基于深度学习的目标检测算法综述

基于深度学习的目标检测算法综述
基于深度学习的目标检测算法综述

建筑工程实施性方案设计文件深度()

二、建筑工程实施性方案设计文件深度 (一)设计总说明 1.总休说明 (1)设计依据 1)招标人提供的有关文件名称及文号。如:政府有关审批机关对项目建议书的批复文什、政府有关审批机关对项日例行性研究报告的批复文件、经有关部门核准或备案的项目确认书、规划审批意见书等。 2)招标人提供的设计基础资料。如:地形、区域位置、气象、水文地质、抗震设防资料等初勘资料;水、电、燃气、供热、环保、通讯、市政道路和交通地下障碍物等基础资料。 3)招标人或政府有关部门对项目的设计要求。如总平面布置、建筑控制高度、建筑造型、建筑材料等;对周围环境需要保护的建筑、水体、树木等。 4)设计采用的主要法规和标准,采用国外法规标准应于注明。 (2)方案总体构思 方案设计总体构思理念,外形特点,建筑功能,区域划分,环境景观,建筑总体与周边环境的关系。 2.设计说明 (1)总平面设计说明 1)场地现状和周边环境概况; 2)项目若分期建设,说明分期划分; 3)环境与绿化设计分析; 4)道路和广场布置、交通分析、停车场地设置、总平面无障碍设施等; 5)规划场地内原有建筑的利用和保护,古树、名木、植被保护措施; 6)地形复杂时应作竖向设计。 (2)建筑方案设计说明

1)平面布局、功能分析、交通流线; 2)空间构成及剖面设计; 3)立面设汁 4)采用的主要建筑材料及技术,若采用新材料、新技术,如实陈述其适用性、经济性,说明有无相应规范、标准,若采用国外规范,说明其名称及适用范围并履行审查批准程序; 5)建筑声学、建筑热工、建筑防护、空气洁净、人防地下室等方面有特殊要求的建筑,应说明拟采用的相关技术。 (3)主要经济设计指标; 注:1.当工程项目(如城市居住区)有相应的规划设计规范时,技术经济指标的内容应按其执行。 2计算容积率时,按国家及地方要求计算。 3公共建筑应增加主要功能区分层面积表、旅馆建筑应增加客房构成、医院建筑增加门诊人次及病床数、图书馆增加建筑藏书册数、观演和体育建筑增加座位数、住宅小区方案应增加户型统计表。 (4)关键建造技术问题说明(必要时); (5)建筑结构系统方案设计说明 1)建筑结构设计采用的规范和标准,风压雪荷载取值、地震情况及工程地质条件等;

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

基于深度学习的目标检测技术

基于深度学习的目标检测技术 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 在过去的几年中,典型的PASCAL VOC数据集上测量的对象检测性能已经趋于平稳。最好的执行方法是复杂的集成系统,通常结合多个低级别的图像特征与高层次的背景。在本文中,我们提出了一个简单的和可扩展的检测算法,提高了平均准确率(MAP)超过30%,相对于先前的最佳结果VOC 2012实现53.3%的平均准确率。我们的方法结合了两个关键的见解:(1)可以将高容量卷积神经网络(CNNs)应用到自下而上的区域建议中,以便定位和分割对象;(2)当标记的训练数据很少时,监督辅助任务的预训练,然后进行特定领域的微调,可以显著提升性能。由于我们将区域建议与CNNs结合起来,我们称我们的方法为RNCN:具有卷积神经网络特征的区域。我们还将R-CNN与OverFeat进行比较,最近提出的滑动窗口检测器基于类似的卷积神经网络架构。我们发现R-CNN在200级ILSVRC2013检测数据集上大大优于OverFeat。 object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。 object detection技术的演进: RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起 这里有一个图像任务: 既要把图中的物体识别出来,又要用方框框出它的位置。

规划申报方案内容和深度要求

规划申报方案内容和深度要求 申报方案主要包括规划说明书,现状图,总平面规划图,道路交通及竖向规划图,地下建筑平、剖面图,日照分析报告,根据项目的位置和重要程度可增加透视图,模型或动画。 1、说明书:说明项目背景和基地及其周边的现状情况,包括土地权属情 况,历史遗存和灾害影响等情况;分析研究相关规划控制要求以及项 目存在的问题,明确规划方案的主导思想和设计目标;阐述规划方案 的总体构思和规划布局。附表:“规划用地平衡表”“主要技术经济指 标表”“停车场(库)统计表”“公共配套设施统计表”“绿地明细表” 以及“建筑信息表”。 2、现状图:在现状地形图上标明规划用地范围界限,建设用地产权界限, 城市道路红线,宽度及名称,现状建筑的用途、层数等。 3、总平面规划图:要求普通纸质彩图。在现状地形图(图纸上淡化地形 地物线条,删除不必要的地形信息)上标明建筑、绿地、道路、广场、 停车场等的平面布局;表明各类建筑的平面轮廓、建筑信息、建筑标 高;标注建筑间距、尺寸,建筑退让各类控制线、组团级以上道路及 地界的距离;标明规划用地范围、绿地边界范围;标明道路红线、交 叉口控制范围、河道、绿地、高压线走廊、文物古迹保护范围等规划 控制线;标明地面停车场范围及车位布置方式,地下停车库等地下空 间的范围、层数以及出入口等。附“规划用地平衡表”“主要技术经济 指标表”“停车场(库)统计表”“公共配套设施统计表”“绿地明细表”。 4、道路交通及竖向规划图:图纸复杂时,该图可分为道路交通分析图和 竖向设计图。标明规划地块的人流、车流主要出入口,标注出入口距 城市道路交叉口距离;标明各类交通设施的用地范围及平面形式,各 级道路的宽度;标明人流,车流交通流线;标明道路等级结构;标明 周边城市道路主要控制点高程,标明规划道路中线交叉点和主要变坡 点和平曲线拐点的控制高程;标明台阶、挡土墙的位置和控制高程 5、地下建筑平、剖面图:标明地下建筑外轮廓线、基础轮廓线,地下建 筑分类用途及各类建筑面积;地下停车车位数量、交通流线;标注覆 土深度、建筑底板标高、顶板标高。 6、日照分析报告:需采用正版经认证的软件编制。应详细标明项目概况、 日照分析的基础参数及日照标准、日照分析所依据的资料,标明现状、 规划或模拟建筑的性质、建筑层数、高度、标高、采样点情况,标明 建设前后的比较分析结果、公共绿地的日照遮挡情况、详细的日照分 析结论等。报告同时应附日照分析范围图和日照分析图。 7、透视图、模型或动画:视项目所处位置和重要程度的不同,可制作能 够表达规划范围内及周边建筑和空间关系的透视图、模型或动画。需 要市建委主任规划专题会议和市政府城建专题会议审查的项目,必须 制作透视图。 规划报批成果内容和深度要求 1、现状图:内容同报审方案 2、总平面规划图:内容基本同报审方案,不在标注建筑间距、尺寸、退

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/8710035556.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

建筑方案设计深度的国家规范要求.doc

建筑方案设计深度的国家规范要求 1. 2.方案设计 2.1 一般要求 2.1.1 方案设计文件 (1)设计说明书,包括各专业设计说明以及投资估算等内容;对于涉及建筑节能设计的专业,其设计说明应有建筑节能设计专门内容; (2)总平面图以及建筑设计图纸(若为城市区域供热或区域煤气调压站,应提供热能动力专业的设计图纸,具体见第 2.3.3 条); (3)设计委托或设计合同中规定的透视图、鸟瞰图、模型等。 2.1.2 方案设计文件的编排顺序 (1)封面:项目名称、编制单位、编制年月; (2)扉页:编制单位法定代表人、技术总负责人、项目总负责人的姓名,并经上述人员签署或授权盖章; (3)设计文件目录; (4)设计说明书; (5)设计图纸。 2.2 设计说明书 2.2.1 设计依据、设计要求及主要技术经济指标。 (1)与工程设计有关的依据性文件的名称和文号,如选址及环境评价报告、用地红线图、项目可行性研究报告、政府有关主管部门对立项报告的批文、设计任务书或协议书等; (2)设计所执行的主要法规和所采用的主要标准(包括标准的名称、编号、年号和版本号); (3)设计基础资料,如气象、地形地貌、水文地质、地震基本烈度、区域位置 等; (4)简述政府有关主管部门对项目设计的要求,如对总平面布置、环境协调、建筑风格等方面的要求。当城市规划等部门对建筑高度有限制时,应说明建筑物、构筑物的

控制高度(包括最高和最低高度限值); (5)简述建设单位委托设计的内容和范围,包括功能项目和设备设施的配套情 况; (6)工程规模(如总建筑面积、总投资、容纳人数等)、项目设计规模等级和设计标准(包括结构的设计使用年限、建筑防火类别、耐火等级、装修标准等); (7)主要技术经济指标,如总用地面积、总建筑面积及各分项建筑面积(还要分别 列出地上部分和地下部分建筑面积)、建筑基底总面积、绿地总面积、容积率、建筑密度、绿地率、停车泊位数(分室内、室外和地上、地下),以及主要建筑或核心建筑的层数、层高和总高度等项指标;根据不同的建筑功能,还应表述能反映工程规模的主要 技术经济指标,如住宅的套型、套数及每套的建筑面积、使用面积,旅馆建筑中的客房 数和床位数,医院建筑中的门诊人次和病床数等指标;当工程项目(如城市居住区规划)另有相应的设计规范或标准时,技术经济指标应按其规定执行。 2.2.2 总平面设计说明。 (1)概述场地现状特点和周边环境情况及地质地貌特征,详尽阐述总体方案的构思 意图和布局特点,以及在竖向设计、交通组织、防火设计、景观绿化、环境保护等方面 所采取的具体措施。 (2)说明关于一次规划、分期建设,以及原有建筑和古树名木保留、利用、改造(改建)方面的总体设想。 2.2.3 建筑设计说明。 (1)建筑方案的设计构思和特点; (2)建筑群体和单体的空间处理、平面和竖向构成、立面造型和环境营造、环境分 析(如日照、通风、采光)等; (3)建筑的功能布局和各种出入口、垂直交通运输设施(包括楼梯、电梯、自动扶 梯)的布置; (4)建筑内部交通组织、防火和安全疏散设计; (5)关于无障碍和智能化设计方面的简要说明; (6)当建筑在声学、建筑防护、电磁波屏蔽以及人防地下室等方面有特殊要求时, 应作相应说明; (7)建筑节能设计说明:

分区规划编制内容深度规定

分区规划编制内容深度规定 一、规划原则 分区规划旨在为总体规划的进一步深化提供更为具体可行的指导依据,将总体规划与各专业规划要求层层分解,提出规划控制要求,在总规与控规之间架起一座桥梁,承上启下,以确保规划的一脉相承。制定分区规划应坚持的原则: 1、全范围覆盖,淡化城市与农村、城市建设用地与村镇建设用地界线,将建设用地与非建设用地同等对待。 2、"三图合一":将土地利用规划、村镇建设规划、城市总体规划的主要控制原则统一考虑,在都市区内实现三图合一、统一管理的目的。 3、远近结合:在分析各片区现状的基础上,针对各片区的发展目标(功能定位),提出近期的规划发展策及远期的重点建设控制。 4、引导与控制相结合:规划中既有引导性条款,也有控制性指标,将宏观引导与微观控制相结合,确保规划所应有的刚性和适当的弹性。 二、分区规划的主要内容 分区规划应按城市规划编制办法及其他国家有关规范标准规定编制,成果表现突出和增加以下内容: 1、分区人口、建设用地规模; 2、分区功能定位及用地功能布局; 3、发展中要重点解决的问题; 4、用地开发强度等级: 将各片区用地按开发强度分为七级: 建设容量控制一览表 级别控制强度 Ⅰ建筑密度35%-45% 绿地率25%-30% 平均容积率3-8 Ⅱ建筑密度25%-35% 绿地率30%-35% 平均容积率1-3 Ⅲ建筑密度15%-25% 绿地率35%-45% 平均容积率0.5-1.0 Ⅳ绿地率>45% 建设用地比例40%-50% 平均容积率小于0.5 Ⅴ绿地率45%-80% 建设用地比例10%-40% Ⅵ绿地率80%-90% 建设用地比例5%-10% Ⅶ绿地率>95% 建设用地比例<5% 结合各片区用地现状及建设条件综合评价,划分各级用地规划范围,提出相应控制要求。5、确定用地性质(按用地分类标准至中级),通过五条控制线,严格控制五种用地: 红线──次干路以上道路的红线宽度; 绿线──区级以上公园绿地及8米以上绿化带用地范围; 黄线──重大市政设施用地范围; 紫线──历史文化名城保护要素:绝对保护区、景观保护区、建设协调区等; 蓝线──大型水体保护范围。 6、城市设计及景观控制导引: 明确重点景观轴线、视线走廊、背景山体、高层建筑引导区及控制区、限制区等。 7、重大项目规划及近期建设项目安排: 片区内重大项目规划及近期必须尽快实施的建设项目。 8、下阶段规划控制单元的划定: 按照城市用地功能、地块完整性,划定控制性详细规划的基本控制单元。

目标检测综述

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

概念性方案设计文件编制及深度要求

概念性方案设计文件编制及深度要求 第一部分概述 按照管理本部的设计管理流程要求,概念性方案设计是承接项目和产品的设 计阶段,概念性方案设计在概念性方案设计任务书和项目产品建议问题总结的基 础上,设计思路应具有延续性、探索性、独创性和挑战性。 1.方案设计文件编制的目的和特点 a)概念性方案阶段的任务包括以下两大方面: i.根据项目的实际情况,确定设计管理模式,起主要工作成果体现在 设计任务分解清单和设计费用预算、项目设计总体控制计划以及设 计单位的筛选;有关项目设计总体控制计划的编制要求可以参照《项 目规划设计分析成果标准》相关章节执行; ii.通常意义上的概念性方案设计。对概念性方案设计本身的要求可以参照本文执行; b)概念性方案可以根据需要结合当地政府报批所需的修建性详规设计,概 念性方案深度以修建性详规深度为参照依据。设计内容在体现概念性方 案设计任务书的基础上,应围绕修建性详规、场地分析和住宅单体选型 的要求进行,表现手法可根据报批或者项目具体需要灵活确定。 c)概念性方案设计文件包括设计单位或分公司规划设计部提供的: i.设计单位提供的概念性方案设计文件应以构思分析草图、场地分析 草图、住宅单体风格以及户型选型示意图和总平面设计构思图纸为 主,辅以对整体概念构思的的简要设计说明; d)概念性方案设计文件以说明如何实现甲方策划意图和设计的整体构思为 主,结合政府报批要求及公司内部要求可以采用灵活的表现手法,为充 分展示设计意图、特征和创新之处,可以有分析图草图、总平面及单体 建筑图、透视图,还可根据项目需要增加模型、电脑动画、幻灯片等。

2.概念性方案设计文件的内容与编排 概念性方案设计应包含以下两大组成部分,分别由设计单位和分公司规划设计部提供。 a)设计方应该提供概念性方案构思说明书、设计图纸、透视图三部分,编 排顺序为: i.封面:写明方案名称、设计单位、设计年月; ii.扉页:注明方案编制单位的行政和技术负责人、设计总负责人、概念性方案设计人,并经上述人员签署或授权盖章;以上人员需加注 专业技术职称,本部分必要时需附透视图或者模型照片; iii.概念性方案设计文件目录; iv.概念性方案构思说明:由总说明和各专业构思说明组成;具体要求可参照国家修建性详细规划的设计说明格式,并应考虑增加结合项 目实际情况的设计内容说明; v.主要技术经济指标:主要指总建筑面积、容积率、各分类建筑面积、各类住宅每户单元建筑面积等;设计单位应该完成《概念设计任务 书》中的各类统计表格。同时,分公司规划设计部负责人应该审核 上述数据的真实性; vi.设计图纸:主要由规划总平面图、以及道路、竖向、管线、绿化景观、土方平衡等总图类图纸,以及建筑专业图纸组成,可参见第二 部分概念性方案图纸目录; b)分公司设计部应对概念性方案做出完整的书面评估意见; c)如设计合同以及设计任务书中有特别的约定,其设计文件的编制,应按 照招标的规定和要求执行。 3.概念性方案设计文件的规格与装订 概念性方案设计文件主要是公司内部根据本规定或者设计任务书的约定制作,以下为主要编制原则: a)一般项目应按设计说明书、主要技术经济指标、设计图纸、分析说明, 共四部分。复杂项目每部分可以独立分册装订;

使用深度学习和OpenCV 进行视频目标检测

使用深度学习和OpenCV 进行视频目标检测 使用 OpenCV 和 Python 上对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。 本文分两个部分。在第一部分中,我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。 深度学习目标检测教程:http://pyimagesearch/2017/09/11/object-detection-with-deep-learning-and-opencv/ VideoStream 类教程:http://pyimagesearch/2016/01/04/unifying-picamera-and-cv2-videocapture-into-a-single-class-w ith-opencv/ 现在,我们将开始把深度学习+目标检测的代码应用于视频流中,同时测量 FPS 处理速度。使用深度学习和 OpenCV 进行视频目标检测 为了构建基于 OpenCV 深度学习的实时目标检测器,我们需要有效地接入摄像头/视频流,并将目标检测应用到每一帧里。 首先,我们打开一个新文件,将其命名为 real_time_object_detection.py,随后加入以下代码: 我们从第 2-8 行开始导入封包。在此之前,你需要 imutils 和 OpenCV 3.3。在系统设置上,你只需要以默认设置安装 OpenCV 即可(同时确保你遵循了所有 Python 虚拟环境命令)。Note:请确保自己下载和安装的是 OpenCV 3.3(或更新版本)和 OpenCV-contrib 版本(适用于 OpenCV 3.3),以保证其中包含有深度神经网络模块。 下面,我们将解析这些命令行参数: 与此前的目标检测项目相比,我们不需要图像参数,因为在这里我们处理的是视频流和视频——除了以下参数保持不变:

《城市总体规划》主要专项规划内容及深度要求内容

《城市总体规划》主要专项规划容及深度要求

目录 《城市给水工程专项规划》.......................................................................... .. (3) 《城市排水工程专项规划》.......................................................................... .. (5) 《城市电力工程专项规划》.......................................................................... .. (7) 《城市电信工程专项规划》.......................................................................... .. (9) 《城市燃气专项规划》.......................................................................... .. (11) 《城市消防专项规划》.......................................................................... .. (13)

《城市应急避难场所专项规划》.......................................................................... . (16) 《城市给水工程专项规划》容及要求《城市给水工程专项规划》成果包括规划文本、图纸和附件(说明书、基础资料汇编等)。 一、规划文本 (一) 总则 容包括编制规划的目的、规划依据、规划指导思想与原则、规划期限与规划围等。 (二) 规划目标与规划建设标准。 容包括规划供水规模、人均用水量标准、消防水量标准、用水最大时管网水压标准和进行消防校核时水压标准,水质执行标准等。 (三) 水源规划。 简述水源供需平衡方案及各水源地建设规模,水源供水保证率等,根据水量平衡方案和各类水源类型提出水源配置原则,提出水源地保护围及重点保护措施。 (四) 给水工程规划。

数字图像处理和边缘检测

中文译文 数字图像处理和边缘检测 1.数字图像处理 数字图像处理方法的研究源于两个主要应用领域:为便于人们分析而对图像信息进行改进;为使机 器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数(,)f x y ,这里x 和y 是空间坐标,而在任何一对空间坐标(,)x y 上 的幅值f 称为该点图像的强度或灰度。当,x y 和幅值f 为有限的、离散的数值时,则图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人 类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有 一致的看法。有时用处理的输入和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输入采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢的多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。 从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可 以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。 低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。 根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或 物体的识别这一领域。这样,在研究中,我们界定数字图像处理包括输入和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。

建筑工程设计文件编制深度规定(2016年版)

建筑工程设计文件编制深度规定

2016年11月 前言 本规定依据《建设工程质量管理条例》(国务院第279号令)和《建设工程勘察设计管理条例》(国务院第662号令),在《建筑工程设计文件编制深度规定》(2008年版)基础上修编而成。本规定与2008年版规定相比主要变化如下: ——新增绿色建筑技术应用的内容。 ——新增装配式建筑设计内容。 ——新增建筑设备控制相关规定。 ——新增建筑节能设计要求,包括各相关专业的设计文件和计算书深度要求。 ——新增结构工程超限设计可行性论证报告内容。 ——新增建筑幕墙、基坑支护及建筑智能化专项设计内容。 ——根据建筑工程项目在审批、施工等方面对设计文件深度要求的变化,对原规定中部分条文作了修改,使之更加适用于目前的工程项目设计,尤其是民用建筑工程项目设计。 本规定由住房和城乡建设部批准。 本规定的主编单位为中南建筑设计院股份有限公司,参编单位为中国建筑西北设计研究院有限公司、华东建筑设计研究院有限公司、中国建筑西南设计研究院有限公司、中国建筑东北设计研究院有限公司、北京市建筑设计研究院有限公司、广东省建筑设计研究院、中国建筑业协会智能建筑分会、中建科技集团有限公司。 本规定主要起草人: 总负责人:李霆 总则、一般要求部分:刘炳清 建筑、总平面部分:翁皓、党春红、李春舫、林莉 结构部分:李霆、徐厚军、郑瑾

建筑电气部分:杜毅威、熊江 给水排水部分:金鹏、涂正纯 供暖通风与空气调节、热能动力部分:郑小梅、杨允立、吴光林、马友才 技术经济部分:张变兰、聂钢 建筑幕墙部分:王书华 基坑工程部分:陈义平 建筑智能化部分:耿望阳 装配式建筑部分:叶浩文、樊则森、李文、孙占琦、蒋杰、马涛、王炜、张沂 目录 1 总则 (1) 2 方案设计 (2) 2.1 一般要求 (2) 2.2 设计说明书 (2) 2.3 设计图纸 (6) 3 初步设计 (8) 3.1 一般要求 (8) 3.2 设计总说明 (8) 3.3 总平面 (9) 3.4 建筑 (11) 3.5 结构 (14) 3.6 建筑电气 (17) 3.7 给水排水 (20) 3.8 供暖通风与空气调节 (24) 3.9 热能动力 (26) 3.10 概算 (28) 4 施工图设计 (30) 4.1 一般要求 (30) 4.2 总平面 (30) 4.3 建筑 (32) 4.4 结构 (36) 4.5 建筑电气 (43) 4.6 给水排水 (46) 4.7 供暖通风与空气调节 (50)

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

基于深度学习的目标检测研究进展

基于深度学习的目标检测研究进展 原创2016-05-30深度学习大讲堂深度学习大讲堂 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置。其实刚刚的这个过程就是目标检测,目标检测就是“给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别”。 目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在图像中哪个区域。图像中的目标可能出现在任何位置,目标的形态可能存在各种各样的变化,图像的背景千差万别……,这些因素导致目标检测并不是一个容易解决的任务。 得益于深度学习——主要是卷积神经网络(convolution neural network: CNN)和候选区域(region proposal)算法,从2014年开始,目标检测取得了巨大的突破。本文主要对基于深度学习的目标检测算法进行剖析和总结,文章分为四个部分:第一部分大体介绍下传统目标检测的流程,第二部分介绍以R-CNN为代表的结合region proposal和CNN分类的目标检测框架(R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN); 第三部分介绍以YOLO为代表的将目标检测转换为回归问题的目标检测框架(YOLO, SSD); 第四部分介绍一些可以提高目标检测性能的技巧和方法。 一. 传统目标检测方法

如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择 这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取 由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器 主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题:一个是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余;二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二. 基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分

相关文档
最新文档