穿根法解不等式的原理、步骤和应用范例

穿根法解不等式的原理、步骤和应用范例
穿根法解不等式的原理、步骤和应用范例

穿根法解不等式的原理、步骤和应用范例

江苏沛县孙统权

(本文发表于东北师范大学《数学学习与研究》2007年第2期)

摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-xn)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。

关键词:穿根法;解不等式;原理;步骤;应用

穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

原理

穿根法解不等式时,一般先将其化为形如:

f(x)=(x-x1)(x-x2)…(x-xn)>0 (或<0)

的标准形式,主要考察f(x)的符号规律。

在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。

一次不等式

标准形式:f(x)=x-x1>0 (或<0)

我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是大于x1的点,即是x-x1>0的解;而x1左边的点都是小于x1的点,即是x-x1<0的解。所以可以如图标注,图中+、- 用以表示f(x)=x-x1的符号。

我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,

f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。

二次不等式

标准形式:f(x)=(x-x1)(x-x2) >0 (或<0)

(1) x1≠x2时,不妨设x1

将f(x)=0的二根x1、x2标在序轴上,则可以发现:处于(-∞, x1),(x2,+∞)内的点满足f(x) >0,处于(x1,x2)内的点满足f(x) <0。

当我们动态考察该问题时,我们也可以发现:当点x=a在x2右方时,x-x1、x-x2均正,故有f(x) >0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。

总之,无论从哪个方面看,f(x)的符号都可以如图标注。

(2) x1=x2时,即形如f(x)=(x-x1)2时

显然,(-∞,x1)与( x1 ,+∞)都是f(x) >0的解。

而若动态的考察此问题,则有点x=a 从x1右侧移动向左侧移动时,由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回到正的过程。故而f(x)在x1两侧符号同正,只有在x=x1处为0。

高次不等式

标准形式:f(x)=(x-x1)(x-x2)...(x-xn)>0 (或<0),x1≤x2≤ (x)

x1

动态考察f(x)的符号,则有当点x=a在xn右方时,x-xi (i=1,2,…,n)均大于0,故而

f(x) >0;而当点x=a从xn右侧移动到左侧时,x-xn符号变化,而其余任一x-xi均不变号,所以有f(x)由正变负;类似可得:对任一i,当点x=a从xi右侧移动到左侧时,x-xi符号变化,而其余每个x-xj (j≠i)都不变号,所以有f(x)必然变号,或由正变负,或由负变正。就这样,由于每过一个xi都恰有一个因式x-xi变号,所以我们可以从最右上方开始画一条依次穿过各根的线,这正是穿根法的原理和名称由来。

x1≤x2≤……≤xn且有等号成立时

其标准形式可写为

f(x)=(x-x1)m1(x-x2) m2…(x-xn) mn >0 (或<0),

x1

当点x=a在xn右方时,所有x-xi (i=1,2,…,n)均为正,故而f(x)为正。而每当x=a从xi右侧移动到xi左侧时,若mi为奇,则(x-xi) mi由正变负,f(x)符号改变;而若mi为偶,则(x-xi) mi符号不变,f(x) 符号也不变,原正仍为正,原负仍为负。这里值得一提的是,每当x=xi成立,即有f(x)= 0。所以,使用穿根法当遇到mi为奇,则穿根线在根xi穿过序轴;当遇到mi为偶,则穿根线与根xi接触即回,好像被序轴弹了回去。此称为“奇穿偶回”。

步骤

一元高次不等式

对于不等式f(x) >0,其中f(x)为x的高次多项式,用穿根法解的步骤如下:

(1)整理——原式化为标准型把f(x)进行因式分解,并化简为下面的形式:

f(x)=(x-x1)m1(x-x2) m2…(x-xn) mn >0(或<0),

mi∈N* (i=1,2,…,n)

(2)标根——在序轴上标根将f(x)=0的n个不同的根x1,x2,……xn按照大小顺序标在序轴上,将序轴分为n+1个区间。

(3)画线——画穿根线从最大根右上方开始,按照大小顺序依次经过每个根画一条连续曲线,作为穿根线。遇奇次根穿过序轴,遇偶次根弹回,即“奇穿偶回”。

(4)选解——写出解集如例图,在序轴上方的曲线对应的区间为f(x)>0解集,在序轴下方的曲线对应的区间为f(x)<0解集。

分式不等式

一、先将不等式整理成f(x)/g(x)>0或f(x)/g(x)<0的形式,其中,f(x)、g(x)为整式。

二、f(x)/g(x)>0 f(x)·g(x)>0 f(x)/g(x)<0 f(x)·g(x) <0

即将分式不等式转化为整式不等式再处理。

含等号的整式、分式不等式

对于整式不等式,要注意写解集时将各个根包括进去。一般只需将开区间符号改为闭区间符号,同时注意必要时合并区间。

对于分式不等式,尤其要注意分母非0。

f(x)/g(x)≥0 f(x)·g(x)≥0 且g(x)≠0

f(x)/g(x)≤0 f(x)·g(x)≤0且g(x)≠0

这样就要求在标根时,将能够使不等式成立的根标为实点,否则标为虚点。

注意

分式不等式和高次不等式在化简时每一步变形都应是不等式的等价变形。对于变形中出现的形如x2+px+q=0的因式,若其△≥0,则继续分解。若△<0,则直接消去,因为此时该式恒大于0。

应用范例

例1 解不等式:(x-1)2(x+1)(x-2)(x+4)<0

具体步骤:

1 将(x-1)2(x+1)(x-2)(x+4)=0的根记入演算数据区。其中,由于1是偶次根,在其下加一点以区别于其它奇次根。

2 画有向直线作为序轴,在序轴上由小到大、由左到右标根。每标一根,在数据区相应根下打一标记表示已取。标偶次根时,在序轴该根位置上方或下方加一点,即偶次根标重(cong)点。

3 从最大根2的右上方开始画穿根线,首先让线穿过根2,当接着到1时,由于1是偶次根,附近有重点,故线被弹回。然后线又依次穿过根-1和-4。如图。

4穿根线与序轴围成的区域,序轴上方标“+”号,表示f(x)在该区间取正值。序轴下方标“-”号,表示f(x)在该区间取负值。

5 所有的根均不能使不等式成立,故各根均标上虚点。

6 写出解集,一般用区间方式列出。

解:用穿根法作图如右,可知原不等式解集为:

(-∞,-4)∪(-1,1)∪(1,2)

例2 解不等式:(x+2)(x+1)2(x-1)3(x-2)≤0

解:用穿根法作图如右。(注意“奇穿偶回”,每个根都标为实点。)

可知原不等式解集为:(-∞,-2]∪{-1}∪[1,2]

说明:也可将原不等式转化为(x+2)(x+1)2(x-1)(x-2)≤0以后,再用穿根法做。例3 解不等式:(x-1)(x-2)(x-3)(x-4)>120

解:将原不等式变形:

[(x-1)(x-4)][(x-2)(x-3)]-120>0

(x2-5x+4)(x2-5x+6)-120>0

(x2-5x)2+10(x2-5x)-96>0

(x2-5x+16)(x2-5x-6)>0

(x2-5x+16)(x-6)( x+1)>0

∵x2-5x+16恒大于零,于是得与原不等式同解的不等式

(x-6)( x+1)>0

对此也可用穿根法解决,如图

所以,原不等式的解集是:(-∞,-1)∪(6,+∞)

例4 解不等式:(3x-5)/( x2+2x-3) ≤2

解:原不等式(3x-5-2x2-4x+6)/(x2+2x-3)≤0

(2x2+4x-6-3x+5)/(x2+2x-3)≥0

(2x2+x-1)/(x2+2x-3)≥0

(x+1)(2x-1)/(x+3)(x-1)≥0

(x+1)(2x-1)(x+3)(x-1)≥0 且(x+3)(x-1)≠0

如图,用穿根法,注意区分实点和虚点,可得原不等式解集为:

(-∞,-3)∪[-1,1/2]∪(1,+ ∞)

例5 解关于x的不等式:(x-1)(x-t)<0

解:1) t<1时,如图用穿根法,可得原不等式解集为:(t,1)

2)t=1时,如图用穿根法,可得原不等式解集为:

3)t>1时,如图用穿根法,可得原不等式解集为:(1,t)

例6 若a≠±1,解关于x的不等式

(x-a)/(x+1)(x-1)≤0

解:1) a<-1时,如图用穿根法,

∴原不等式解集为:(-∞,a)∪(-1,1)

2)-1

法,

∴原不等式解集为:

(-∞, -1)∪[a,1)

3)a>1时,如图用穿根法,

∴原不等式解集为:

(-∞, -1)∪(1, a]

说明:解整式、分式不等式注意事项,可记以下口诀:移项调号,分解排序,奇穿偶回,分母非零,参数讨论,小心等号。

小结

穿根法通过序轴、标根、穿根线及区间正负标志,形象的表示f(x)=(x-x1)(x-x2)……(x-xn)值的符号变化规律,较好体现了数形结合的思想,具备直观明晰的优点。它还有数轴标根法、

区间法,根轴法等名称,但相对来说,用“序轴标根法”作为学名比较确切,简称为“穿根法”较为形象。此方法通用性强,思想方法灵活独特、易于领会。它主要用于解一元高次不等式和分式不等式,对于一元一次、二次不等式,也一样适用。系统地了解领会此方法的原理应用、来龙去脉,对于学生提高数学思维素质和解题水平,具有重要意义。

二○○六年十月六日

参考文献:

[1] 唐秀颍主编.数学题解辞典·代数.上海:上海辞书出版社,1985年

[2] 江苏省高师数学教育研究组编.初等代数研究.南京:江苏教育出版社,1988年

[3] 薛金星总主编.高中数学基础知识手册.北京北京教育出版社,2003年8月

[4] 任志鸿总主编.高中新教材优秀教案(高二上).海口:南方出版社, 2003年7月

[5] 北京全品教育研究所组编.素质教育新教案(高二上).北京:西苑出版社,2004年5月

[6] 刘增利总主编.高中数学教材知识资料包.北京:北京教育出版社,2005年6月

Abstract:According to the exposition of the axiom, steps and practical examples of solving inequality, this thesis discourses on "Roots Sequence Axis Law" systematically.

On the level of principle, it gives the standard form of inequality within this law and standardizes the concept of axes with " f(x)=(x-x1)(x-x2)……(x-xn)∨0”, dynamically studies the diversification of "f(x)" from linear inequality with one unknown to quadratic inequality with one unknown then to inequality of higher degree. Then it introduces the method of expressing this diversification with "Roots Sequence Axis Law". On the level of steps, it classifies the steps of solution of inequality of higher degree, fractional inequality and elastic inequality. It also lists 6 examples to show the detail operation and several attention of solving inequality through the "Roots Sequence Axis Law” further. I n the end, this thesis summarizes the character and practical significance of "Roots Sequence Axis Law".

https://www.360docs.net/doc/8a2391640.html,/html/2006/463119.html

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

初中解不等式组范文

1.(2008年义乌市)不等式组 83x 41 x ≤2, 0的解集在数轴上表示为 答案 A 3(x 2) ≥ x 4, 20. (2008 年宁波市 )解不等式组 x 1 1. 答案: C ,本题主要考查了求不等式组的解以及不等式组的解集的数轴表示,解第一个不等 式可得 x ≥— 2,解第二个不等式得 以下是江苏董耀波的分类 ( 2008 恩施自治州)如果a<b< 答案: C 2x 5 x, 2008 黄冈市)解不等式组 5x 4 3x 2. 答案:解:由( 1)得 x < 5, 由( 2)得 x ≥ 3. ∴不等式组的解集为: 3≤x < 5. ( 2008 襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋 友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分 10 套,那么余 5 套;如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不 足 4 套.问:该小学有多少个班级?奥运福娃共有多少套? 1 A . 0 1 2 B . 1 2 D . 答案:解:解不等式( 1),得 x ≥ 1.解不等式( 2),得 x 3 . 原不等式组的解是 1≤ x 3 . 08 凉山州)不等式组 x ≤ 2 的解集在数轴上表示正确的是( x21 2 0 3 A . 2 0 3 B . 2 0 3 C . 20 D . x < 3,所以原不等式组的解集为— 2≤x < 3,因而选 0, 下列不等式中错误..的是 A. ab > 0 B. a+b< 0 a C. < 1 D. b a-b< 0

答案:解:设该小学有 x 个班,则奥运福娃共有 (10x 5)套. 10x 5 13(x 1) 4, 10x 5 13(x 1). 14 解之,得 x 6 . 3 x 只能取整数, x 5 ,此时 10x 5 55. 答:该小学有 5 个班级,共有奥运福娃 55 套. 提 示:抓住“如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不足 4 套”建立不等式组 (2008苏州) 6月 1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋, 每只售价分 别为 1 元、2元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、5公斤和 8公斤.6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们 选购的 3 只环保购物袋至少..应付给超市 元. 答案: 8 解析:本题分类讨论,可选 2个 3元的,1个 2元的,费用最少为 8元 ( 2008 无锡)不等式 1 x 1 的解集是( ) 2 1 A. x B. x 2 C. x 2 1 D. x 2 2 答案: C 解析: 本题考查不等式解法, 两边同时乘以 -2,得 x 2 ,要注意不等式两边同时乘以一个 负数,不等号要改变方向 . 方法技巧:解不等式的一般步骤是 去分母 ,去括号,移项,合并同类项,系数化为 1 . 解不 等式时要注意: ( 1)去分母时不要漏乘没有分母的项; (2)去括号时不要漏乘; (3)移项要变号; (4)系数化为 1 时如果两边同除以的是负数,要改变不等号的方向。 解析: 本题考查不等式组的解法, 解不等式的一般步骤是先对两个不等式进行编号, 再分别 解不等式,最后根据规则确定不等式组的解集 . 方法技巧:解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分。 确定不等式组解集有两种方法: ( 1)数轴表示,在用数轴表示不等式组的解集时要注 意:有等号时用实心圆圈,无等号时用空心圆圈; ( 2)用口诀: 大大取大;小小取小;大 由题意,得 2008 苏州)解不等式组: x 3 0, 2(x 1) 3≥ 3x. 并判断 x 3 是否满足该不等式组. 2 答案:原不等式组的解集是: 3 x ≤1, x 3 满足该不等式组.

多次运用基本不等式错解例析

多次运用基本不等式错解例析 在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃. 例1.设x ∈(0,π),则函数f(x)=sinx+x sin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0, x sin 4>0, f(x)=sinx+ x sin 4≥2x x sin 4sin ? =4 因此f(x)的最小值是4.故选A. 【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx= x sin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+ x sin 1+ x sin 3,因为sinx+ x sin 1≥2, 当且仅当sinx=1,即x=2 π时等号成立.又 x sin 3 ≥3,当且仅当sinx=1,即x= 2 π时等号成立.所以 f(x)=sinx+ x sin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以03)的最小值. 【典型错误】f(x)=x 2 +33233 )3(233 33 2 2 4 2 2 4 2 2 4 ≥+=+-? -≥+-+ -=-x x x x x x x x x ,因此函数 f(x)的最小值为3.

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

解不等式的方法归纳

一、知识导学 1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
解不等式的方法归纳
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样)
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x>x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2 }
{x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
b
{x|x=- }
2a
Δ<0
R
R
Φ
Φ
3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将 f(x)的最高次项的系数化为正数; ②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解
精品

不等式选讲大题及答案

选修4-5 :不等式选讲 不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式, 包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。 1. ( 2013 全国I 24 .)已知函数f(x) |2x 1| |2x a|, g(x) x 3。 (i)当a 2时,求不等式f(x) g(x)的解集; a 1 (n)设a 1,且当x [ 2,2>时,f(x) g(x),求a的取值范围。 2. (2014 全国1 24 )若a 0,b 1 1 0,且丄丄 ,ab a b (I )求a3b3的最小值; (II )是否存在a,b,使得2a 3b 6 ?并说明理由 3. (2015全国1 2 4.)已知函数f x x 1 2 x a ,a 0 (I )当a 1时求不等式f x 1的解集; (II )若f x 图像与x轴围成的三角形面积大于6,求a的取值范围

4. (2013全国II 24 .)设均为正数,且, 证明:(i);(n) 1 |X a |(a 0) 5. (2014 全国II 24.)设函数f(x) |X | a (1)证明:f(x) 2 ; (2)若f (3) 5,求a的取值范围 6. ( 2015 全国II 24. )设均为正数,且. 证明:(I )若,则; (ll )是的充要条件

1 2x 2 x 3,则 y x 2 - x 1, 2 3x 6,x 1. 其图像如图所示 从图像可知,当且仅当 x (0,2)时,y<0,所以原不等式的解集是 x 0 x 2 a 1 (II )当 x , f (x) 1 a.不等式 f (x) W g(x)化为 1+a w x+3. 2 2 所以x > a-2对x 二丄都成立,故 a a 4 2 ,即a ,所以a 的范围 2 2 2 3 3 __ 1 1 2.解:(I )由,ab ,得 ab 2 , 且当a b .. 2时等号成立. a b '一 ab 故 a 3 b 3 2 a 3b 3 4、、2 ,且当 a b .2 时等号成立. 所以a 3 b 3的最小值为412 .……5分 (II )由(I )知,2a 3b 2.6 . ab 4,3. 由于4 .3 6,从而不存在a,b ,使得2a 3b 6. ……10分 3. x 1 2a, x 1 (n)由题设可得, f (x) 3x 1 2a, 1 x a , x 1 2a, x a 所以函数f (x)的图像与x 轴围成的三角形的三个顶点分别为 2a 1 2 A( ,0) , B(2a 1,0), C(a,a+1),所以△ ABC 的面积为三(a 1)2. 1 ?解: (1 )当 a 2时,不等式 f (x)

穿根法解不等式的原理

穿根法解不等式的原理、步骤和应用范例 摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-x n)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。 关键词:穿根法;解不等式;原理;步骤;应用 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是 大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示 f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x1

一元一次不等式组解题技巧

一元一次不等式组解题技巧 一、重点难点提示 重点:理解一元一次不等式组的概念及解集的概念。 难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。 二、学习指导: 1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。但这“几个一元一次不等式” 2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本是独立的,而且组成不等式组的不等式的个数可以是三个或多个。(课本上主要学习由两个一元一次不等式组成的不等式组)。 3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。(注意借助于数轴 4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设a>b)不等式组的解集数轴表示 )(同大型,同大取大) 2)(同小型,同小取小) 3)(一大一小型,小大之间) 4)(比大的大,比小的小空集)无解 三、一元一次不等式组的解法

例1.解不等式组并将解集标在数轴上 分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。 步骤: 解:解不等式(1)得x> (1)分别解不等式组的每 解不等式(2)得x≤4 一个不等式 ∴(2)求组的解集 (借助数轴找公共部分) (利用数轴确定不等式组的解集) ∴原不等式组的解集为

例2.解不等式组 解:解不等式(1)得x>-1, 解不等式(2)得x≤1, 解不等式(3)得x<2, ∴∵在数轴上表示出各个解为: ∴原不等式组解集为-1-1, 解不等式(2), ∵≤5, ∴ -5≤x≤5, ∴ 将(3)(4)解在数轴上表示出来如图,

穿根法解不等式及习题

穿根法解不等式 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。 一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示

f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x10,处于(x1,x2)内的 点满足f(x) <0。 当我们动态考察该问题时,我们也可 以发现:当点x=a在x2右方时,x-x1、x-x2均正,故有f(x) >0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。 总之,无论从哪个方面看,f(x)的符号都可以如图标注。 (2) x1=x2时,即形如f(x)=(x-x1)2时 显然,(-∞,x1)与( x1 ,+∞)都是f(x) >0的解。 而若动态的考察此问题,则有 点x=a 从x1右侧移动向左侧移动时, 由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回

用穿根法解不等式(经典归纳)

一元高次不等式的解法 这里主要介绍“数轴标根法”解高次不等式,简单快捷.“数轴标根法”又称“数轴穿根法”、“穿针引线法”或“序轴标根法”. 一、解题步骤 求不等式32638x x x -+<-+的解集 1. 化简:移项使右侧为0,将x 最高次项系数化为正数,再将左侧分解为几个一次因式积的形式. 将32638x x x -+<-+化为323680(2)(1)(4)0x x x x x x --+>?+--> 2. 求根:将不等式换成等式解出所有根. (2)(1)(4)0x x x +--=的根为12x =-,21x =,34x = 3. 标根:在数轴上从左到右依次标出各根. -2 1 4 4. 穿根:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根. 5. 写解:大于号取上方,小于号取下方,取穿根线以内的范围,将各解集求并. 不等式32638x x x -+<-+的解集为:{}|21,4x x x -<<>或 二、易错提示 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 1. 分解因式:将不等式化为0123()()()()0n a x x x x x x x x ---->L 形式. 2. 正化系数:将各因式中的x 系数化为正数. 3. 奇穿偶不穿:从右上方往左下方穿线,依次经过数轴上表示各根的点,看各一次因式的次数,偶次根穿而不过,奇次根一穿而过,简称“奇穿偶不穿”. 4. 解分式不等式:可化为一元高次不等式进行求解,如遇“≤或≥”,在标根时,分子实心,分母空心. 三、分式不等式解法

相关文档
最新文档