation item : supported by the National Natural Science Foundation of China (50903031), the Fundamental Research Funds for the Central Universities (2013ZM0072), the Key Scientific and Technological Special Research Fund of Guangdong Province (2010A080406002),the Project Funds of Combination Research of the Guangdong Province and Ministry of Education (2010A080405006, 2010A080404008) and the Research Fund of the Guangdong Provincial Laboratory of Green Chemical Product Technology (GC201201).

表面微细结构制备超疏水表面

评 述 第49卷 第17期 2004年9月 表面微细结构制备超疏水表面 郑黎俊 乌学东* 楼 增 吴 旦 (上海交通大学化学化工学院, 上海 200240. * 联系人, E-mail: xdwu@https://www.360docs.net/doc/8417443774.html, ) 摘要 超疏水是指固体表面上水的表观接触角超过150?的一种特殊表面现象, 本文从热力学角度评述了导致超疏水状态的两种理论模型: Wenzel 模型和Cassie 模型, 讨论了表面微细结构对超疏水状态的影响以及Wenzel 和Cassie 两种状态之间的内在联系. Wenzel 和Cassie 是两种可以同时共存的超疏水状态, 在一定条件下可以实现从Cassie 到Wenzel 状态的不可逆转变, 而这两者在接触角滞后中表现出截然不同的性质. 概括和总结了通过设计表面微细结构来达到超疏水表面的制备策略, 并对超疏水表面在现代工程领域内的应用前景作了展望. 关键词 微细结构表面 自洁表面 接触角 超疏水性 粗糙度 表面润湿是固体表面的重要特征之一, 也是最为常见的一类界面现象, 它不仅直接影响自然界中动、植物的种种生命活动, 而且在人类的日常生活与工农业生产中也起着重要的作用. 润湿性可以用表面上水的接触角来衡量, 通常将接触角小于90?时的固体表面称亲水表面(hydrophilic surface), 大于90?称疏水表面(hydrophobic surface). 近年来, 随着微纳米科学技术的不断发展, 以及越来越多的行业对特殊表面性能材料的迫切需求, 人们对微观结构在生命科学和材料科学中的应用有了更多的认识, 对于固体表面微细结构与润湿性之间的关系也有了更深入的理解[1,2]. 对润湿性可控表面研究的重大进步, 使得制备无污染、自清洁表面的梦想成为了现实[3]. 自洁表面一般可通过制备超亲水或超疏水表面两种途径制得: Wang 等[4]利用紫外光诱导产生的接触角接近0?的超亲水TiO 2表面, 这种表面材料已经成功地被用作防雾及自洁的透明涂层[5], 其机理为液滴在高能表面上铺展开形成液膜, 然后通过液膜流动, 夹带表面污物运动而起到自洁的功能; 而科学家在对动植物表面 的研究中发现[6], 自然界中通过形成超疏水表面来达到自洁功能的现象更为普遍, 最典型的如以莲叶为代表的多种植物叶子的表面[7](莲叶效应 Lotus- ef-fect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等等, 这是大自然对我们的暗示. 通过观察和研究发现, 此类表面上除了具有疏水的化学组分外, 更重要的是在微观尺度上具有微细的粗糙结构. 如图1所示, 电子显微镜下, 荷叶表面具有双层微观结构, 即由微米尺度的细胞和其上的纳米尺度蜡状晶体两部分组成; 蝶类翅膀上的粉末由100 μm 左右的扁平囊状物组成, 囊状物由无数对称的几丁质(chitin)组成的角质层构成, 其表面并不光洁, 这就是蝴蝶常具有色彩斑斓的结构色以及较好的疏水性的原因[8]; 水鸟类羽毛也具有微米或亚微米尺度的致密排列, 同时具有较好的 透气性和疏水性. 固体表面的润湿性由其化学组成和微观几何结构共同决定. 众所周知, 润湿性能主要受固体表面化学组成的影响, 固体表面自由能σSG 越大, 就越容易被一些液体所润湿, 反之亦然. 所以寻求和制备高表面自由能或低表面自由能的固体表面是制备超亲水 图1 (a) 荷叶表面的双层结构; (b) 蝴蝶鳞片的排列以及鳞片表面的微观结构; (c) 羽毛的微观结构 https://www.360docs.net/doc/8417443774.html, 1691

超疏水材料制备及其在油水分离中的应用研究进展

超疏水材料制备及其在油水分离中的应用研究进展 摘要随着世界机械化以及工业化的发展,全球的水资源污染逐渐严重,人民群众对于水资源的供应以及淡水资源的处理越发关注,且为水资源处理技术的发展做出了较大贡献。作为水资源净化技术的重要组成部分,油水分离净化技术水平不仅关系着淡水资源的提供质量,而且对于人民群众的身体健康也具有重要影响。基于此,本文将超疏水材料制备及其在油水分离中的应用作为主要研究内容,通过对超疏水材料进行简单阐述,进而对超疏水材料的应用以及其在油水分离中的应用进行详细的研究与分析。本文旨在为超疏水材料在油水分离中的应用研究提供几点参考性建议,并为水资源的净化处理技术发展提供积极的推动作用。 关键词超疏水材料制备;油水分离;应用研究 前言 由于工业化的发展导致海洋中的水资源污染情况越加恶劣,有大量的油产品以及机溶剂污染流入海洋中,对海洋中的水资源产生了严重破坏,进而为水资源净化技术提出了更高的要求,对人类生存与发展也产生了威胁。基于此种宏观环境,本文对超疏水材料在油水分离中的应用进行详细的研究与分析。 1 超疏水材料概述 超疏水材料主要是利用其中较为独特的化学结构以及其本身的润湿性能来作为水资源净化技术中的一种使用材料。由于该种材料在材质表面上具有润湿性的特殊原理,并能够作为超疏水材料而应用至油水分离的水资源净化中,其还具有两方面的特征。第一方面,表面为微纳米结构。第二方面,表面具有低表面能的特色。同时,在该种材料的制备过程中还具有成本较低以及制备材料环保的优势。因此,在油水分离的水资源净化中被广泛使用。但在超疏水材料的具体制备中还有耗时周期长的缺点,而该种缺点与实际制备中的优势相比并不对超疏水材料的实际应用构成威胁[1]。 2 超疏水材料的应用 由于超疏水材料在近几年的广泛使用中其本身的特殊性能受到各领域研究人员的关注,进而推动着超疏水材料在多个研究领域以及生活领域被应用。本文将超疏水材料的应用特性总结为以下五个方面。第一方面,自清洁的特性应用。由于超疏水材料本身具有良好的润湿性,在其进行使用的过程中能够对自身的灰尘与脏污进行自行清理。在具体的应用中,将超疏水材料的特性应用在城市高楼的建设中,利用超疏水材料的自清洁特性减少建筑玻璃清洁的次數,降低楼房玻璃清洁的成本,并在一定程度上节约水资源[2]。第二方面,抗冰雪的特性应用。由于在冰天雪地的寒冷地区,电线、航行等方面均会有风雪粘粘,进而导致电力能源的传输问题,并对正常的航行产生困扰。而应用超疏水材料的抗冰雪特性将

薄膜流研究进展

薄膜流研究进展 班级:机械工程专硕1班 学号:6160805020 姓名:程帅 摘要:液体在重力作用下以薄层形式沿壁面向下流动,称为液体薄膜流。它具有小流量、小温差、高传热传质系数、高热流密度、结构简单、动力消耗小等独特优点,己作为一项高效传热传质技术在化工、能源、航天、石油、制冷、电子等许多工业领域得到了广泛应用。本文介绍了非牛顿流体层流降膜流、新型薄膜覆盖材料、薄膜流涎机。正是由于实际应用的重要性和迫切性,在液体薄膜流的水动力过程和传热传质特性力一面,近几十年来开展了大量的深入研究。本文通过全面阐述液体薄膜流动和传热特性的研究现状,分析目前研究中存在的问题与不足,为未来研究提供借鉴。 关键词:液体薄膜流、非牛顿流薄膜流、新型薄膜覆盖材料、薄膜流涎机 1.液体薄膜流表面特征 对于液膜沿倾斜壁或垂直管壁向下流动的情形,从实验上观察到三种不同的流动状态:当Re=4T/v<20~30 (T为单位湿周的体积流率,v为流体的运动粘度),流动为层流,膜表面呈平滑状态且膜厚为常数;当2001000~2000,流动呈波动性剧烈的紊流。 在工业应用的雷诺数范围内,降膜呈现出非常不规则的波动表面。对于波峰高度是底层厚度两倍以上,且其周围存在至少一个波长长度的平坦部分的波,称之为孤立波,如图1所示。它起始于粘性底层,具有陡峭的波前和相对平缓的波后,在波后逐渐没入粘性底层。对于波幅是其底层厚度2}5倍的大波,其携带着大部分流动质量,对波内、波与壁面、波与外界的传热传质速率,起着明显的控制作用。一般说来,界面处的波动会在膜内、特别是 在接近界面处将产生良好的混合。实验测量表明,紊流对动量传递的影响与波动的影响相比要小一些。 (a)波峰高度/底层厚度=2.8 (b)波峰高度/底层厚度=3.68 图1不同波峰高度/底层厚度比下的流动特性,R=600 大多数模拟结果显示:在孤立波内存在与主流方向相反的回流区,而在其周围的微波内不存在回流区(图1)。回流区的存在,加快了界面处和膜内冷热流体的混合,在一定程度上加强了传热效果,而且,液体表面波的存在,尤其是大孤立波,可有效地喇氏平均液膜厚度,.这些特征可以从理论上解释在波动膜状态下具有强传热传质速率的机理。

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

超疏水材料研究报告进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b)

超疏水高分子薄膜的研究进展 (1)

超疏水高分子材料的研究进展 摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。 关键词:超疏水,高分子材料,自清洁 Developments of super-hydrophobic Ploymeric material Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end. Key Words: super-hydrophobic, polymeric membrane, self-cleaning. 引言 自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。 随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

超疏水材料的应用及进展

超疏水材料的应用及进展 在仿生研究领域,许多奇特的微/纳生物表面现象给予人们大量的启示。比如荷叶效应、水黾在水面上奔跑以及蝴蝶翅膀的自洁,引发了人们对超疏水材料的研究兴趣。本文综述了仿生超疏水表面的润湿性原理、主要制备方法和应用。 关键词:仿生超疏水;润湿性;制备方法;应用 在时间的长河中,大自然不断地孕育生命,每一个生命体都具有其独特的艺术性、科学性。人类在不断适应自然、认识自然的同时,逐渐开始研究自然。仿生研究是人们学习自然,提高现有技术的有效手段。在仿生研究领域,许多奇特的微纳生物表面现象给予了人们大量的启示与想象空间[1]。比如荷叶效应[2] 、水黾在水面上奔跑以及蝴蝶翅膀的自洁[3],引发了人们对仿生超疏水材料的研究兴趣。 1 润湿性原理 固体表面的润湿性[4]对揭示表面亲、疏水性,强化表面疏水性能和制备疏水表面具有重要意义。描述润湿性的指标为与水的接触角,接触角小于9O°,为亲水表面,接触角大于90°,为疏水表面,接触角大于150°,则称为超疏水表面。 Wenzel[5]假设液体始终填满固体表面上的凹槽结构,粗糙

表面的表观接触角θ?与光滑平坦表面本征接触角θ存在以下关系:r (γs-g-γl-s)/γl-g=cosθ?=rI cosθ,式中r是材料表面的粗糙度因子,为固液界面实际接触面积与表观接触面积之比。而Cassie[6]认为疏水表面上的液滴不能填满粗糙表面上的凹槽,凹槽中液滴下存留空气,从而表观上的固液接触实际上是固液、固气接触共同组成,提出cosθ?=fs(1+c cosθ)-1,式中:fs是复合接触面中凸起固体面积与表观接触面积之比,其值小于1。而Cassie和Baxter[7]从热力学角度得到适合任何复合表面接触的Cassie-Baxter方程cosθ?=f1cosθ1+: f2cosθ2,式中θ?是复合表面的表观接触角,f1、f2分别是两种介质在固体表面上所占面积的比例,θ1、θ2分别是2种介质界面间(固液、气液)的本征接触角。研究发现[8],固体表面随着微孔深度的增加,液体的浸润性增大,润湿性减小;随着孔间距的增大,液体的润湿深度先减小后增大。超 2 制备方法 由材料表面润湿性原理可知,材料表面能和表面微纳米结构是影响材料表面疏水、亲水性能的主要因素。制备仿生超疏水表面主要从两方面入手,一方面是使用具有低表面能材料,另一方面是改变材料表面粗糙度和微纳米结构。。 2.1、自然界物质中表面能最低的两种材料是硅氧烷、含氟

2011-金属基体超疏水表面制备及应用的研究进展

金属基体超疏水表面制备及应用的 研究进展 Progress in Fabrication and A pplicat ion of Superhydrophobic Surfaces on M etal Substrat es 徐文骥,宋金龙,孙 晶,窦庆乐 (大连理工大学精密与特种加工教育部重点实验室,辽宁大连116024) XU Wen ji,SONG Jin long,SUN Jing,DOU Q ing le (Key Labor ator y for Precision and No n traditio nal M achining Technolog y fo r M inistry of Education,Dalian U niversity of T echno logy,Dalian116024,Liaoning,China) 摘要:在介绍润湿性相关理论的基础上,综述了国内外金属基体超疏水表面的制备方法及应用,重点讨论了阳极氧化法、电化学沉积法、化学腐蚀法、化学沉积法、一步浸泡法、热氧化法、模板法、复合法等,及超疏水表面在响应开关、自清洁、流体减阻、耐腐蚀、防冰霜、油水分离、微型水上运输器等方面的应用,最后评述了各种方法的特点,提出了在金属基体上制备超疏水表面所面临的问题。 关键词:金属基体;超疏水表面;研究进展 中图分类号:T G66 文献标识码:A 文章编号:1001 4381(2011)05 0093 06 Abstract:On the basis of the fundamental theories,the fabr ication and application of superhydropho bic surfaces on metal substrates w er e r eview ed.It em phasized to discuss preparation methods of anod ization,electro chem ical depositio n,chem ical etching,chemical deposition,one step solution imm er sion,thermal ox idatio n,template,co mposite,etc.Super hy drophobic surfaces on m etal substrates w ere also summarized in the applicatio n of response sw itch,self cleaning,drag reduction,corro sion resistance,anti icing,w ater and oil m ixture separatio n,miniatur e transporter over w ater.M ean w hile,characteristics of different kinds o f techniques w ere discussed.Finally,the pr oblem s about fabricatio n of super hy drophobic sur faces on m etal substrates w er e bro ug ht fo rw ar d. Key words:metal substrate;superhydropho bic surface;research progr ess 润湿性是固体表面的重要性质之一[1],常用接触角来衡量,当接触角小于90 时为亲水表面,小于5 时为超亲水表面,大于90 时为疏水表面,大于150 时为超疏水表面。在自然界中,到处可见超疏水现象,荷叶、水稻叶子等植物叶片具有自清洁效应,水黾能够毫不费力地站在水面上[2],蝴蝶翅膀能在雨中不被淋湿。1996年Onda等[3]首次报道了人工合成超疏水表面, 1997年,德国植物学家Bar thlott和Neinhuis[4,5]对植物的超疏水性进行了系统研究,发现荷叶的自清洁性是由表面微米结构和表面蜡层共同引起的。江雷等[6]对荷叶的进一步研究,发现微米结构的乳突上还存在纳米结构,而微纳米结构和表面蜡层共同作用是引起荷叶表面超疏水的根本原因。 由于超疏水表面具有自清洁[7,8]、减阻[9-11]、耐腐蚀[12,13]、防结冰[14-19]等特性,而金属材料在工农业生产中又被广泛地应用,因此研究金属基体超疏水表面的制备方法及应用极为重要,也引起了各国研究人员的极大兴趣。 1 相关理论 1.1 Yong氏模型 当少量液滴滴在理想固体(绝对光滑)表面,在固、液、气三相的交界处,由固、液界面经过液体内部至液、气界面的夹角称为接触角 ,其大小满足Yo ng氏方程[20]: cos =( sg- sl)/ lg(1)式中: sg, sl和 lg分别表示固 气、固 液、液 气界面的表面张力。 由式(1)可得,当液体确定时,即 lg确定时,接触

薄膜及涂层材料研究进展(专业课)

1、陶瓷材料等离子处理纳米粉体的弯曲强度为( )MPa 。 A 、426.3 B 、572.4 D 、735.2 2、Metco 130涂层的硬度为( )Cpa 。 B 、9.20±0.56 C 、11.0±0.75 D 、14.8±0.52 3、纳米复合微弧氧化陶瓷的体积磨损率为普通微弧氧化层的( )。 A 、1/4 B 、1/3 D 、2倍 4、以下涂层中,裂纹扩展抗力最高的是( )。 A 、纳米重熔涂层 B 、微米重熔涂层 C 、纳米喷涂态涂层 5、Al2O3/TiO2纳米涂层的断裂韧性为( )J/m2。 A 、7.3 C 、5.2 D 、4.4 6、普通烧结粉体纸杯的纳米涂层的磨损率为( )。 A 、17.9 B 、 11 D 、1.5 7、一级涡轮叶片表面涂上( )后,可使冷却空气流量减少50%。 B 、Metco 130涂层 C 、金属热障涂层 D 、合金热障涂层

1、智能材料的特点包括( )。 C 、可自行调整 2、涂层中的组织一般可分为( )。 C 、粉体组织 D 、颗粒组织 3、常用的自润滑涂层有( )。 A 、FeS2 D 、CS2 4 、表面工程可改变物体表面的( )。 5、减少摩擦系数的途径有( )。 C 、减弱钢的基体 D 、增加界面的临界剪切应力 6、以下零部件中,使用环境为盐水的有( )。 B 、阀杆 D 、流量泵 1、固体金属表面的性能可通过表面工程进行改造,而非金属不行。 对 错

2、热障涂层在提高热效率的所有耐高温材料中具有无可替代的作用。 3、通过增加界面的临界剪切应力可以减少摩擦系数。 4、CaZn为无序的典型形状记忆合金。 5、微弧氧化膜层应在常温下进行操作。 6、喷涂态涂层的网状组织弹性模量较熔凝组织高。 7、表面涂上陶瓷热障涂层后的一级涡轮叶片,其寿命可提高4倍。

超疏水表面

关于超疏水表面的基本介绍及其制备 【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。 【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。2)使用无机物或在金属表面制备具有超疏水性表面的材料。3)使用高分子材料制备具有超疏水性的表面。4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。只有拥有较大的接触角(CA>150和较小的滚动角(SA<10)的表面才是真正意义上的超疏水表面。所谓接触角,就是液滴在固体表面形成热力学平衡时所持有的角。通过液体-固体-气体接合点中水珠曲线的终点和固体表面的接触点测定出来。滚动角可作为评价表面浸润性的另一指标,指的是一定质量的液滴在倾斜面上开始滚动的临界角度。滚动角越小,固体表面表现出的疏水性越好。因为地球的重力作用,水滴在倾斜的固体表面有下滑的趋势。随着固体倾斜角的变大,水滴沿斜面方向的下滑分力也在不断增大,当倾斜角增大到某一临界角度时,水滴会从固体表面滑落下来,这时的临界角就是水在此种固体表面的滚动角。滚动角越小,固体表面的超疏水性能越好。 接触角三大理论 杨氏方程(1805年)

超疏水材料研究进展

超疏水材料研究进展

超疏水材料研究进展 摘要: 本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图

浅谈超疏水材料的应用前景

浅谈超疏水材料的应用前景 超疏水材料技术是涉及生物、物理、化学以及材料等多学科交叉的前沿技术。21世纪以来,在表面科学、仿生学以及多领域学科的交叉融合推动下,新型超疏水材料层出不穷,其优秀的润湿特性和广泛的应用前景,引起了各国的广泛关注。2017年4月,在美空军研究实验室支持下,密歇根大学开发出新型自愈型超疏水涂层材料。该材料拥有百倍于同类涂料的耐久性,可为舰船、飞机和战车提供兼具耐久性的防水、防结冰、自清洁能力。 1 超疏水材料技术概述 超疏水性是一种特殊的润湿性,一般指水滴在固体表面呈球状,接触角大于150度,滚动角小于10度。材料表面能(材料表面分子比内部分子多出的能量)越低,疏水性越好,且当低表面能 材料具有微观粗糙结构时,水滴与材料之间会形成一层空气膜,阻碍水对材料表面的润湿,从而形成超疏水状态。 构造超疏水表面有两种方法,一是在疏水材料表面上构建微观粗糙结构,二是用低表面能物质对微观粗糙表面进行改性。 材料的超疏水性越好,水滴在材料表面上越接近球形,与材料的接触面积越小,越易从材料表面滑落。此外,水滴在超疏水材料表面滚落时可带走污染物,使材料表面保持清洁。因此超疏水材料具有防水、防腐蚀、防冰以及防附着等多重特性。 2 超疏水材料技术进展 1多学科交叉融合成为超疏水材料技术发展的主要动力 自然界中的动植物表皮具有特殊的微观结构和特殊的润湿性能,为构造超疏水材料提供了启示,如模拟荷叶结构可以获得超疏水性能、模仿鲨鱼皮结构可以获得水下减阻性能等。仿生材料的研究,为超疏水材料的持续进步提供了动力。2017年5月,德国弗莱堡大学开发出一种具有多层结构的自愈型超疏水涂层。这种超疏水材料表面具有类似蛇褪去外皮的特性,可实现表面受损后超疏水性的自愈,为新型耐久自愈型超疏水材料的研发提供了新思路。、此外,增材制造、材料计算与模拟仿真等技术的应用,大大简化了材料表面微结构的设计、构造与控制难度,使超疏水材料的制备快速精准,结构和性能可控,实现了材料制备工艺、结构、性能 等参量或过程的定量描述,缩短了材料研制周期,降低了研发成本。 2耐久性突破推动超疏水材料迈向实用化 超疏水材料表面的微纳结构是决定其超疏水性的主要因素,而这种微观粗糙结构通常存在强度低、机械强度差、耐磨性差等问题,容易被外力破坏,导致超疏水性的丧失。另外,在一些场合或长期使用中,表面也可能被油性物质污染,导致疏水性变差。耐久性是长时间保持超疏水性的关键,也是制约超疏水材料实际应用的主要因素。提高超疏水材料耐久性的方法有增强材料表面的机械稳定性、提高材料表面的防油污性能、构造自修复超疏水材料等。

相关文档
最新文档