奈奎斯特稳定判据

奈奎斯特稳定判据
奈奎斯特稳定判据

奈奎斯特判据

5.4 频域稳定判据 5.4.1 奈奎斯特稳定判据 闭环控制系统稳定的充要条件是:闭环特征方程的根均具有负的实部,或者说,全部闭环极点都位于左半s 平面。第3章中介绍的劳斯稳定判据,是利用闭环特征方程的系数来判断闭环系统的稳定性。这里要介绍的频域稳定判据则是利用系统的开环频率特性)(ωj G 来判断闭环系统的稳定性。 频域稳定判据是奈奎斯特于1932年提出的,它是频率分析法的重要内容。利用奈奎斯特稳定判据,不但可以判断系统是否稳定(绝对稳定性),也可以确定系统的稳定程度(相对稳定性),还可以用于分析系统的动态性能以及指出改善系统性能指标的途径。因此,奈奎斯特稳定判据是一种重要而实用的稳定性判据,工程上应用十分广泛。 1.辅助函数 对于图5-33所示的控制系统结构图,其开环传递函 数为 )()()()()(0s N s M s H s G s G = = (5-59) 相应的闭环传递函数为 )()()()() (1)()(1)()(000s M s N s G s N s N s G s G s G s +=+=+=Φ (5-60) 式中,为开环传递函数的分子多项式,阶;为开环传递函数的分母多项式,阶,。由式(5-59)、式(5-60)可见,)(s M m )(s N n m n ≥)()(s M s N +和分别为闭环和开环特征多项式。现以两者之比构成辅助函数 )(s N ()()()1()() M s N s F s G s N s +==+ (5-61) 实际系统传递函数分母阶数n 总是大于或等于分子阶数,因此辅助函数的分子、分母同阶,即其零点数与极点数相等。设)(s G m 1z ?,2z ?,…,n z ?和1p ?,,…,分别为其零、极点,则辅助函数可表示为 2p ?n p ?)(F s ) ())(()())(()(2121n n p s p s p s z s z s z s s F ++++++=L L (5-62)

相关文档
最新文档