含铌钢加热温度的确定

含铌钢加热温度的确定
含铌钢加热温度的确定

钢的锻造温度

钢的锻造温度 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 1.始锻温度 始锻温度即坯料开始锻造的温度,应理解为钢或合金在加热炉内允许的最高加热温度。从加热炉内取出毛坯送到锻压设备上开始锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 2.终锻温度 终锻温度即坯料终止锻造的温度,终锻温度主要应保证在结束锻造之前坯料仍具有足够的塑性,以及锻件在锻后获得再结晶组织。 3.锻造温度范围 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 由Fe-Fe3C合金相图可以确定始锻温度和终锻温度以及锻造的温度范围。目前应用的铁碳合金状态图是含碳量为0~6.69%的铁碳合金部分(即Fe-Fe3C部分),因为含碳量大于6.69%的铁碳合金在工业上无使用价值。右图为简化后的Fe-Fe3C状态图。 Fe-Fe3C状态图 碳钢的锻造温度范围如图1(铁-碳状态图)中的阴影线所示。 钢的始锻温度主要受过热的限制,合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以钢的始锻温度一般应低于熔点(或低于状态图固相线AE温度)150~200℃。由于钢锭的过热倾向小,始锻温度比同钢种的锻坯和轧材高20~50℃。当采用高速精锻时由于热效应大,始锻温度可降低越100℃。 图10 铁-碳状态图 当亚共析钢始锻温度应在GS(A3)线以上15~50℃,使钢在单相奥氏体(γ)区内完成锻造。因为单相(γ)区组织均一,塑性良好。但对于碳的质量分数<0.3%的低碳钢,因为铁素体(α)的塑性好,故在A3线以下的γ+α双相区仍有足够的塑性,变形抗力也不高,这就扩大了锻造温度范围,且可以细化晶粒。 对于过共析钢终锻温度应在SE线(A cm)以下,PSE’(A1)线以上50~100℃。这是因为,这是因为,若终锻温度选在A cm线以上,则会使锻件在锻后的冷却过程中,从奥氏体中从晶界析出二次网状Fe3C呈脆性,因此,因此会大大降低锻件的力学性能。而在A cm线与A1线之间进行锻打,塑性变形破碎了网状Fe3C并使之弥散分布,锻件具有较好的力学性能。 需要指出的是,根据状态图大致确定的锻造温度范围,还需要根据钢的塑性图、变形抗力图等资料加以精确化。这是因为状态图是在实验室中一个大气压及缓慢冷却的条件下作出的,状态图上的临界点与钢在锻造时的相变温度并不一致。 由于生产条件不同,各工厂所用的锻造温度范围也不完全相同。合金结构钢的锻造温度范围见表1。合金结构钢钢锭锻造温度范围见表2。合金工具钢、弹簧钢和滚珠轴承钢的锻造温度范围见表3。

钢的锻造温度范围

钢的锻造温度范围 锻造热力规范是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。 在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规范是否能保证产品机械性能的资料。 锻造温度范围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度范围内具有较高的塑性和较小的变形抗

力,并得到所要求的组织和性能。锻造温度范围应尽可能宽一些,以减少锻造火次,提高生产率。 碳钢的锻造温度范围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如 Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A 3和A 1 点;而 另一些元素(如Ni,Mn等)扩大r相区,降低A 3和A 1 点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确 定锻造温度范围,但相变点(如熔点,A 3,A 1 ,A Cm 等) 则需改用各具体钢号的相变点。 1.始锻温度 始锻温度应理解为钢或合金在加热炉内允许的最高加热温度。从加热炉内取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以钢的始

锻造加热规范

1 范围 本规范规定了本厂生产、供本厂锻造用的电炉锭、电渣锭与钢坯炉窑加热工艺的编制要素、导则和方法。本规范适用于冷热钢锭于钢坯。 2 引用标准 下列标准所包含的条文,通过本标准中引用而构成本标准的条文。本标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 DYⅡ-39-93 热送钢锭冷处理工艺守则 DYⅡ-3-39 水压机自由锻锻后冷却及锻后热处理工艺守则 QGSHYZ 22-93 热加工工艺文件制定规程 3 名词说明和定义 钢锭和钢坯 钢锭锭身锻比<的成钢锭,锭身锻比≥的称钢坯。(简称“锭”、“坯”) 冷、热锭(坯) 装炉时锭{坯}表面温度<400℃(且内部温度肯定低于表面温度)的称冷锭(坯),表面温度≥400℃(且内部温度肯定高于表面温度)的称热锭(坯)。 表面温度以钢锭冒口端进锭身200mm凹(圆)面处、坯料离端口200mm平面处的实际温度为准。 锻造温度保温时间 指炉温(一般指炉窑顶部电偶所测温度)进入工艺规定温度公差范围、开始保持此温度,使钢锭(坯)变形区与此温度趋于基本一致所需时间。 最少保温时间 指钢锭(坯)在进行表面区域变形或精锻(如倒棱、滚圆、校直、整型等)前加热到锻造温度时开始保温所需的最少时间。 普通保温时间 指钢锭(坯)在进行常规锻造或粗锻(如拔长、冲孔、平整、剥边、扭曲、错移、弯曲等等)前加热到锻造温度时开始保温所需时间。但镦粗须在此保温时间基础上延长20%。 4 要素确认 按本规范编审有关钢锭(坯)的加热工艺前,一般应确定下列基本要素 锻造工艺和产品技术质量要求; 钢锭(坯)的规格、质量、形状、及其相关现状; 加热炉规格及其工作可靠性; 装炉单、装炉方式和合炉要求; 有关作业方法及其有效性; 测温形式及显示的正确,及时,统一性; 工装,附件的匹配; 作业环境适应性。

锅炉的受热面部件钢材允许使用的温度

锅炉的受热面部件钢材允许使用的温度(详见超超临界锅炉机组金属材料手册)序号部件名称钢号运行温度参数允许使用最高温度 1. 水冷壁管ST45.8 362-410℃450-480℃ 2. 省煤器管ST45.8 362-410℃450-480℃ 3. 顶棚过热器管ST45.8 370℃450-480℃ 4. 包墙管ST4 5.8 362℃450-480℃ 5. 低温过热器管#20 410-450℃450-480-500℃ 5. 低温过热器管15CrMo 410-450℃500-550℃ 6. 高温过热器管12Cr1MoV 540-550℃570-580℃ 7. 壁式再热器管12Cr1MoV 540-550℃570-580℃ 8. 中温再热器管12Cr1MoV 383-486℃570-580℃ 8.中温再热器管12Cr2MoWVTiB (即钢102)383-486℃600-620℃ 8.中温再热器管SA213-T91 383-486℃565-610℃ 9.高温再热器管12Cr1MoV 540-550℃570-580℃ 9.高温再热器管12Cr2MoWVTiB (即钢102)540-550℃600-620℃ 10.前(大)屏式过热器12Cr1MoV 540-550℃570-580℃ 10.前(大)屏式过热器12Cr2MoWVTiB(即钢102)540-550℃600-620℃11.后(小)屏式过热器12Cr1MoV 540-550℃570-580℃ 11.后(小)屏式过热器12Cr2MoWVTiB(即钢102)540-550℃600-620℃11.后(小)屏式过热器SA213-TP304H(相当于1Cr19Ni9)540-550℃705℃11.后(小)屏式过热器SA213-TP347H(相当于1Cr19Ni11Nb) 540-550℃705℃

钢材的使用温度限制

钢材的使用温度限制 铸铁 使用介质温度为-29-343℃的受压或非受压管道;不得用于输送温度高于150℃或表压力高于2.5MPa的可燃流体管道;不得输送有毒介质。 优质碳素钢 1、、输送碱性或苛性碱介质时应考虑有发生碱脆的可能,锰钢如16Mn不得用于该环境。 2、在有应力腐蚀开裂环境时,应进行焊后消除应力热处理,热处理后的焊缝硬度不得大于HB200,焊缝应进行100%无损探伤;锰钢如16Mn不宜用于有应力腐蚀开裂倾向环境中。 3、碳素钢、碳锰钢和锰钒钢在425℃及以上长期工作时,其碳化物有转化为石墨的可能性,因此限制其最高工作温度不得超过425℃。 临氢操作时,应考虑发生氢损伤的可能性;含碳量大于0.24%不宜用于焊接连接的管道及元件。 铬钼合金钢 碳钼钢(C-0.5Mo)在468℃下长期工作时,其碳化物有转化为石墨的倾向,因此其最高工作温度不超过468℃。临氢操作时,应考虑发生氢损伤的可能性;在H2+H2S工作环境时,应根据Nelson曲线和Couper曲线确定其使用条件;应避免在有应力腐蚀开裂环境中使用。在400-550℃温度区间长期工作时,应考虑回火脆性。 不锈钢耐热钢 1、含铬12%以上的铁素体和马氏体不锈钢在400-550℃温度区间长期工作时,应考虑防止475℃的回火脆性,表现为室温下的材料脆化。 2、奥氏体不锈钢在加热冷却过程中,经540-900℃区间时,应考虑防止产生晶间腐蚀倾向;当有还原性较强的腐蚀介质存在时,应选用稳定型(含有稳定化元素Ti和Nb)或超低碳型(C≤0.003%)奥氏体不锈钢。 3、不锈钢在接触氯化物时,有应力腐蚀开裂和电蚀的可能,应避免接触湿的氯化物时,或者控制物料和环境中的氯离子含量不超过25PPM。 4、奥氏体不锈钢使用温度超过525℃时,其含碳量应大于0.04%,否则钢的强度会显著下降。

钢的锻造温度范围

钢的锻造温度围 锻造热力规是指锻造时所选用的一些热力学参数,包括锻造温度、变形程度、应变速率、应力状态(锻造方法)、加热加冷却速度等。这些参数直接影响着金属材料的可锻性及锻件的组织和性能,合理选择上述几个热力学参数,是制订锻造工艺的重要环节。确定锻造热力学参数的主要依据是钢或合金的状态图、塑性图、变形抗力图及再结晶图等。用这些资料所确定的热力学参数还需要通过各种试验或生产实践来进行验证和修改。 在确定锻造热力学参数时,并不是在任何情况下,都需要上述的所有资料。当对锻件的组织和性能没有严格要求时,往往只要有塑性图及变形抗力图就够了。若对锻件的晶粒大小有严格要求,而且在机械性能方面也有硬性规定时,除状态图、塑性图和变形抗力图之外,还需要参考再结晶图以及能说明所采用热力规是否能保证产品机械性能的资料。 锻造温度围是指始锻温度和终锻温度之间的一段温度间隔。确定锻造温度的基本原则是,就能保证金属在锻造温度围具有较高的塑性和较小的变形抗力,

并得到所要求的组织和性能。锻造温度围应尽可能宽一些,以减少锻造火次,提高生产率。 碳钢的锻造温度围如图10(铁-碳状态图)中的阴影线所示。在铁碳合金中加入其他合金元素后,将使铁-碳状态图的形式发生改变。一些元素(如 Cr,V,W,Mo,Ti,Si等)缩小r相区,升高A3和A1点;而另一些元素(如Ni,Mn等)扩大r相区,降低A3和A1点。所有合金元素均使S点和E点左移。由此可见,合金结构钢和合金工具钢也可参照铁-碳状态图来初步确定锻造温度围,但相变点(如熔点,A3,A1,A Cm等)则需改用各具体钢号的相变点。 1.始锻温度 始锻温度应理解为钢或合金在加热炉允许的最高加热温度。从加热炉取出毛坯送到锻压设备上开妈锻造之前,根据毛坯的大小、运送毛坯的方法以及加热炉与锻压设备之间距离的远近,毛坯有几度到几十度的温降。因此,真正开始锻造的温度稍低,在始锻之前,应尽量减小毛坯的温降。 合金结构钢和合金工具钢的始锻温度主要受过热和过烧温度的限制。钢的过烧温度约比熔点低100~150℃,过热温度又比过烧温度低约50℃,所以

经验公式确定钢的热处理温度

钢的热处理工艺设计经验公式 ------------根据经验公式确定热处理的保温温度------------ 1钢的热处理 1.1正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 1.2 正火加热温度 根据钢的相变临界点选择正火加热温度 +(100~150℃)(2)低碳钢:T=Ac 3 中碳钢:T=Ac +(50~100℃)(3) 3 +(30~50℃)(4)高碳钢:T=A Cm 亚共析钢:T=Ac +(30~80℃)(5) 3 共析钢及过共析钢:T=A +(30~50℃)(6) Cm 1.3淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7) t=(a+b)· K ·D︱(经一次预热) (8)t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~ 1.5min/mm;b为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b= 2.5~ 3.6;二

次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为1.5~20秒/毫米,系数b不用另加。 若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。工件装炉修正系数K的经验值如表2: 表2 工件装炉修正系数K 1.4淬火加热温度 按常规工艺, 亚共析钢的淬火加热温度为Ac 3 +(30~50℃);(10) 共析和过共析钢为Ac 1 +(30~50℃);(11) 合金钢的淬火加热温度常选用Ac 1(或Ac 3 )+(50~100℃)(12) 1.5回火加热时间 对于中温或高温回火的工件,回火时间是指均匀透烧所用的时间,可按下列经验公式计算: t=aD+b (13) 式中t—回火保温时间(min); D—工件有效尺寸;(mm); a—加热系数(min/mm); b—附加时间,一般为10~20分钟。 盐浴的加热系数为0.5~0.8min/mm;铅浴的加热系数为0.3~0.5min/mm;井式回火电炉(RJJ系列回火电炉)加热系数为1.0~1.5min/mm;箱式电炉加热系数为2~ 2.5mim/mm。 1.6回火加热温度 钢的回火定量关系式很早就有人研究,其经验公式为: 钢的回火温度的估算, T=200+k(60-x) (14)式中: x —回火后硬度值,HRC; k—待定系数,对于45钢,x>30,k =11;x≤30,k=12。 大量试验表明,当钢的回火参数P一定时,回火所达到的工艺效果——硬度值或力学性能相同。因此,按传统经验式确定回火参数仅在标准态(回火1h)时方可使用,实际生产应用受到限制.

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削

钢材允许使用温度

钢材使用温度围

注:1、A3F钢板的使用限制如下:(1)不得用于介质为极度危害、高度危害或易爆的受压元件;(2)使用温度0~250℃; (3)设计压力≤0.6MPa;(4)容器容积≤10m3;(5)用于主要受压元件(壳体、成型封头),板厚≤12mm;用于法兰、法兰盖等,板厚≤16mm。 2、A3钢板的的使用限制如下:(1)不得用于介质为极度危害、高度危害或液化石油气容器的受压元件;(2)容器容积 ≤10m3;(3)用于主要受压元件(壳体、成型封头):使用温度0~350℃;设计压力≤1.0MPa;板厚≤16mm;(4)用于法兰、法兰盖、管板及类似受压元件时:使用温度>-20~350℃;设计压力≤4.0MPa;P×Di≤2000 ( D为公称直径,mm;P为设计压力,MPa)。当使用温度<0℃(但>-20℃)且板厚≥30mm时,应检验钢板的常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J。 3、16Mn钢板的的使用限制如下:(1)未附加检验或保证钢板常温冲击韧性要求的钢板不得用于压力容器主要受压元件; (2)用于法兰、法兰盖、管板及类似受压元件时使用限制同于A3钢;(3)经检验或复验,保证其常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J时,可用作压力容器主要受压元件,其使用限制如下:a、设计温度0~350℃; b、设计压力≤2.5MPa; c、板厚≤30mm。 4、16Mo、INCOLOY800尚无钢板、钢管标准,12CrMo、15CrMo、12Cr2Mo1、1Cr5Mo尚无钢板标准,设计选用可参照国外相 应钢材标准。 5、16Mo长期使用温度超过475℃时应考虑石墨化倾向的影响,因此累计使用时间超过4年的受压元件应检查是否产生 石墨化。 6、超低碳奥氏体不锈钢长期使用温度超过425℃,将导致碳化铬在晶界析出,而丧失抗晶界腐蚀能力。 7、公称含铬量≥13%的铁素体不锈钢钢板(复合板除外)不得用于设计压力≥0.25MPa,且壁厚>6mm的压力容器主要受 压元件。 8、表中注明温度下限者,下限温度即为本标准的适用围温度下限值(>-20℃)。 9、表中“抗氧化温度上限”仅适用于受力不大的非受压元件。 摘自:HGJ15-89中华人民国化学工业部设计标准“钢制化工容器材料选用规定”

钢加热温度范围的确定

一、钢热轧加热温度范围的确定: 1)始锻温度和终锻温度 始锻温度是钢或合金在加热炉内允许的最高加热温度。 终锻温度是保证在结束锻造之前钢仍具有足够的塑性,以及锻件在锻后获得再结晶组织。 例如:45钢的始锻温度和终锻温度分别为1200℃和800℃。也就是 说在800℃~1200℃温度范围内进行锻造出的锻件有良好的机械性能。2)开轧温度和终轧温度 ①开轧温度 一般说来,从防止加热的过热、过烧、脱碳等缺陷产生的可能性考虑,对于碳素钢加热最高温度常低于NJE50-100℃;开轧温度低于固相线NJE100-150℃。这是由于考虑输送距离造成的温降,则比 加热温度还要低一些。 ②终轧温度 对亚共析钢(ω(C)(0.8%)来说,终轧温度不得低于GS线,即略高于GS线50-100℃,以便在终轧之后迅速冷却到相变温度,获得细致、均匀的晶粒组织。否则会使金属内部纤维组织更加严重,导致钢材的物理和力学性能产生不均匀或方向性。对过共析钢(ω(C):0.8%-1.7%)终轧温度要求不得低于SK线,一般略高于SK线100-150℃。这是因为过共析钢热轧温度范围窄,即奥氏体区较窄,完全在单相 状态下轧制是不可能的。.

℃。~100开轧温度是第一道的轧制温度,一般比加热温度低50下限主要受终轧温度的限开轧温度的上限取决于钢的允许加热温度,制,钢件在轧制过程中一般应保持单相奥氏体组织。 终轧温度是指终轧生产的终了温度。一般情况下,亚共析钢的 终轧温度应当高于A线50~100℃。过共析钢的终轧温度在A~cmC3A 线之间。终轧温度对钢的组织和性能影响很大,终轧温度越高,晶1 粒集聚长大的倾向越大,奥氏体的晶粒越粗大,钢的机械性能越低。所以终轧温度也不能太高,最好在850℃左右,不要超过900℃,也 不要低于700℃。 3)温度方案的确定 通常按钢坯含碳量不同分别来规定它们的加(均)热温度即最高控制 炉温和出炉温度。 ①含碳量C≤O.3%的低碳钢,最高控制炉温为1380℃,出炉温度为1180~1220℃;②含碳量0.3%0.6%的高碳钢和中碳合金钢,最高控制炉温1320℃,出炉温度为1100~1150℃。 以上说的是不同的钢种所允许的最高控制温度和钢坯出炉温度,然而在现实生产中,我们不可能将温度控制的这么高,其一考虑节能,其二考虑温度太高很容易出现氧化烧损过热过烧等加热缺陷,因此必须严格控制钢坯的加热温度范围。按钢种的不同具体的加热温度和加热过程中的注意事项如下表:

钢材允许使用温度.docx

. 钢材使用温度围 钢材标准受压元件和主钢号 要受力构件的抗氧化温度钢板钢管锻件使用温度围上限(℃) (℃) A3F GB3274(GB700)——(1)530 A3GB3274(GB700)——(2)530 20R GB6654——≤ 475—20g GB713——≤ 475— 10GB711 (GB699)GB8163、 GB9948— ≤ 475530 GB3087、 GB6479 20GB711 (GB699)GB8163、 GB9948JB755 GB3087、 GB6479本标准附录 A≤ 475530 GB5310 25——JB755 ≤ 475530 本标准附录 A 35——JB755 ≤ 475530 本标准附录 A 45——JB755≤ 475530 16MnRC、15MnVRC GB6655≤ 400—16Mn GB3274( GB1591)( 3)— GB6479、GB8163JB755 ≤ 475— 本标准附录 A 16MnR GB6654—JB755≤ 475—15MnVR GB6654GB6479—≤ 400—15MnVNR GB6654——≤ 400— 0~450(正火 +回 18MNMoNbR GB6654——火);≤ 450 调— 质 20MnMo——JB755 ≤ 500— 本标准附录 A 20MnMoNb —— JB755 ≤ 450—本标准附录 A 15MnMoV——JB755 ≤ 520— 本标准附录 A 32MnMoVB —— JB755 0~350—本标准附录 A 35CrMo —— JB755 ≤ 540—本标准附录 A 16Mo( 4)(4)—≤ 520( 5)—12CrMo( 4)GB9948、 GB5310 —≤ 540— GB6479 15CrMo( 4)GB9948、 GB5310JB755 ≤ 560— GB6479本标准附录 A 12Cr1 MoV—GB5310JB755≤ 580—

经验公式确定钢的热处理温度修订稿

经验公式确定钢的热处 理温度 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

钢的热处理工艺设计经验公式 ------------根据经验公式确定热处理的保温温度------------ 1钢的热处理 正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 正火加热温度 根据钢的相变临界点选择正火加热温度 低碳钢:T=Ac3+(100~150℃) (2) 中碳钢:T=Ac3+(50~100℃) (3) 高碳钢:T=A Cm+(30~50℃) (4)

亚共析钢:T=Ac3+(30~80℃) (5) 共析钢及过共析钢:T=A Cm+(30~50℃) (6) 淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7)t=(a+b)· K ·D︱(经一次预热) (8) t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~mm;b为~2min/mm(高速钢及合金钢一次预热a=~;b=~;二次预热 a=~;b=~;c=~),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为~20秒/毫米,系数b不用另加。若用盐浴

钢材的主要性能

一、钢材的主要性能 钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。 技术指标:屈服强度、延伸率、强屈比、冷弯性能。 力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。工艺性能包括冷弯性能和可焊性。 (1)抗拉性能:抗拉性能钢材最重要的力学性能。 屈服强度是结构设计中钢材强度的取值依据。 抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。 对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25; 实测屈服响度与理论屈服强度之比不大于1.3; 强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。 钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。钢材的塑性指标通常用伸长率表示。伸长率随钢筋强度的增加而降低。 冷弯也是考核钢筋塑性的基本指标。 (2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。 (3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。 二、钢筋的工艺性能 1、钢材的性能主要有哪些内容 钢材的主要性能包括力学性能和工艺性能。力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。 (1)抗拉性能。表示钢材抗拉性能的指标有屈服强度、抗 拉强度、屈强比、伸长率、断面收缩率。 屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。 抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6~0.65,低合金结构钢为0.65~0.75,合金结构钢为0.84~0.86。

钢材允许使用温度范围对照表

钢材允许使用温度范围对照表 (2人评价)|1306人阅读|36次下载|举报文档 钢材使用温度范围 钢号钢材标准受压元件和主要受力构件的使用温度范围(℃)抗氧化温度上限(℃)钢板钢管锻件A3F GB3274(GB700) ——(1) 530 A3 GB3274(GB700) ——(2) 530 20R GB6654 ——≤475 —20g GB713 ——≤475 —10 GB711 (GB699) GB8163、GB9948 GB3087、GB6479 —≤475 530 20 GB711 (GB699) GB8163、GB9948 GB3087、GB6479 GB5310 JB755 本标准附录A ≤475 530 25 ——JB755 本标准附录A ≤475 530 35 ——JB755 本标准附录A ≤475 530 45 ——JB755 ≤475 530 16MnRC、15MnVRC GB6655 ≤400 —16Mn GB3274(GB1591)(3)—GB6479、GB8163 JB755 本标准附录A ≤475 —16MnR GB6654 —JB755 ≤475 —15MnVR GB6654 GB6479 —≤400 —15MnVNR GB6654 ——≤400 —18MNMoNbR GB6654 ——0~450(正火+回火);≤450调质—20MnMo ——JB755 本标准附录 A ≤500 —20MnMoNb ——JB755 本标准附录 A ≤450 —15MnMoV ——JB755 本标准附录 A ≤520 —32MnMoVB ——JB755 本标准附录 A 0~350 —35CrMo ——JB755 本标准附录A ≤540 —16Mo (4)(4)—≤520(5)—12CrMo (4)GB9948、—≤540 — GB5310 GB6479 15CrMo (4)GB9948、GB5310 GB6479 JB755 本标准附录A ≤560 —12Cr1MoV —GB5310 JB755 本标准附录A ≤580 —12Cr2Mo1 (4)GB9948、GB5310 GB6479 JB755 本标准附录A ≤580 600 1Cr5Mo GB1221 (4) GB9948 、GB6479 JB755 本标准附录 A ≤600 650 10MoWVNb —GB6479 —≤580 600 0Cr13 GB4237 (4) GB2270 JB755 本标准附录A 0~400 750 00Cr19Ni11 00Cr17Ni14Mo2 00Cr17Ni13Mo3 GB4237 GB2270 JB755 本标准附录 A ≤425 (3) —0Cr19Ni9 1Cr18Ni9Ti 0Cr18Ni11Ti 0Cr18Ni12Mo2Ti 0Cr18Ni12MO3Ti GB4237 GB2270 GB5310 JB755 本标准附录A、B ≤700 850 0CR23Ni13 GB4237 GB2270 —≤900 1100 0CR25Ni20 GB4237 ——≤900 1200 INCOLOY800 (4) (4) —≤850 1000 1Cr25Ni20 本标准附录B ≤900 1200 注:1、A3F钢板的使用限制如下:(1)不得用于介质为极度危害、高度危害或易爆的受压元件;(2)使用温度0~250℃;(3)设计压力≤0.6MPa;(4)容器容积≤10m3 ;(5)用于主要受压元件(壳体、成型封头),板厚≤12mm;用于法兰、法兰盖等,板厚≤16mm。2、 A3钢板的的使用限制如下:(1)不得用于介质为极度危害、高度危害或液化石油气容器的受压元件;(2)容器容积≤10m3 ;(3)用于主要受压元件(壳体、成型封头):使用温度0~350℃;设计压力≤1.0MPa;板厚≤16mm;(4)用于法兰、法兰盖、管板及类似受压元件时:使用温度>-20~350℃;设计压力≤4.0MPa;P×Di≤2000 ( D为公称直径,mm;P为设计压力,MPa)。当使用温度<0℃(但>-20℃)且板厚≥30mm时,应检验钢板的常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J。3、16Mn钢板的的使用限制如下:(1)未附加检验或保证钢板常温冲击韧性要求的钢板不得用于压力容器主要受压元件;(2)用于法兰、法兰盖、管板及类似受压元件时使用限制同于A3钢;(3)经检验或复验,保证其常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J时,可用作压力容器主要受压元件,其使用限制如下:a、设计温度0~350℃;b、设计压力≤2.5MPa;c、板厚≤30mm。4、16Mo、INCOLOY800尚无钢板、钢管标准,12CrMo、15CrMo、12Cr2Mo1、1Cr5Mo尚无钢板标准,设计选用可参照国外相应钢材标准。

钢坯轧制过程温度确定的研究

钢坯轧制过程温度确定的研究 不同的钢种、不同的板坯规格、采用不同的轧机型式,以不同的轧制速度进行轧制,对于轧制不同厚度的成品而言,要求采用不同的钢坯加热温度和和钢坯的加热时间。本文以成品不同温度时的晶相组织为依据,结合不锈钢轧制时的热应力分析,再参考铁碳相图,制定成品不同厚度的终轧温度,再通过建立轧制过程热模型,反算出板坯的出炉温度,从而对各种形式的加热和轧制提供加热依据。 1、不锈钢加热温度的确定依据 对于金属的压力加工来说,金属轧制前的加热,是为了获得良好的塑性和较小的变形抗力,加热温度主要根据加工工艺要求,由金属的塑性和变形抗力等性质来确定。不同的热加工方法,其加热温度也不一样。 金属的塑性和变形抗力主要取决于金属的化学成份、组织状态、温度及其它变形条件。其中,温度影响的总局势是,随温度升高,金属的塑性增加,变形抗力降低,这是因为温度升高,原子热运动加剧,原子间的结合力减弱,所以变形抗力降低,同时可增加新的滑移系,以及热变形过程中伴随回复再结晶软化过程,这些都提高了金属的塑性变形能力。但是,随着温度的升高,金属的塑性并不直线上升的,因为相态和晶粒边界同时也发生了变化,这种变化又对塑性产生影响。 钢的加热温度不能太低,必须保证钢在压力加工的末期仍能保持一定的温度(即终轧温度)。由于奥氏体组织的塑性最好,如果在单相奥氏体区域内加工,这时金属的变形抗力最小,而且加工后的残余应力最小,不会出现裂纹等缺陷。这个区域对于碳素钢来说,就是在铁碳平衡图的AC3以上30-50℃,固相线以下100-150℃的地方,根据终轧温度再考虑钢在出炉和加工过程中的热损失,便可确定钢的最低加热温度。钢的终轧温度对钢的组织和性能影响很大,终轧温度越高,晶粒集聚长大的倾向越大,奥氏体的晶粒越粗大,钢的机械性能越低。所以终轧温度也不能太高,根据铁碳相图最好在850℃左右,最好不要超过900℃,也不要低于700℃。 金属的加热温度,一般来说需要参考金属的状态相图、塑性图及变形抗力图等资料综合确定。确定轧制的加热温度要依据固相线,因为过烧现象和金属的开始熔化温度有关。钢内如果有偏析、非金属夹杂,都会促使熔点降低。因此,加热的最高温度应比固相线低100-150℃。 不锈钢属于一种高合金钢,钢中含有较多的合金元素,合金元素对钢的加热温度也有一定的影响,一是合金元素对奥氏体区域的影响,二是生成碳化物的影响。 对于不锈钢中合金元素如镍、铜、钴、锰等,它们都具有与奥氏体相同的面心立方晶格,都可无限量溶于奥氏体中,使奥氏体区域扩大,钢的终轧温度可相应低一些,同时因为提高了固相线,开轧温度(即最高加热温度)可适当提高一些。对于不锈钢这样的高合金钢,其加热温度不仅要参照相图,还要根据塑性图、变形抗力曲线和金相组织来确定。 轧制工艺对加热温度也有一定的要求。轧制道次越多,中间的温度降落越大,加热温度

常用钢材允许使用温度

常用钢材使用温度范围

注:1、A3F钢板的使用限制如下:(1)不得用于介质为极度危害、高度危害或易爆的受压元件;(2)使用温度0~250℃; (3)设计压力≤;(4)容器容积≤10m3;(5)用于主要受压元件(壳体、成型封头),板厚≤12mm;用于法兰、法兰盖等,板厚≤16mm。 2、A3钢板的的使用限制如下:(1)不得用于介质为极度危害、高度危害或液化石油气容器的受压元件;(2)容器容积 ≤10m3;(3)用于主要受压元件(壳体、成型封头):使用温度0~350℃;设计压力≤;板厚≤16mm;(4)用于法兰、法兰盖、管板及类似受压元件时:使用温度>-20~350℃;设计压力≤;P×Di≤2000 ( D为公称直径,mm;P为设计压力,MPa)。 当使用温度<0℃(但>-20℃)且板厚≥30mm时,应检验钢板的常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J。 3、16Mn钢板的的使用限制如下:(1)未附加检验或保证钢板常温冲击韧性要求的钢板不得用于压力容器主要受压元件; (2)用于法兰、法兰盖、管板及类似受压元件时使用限制同于A3钢;(3)经检验或复验,保证其常温冲击功(纵向,V形夏比试样,一组三个试样的平均值)不低于27J时,可用作压力容器主要受压元件,其使用限制如下:a、设计温度0~350℃; b、设计压力≤; c、板厚≤30mm。 4、16Mo、INCOLOY800尚无钢板、钢管标准,12CrMo、15CrMo、12Cr2Mo1、1Cr5Mo尚无钢板标准,设计选用可参照国外相 应钢材标准。 5、16Mo长期使用温度超过475℃时应考虑石墨化倾向的影响,因此累计使用时间超过4年的受压元件应检查是否产生 石墨化。 6、超低碳奥氏体不锈钢长期使用温度超过425℃,将导致碳化铬在晶界析出,而丧失抗晶界腐蚀能力。

工程材料练习题钢的热处理练习题

第六章钢的热处理练习题 一、填空题 1.钢加热时奥氏体形成是由()、()、()和()四个基本过程所组成。 2.在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是 ( ) ,不同点是()。 3.用光学显微镜观察,上贝氏体的组织特征呈()状,而下贝氏体则呈()状。 4.与共析钢相比,非共析钢C 曲线的特征是()。 5.马氏体的显微组织形态主要有()、()两种,其中 ()的韧性较好。 6.钢的淬透性越高,则其C 曲线的位置越(),说明临界冷却速度越()。 7.钢的热处理工艺是由()、()、()三个阶段组成。一般来讲,它不改变被处理工件的(),但却改变其()。 8.利用Fe-Fe3C 相图确定钢完全退火的正常温度范围是(),它只适应于()钢。 9.球化退火的主要目的是(),它主要适用于()。 10.钢的正常淬火温度范围,对亚共析钢是(),对过共析钢是()。

11.当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则MS 点越( ),转变后的残余奥氏体量就越()。 12.在正常淬火温度下,碳素钢中共析钢的临界冷却速度比亚共析钢和过共析钢的临界冷却速度都()。 13.钢热处理确定其加热温度的依据是(),而确定过冷奥氏体冷却转变产物的依据是()。 14.淬火钢进行回火的目的是(),回火温度越高,钢的硬度越()。 15.钢在回火时的组织转变过程是由()、()、 ()和()四个阶段所组成。 16.化学热处理的基本过程包括()、()和 ()三个阶段。 17.索氏体和回火索氏体在形态上的区别是(),在性能上的区别是()。 18.参考铁碳合金相图,将45 号钢及T10 钢(已经过退火处理)的小试样经850 ℃ 加热后水冷、850 ℃ 加热后空冷、760 ℃ 加热后水冷、720 ℃ 加热后水冷等处理,把处理后的组织填入表3 -3 -1 。 二、不定项选择题 1.钢在淬火后获得的马氏体组织的粗细主要取决于()。

钢材标准说明书

1 标准标准是对重复性事物和概念所做的统一规定。它以科学、技术和实践经验的综合成果为基础,经有关方面协商一致,由主管机构批准,以特定形式发布,作为共同遵守的准则和依据。目前,我国钢铁产品执行的标准有国家标准(GB、GB/T)、行业标准(YB)、地方标准和企业标准 2 技术条件标准中规定产品应该达到的各项性能指标和质量要求称为技术条件,如化学成分、外形尺寸、表面质量、物理性能、力学性能、工艺性能、内部组织,交货状态等 3 保证条件按照金属材料技术条件的规定,生产厂应该进行检验并保证检验结果符合规定要求的性能、化学成分、内部组织等质量指标,称为保证条件 (1)基本保证条件——又叫必保条件,是指标准中规定的,无论需方是否在订货合同中提出要求,生产厂必须进行检验并保证检验结果符合规定的项目 (2)附加保证条件——是标准中规定的,只要需方在合同中注明要求,生产厂就必须进行检验并保证检验结果符合规定的项目 (3)协议保证条件——在标准中没有规定,而经供需双方协议并在合同中注明加以保证的项目,称为协议保证条件 (4)参考条件——标准中没有规定,或有规定而不要求保证,由需方提出并经供需双方协商一致进行检验的项目,其结果仅供参考,不作考核,称为参考条件 4 质量证明书金属材料的生产和其他工业产品的生产一样,是按统一的标准规定进行的,执行产品出厂检验制度,不合格的金属材料不准交货。对于交货的金属材料,生产厂提供质量证明书以保证其质量。金属材料的质量证明书不仅说明材料的名称、规格、交货件数、重量等,而且还提供规定的保证项目的全部检验结果 质量证明书,是供方对该批产品检验结果的确认和保证,也是需方进行复检和使用的依据 5 质量等级按钢材表面质量、外形及尺寸允许偏差等要求不同,将钢材质量划分为若干等级。例如一级品、二级品。有时针对某一要求制定不同等级,例如针对表面质量分为一级、二级、三级,针对表面脱碳层深度分为一组、二组等,均表示质量上的差别 6 精度等级某些金属材料,标准中规定有几种尺寸允许偏差,并且按尺寸允许偏差大小不同,分为若干等级,叫作精度等级。精度等级按允许偏差分为普通精度、较高精度、高级精度等。精度等级愈高,其允许的尺寸偏差就愈小。在订货时,应注意将精度等级要求写入合同等有关单据中 7 牌号金属材料的牌号,是给每一种具体的金属材料所取的名称。钢的牌号又叫钢号。我国金属材料的牌号,一般都能反应出化学成分。牌号不仅表明金属材料的具体品种,而且根据它还可以大致判断其质量。这样,牌号就简便地提供了具体金属材料质量的共同概念,从而为生产、使用和管理等工作带来很大方便 8 品种金属材料的品种,是指用途、外形、生产工艺、热处理状态、粒度等不同的产品 9 型号金属材料的型号是指用汉语拼音(或拉丁文)字母和一个或几个数字来表示不同形状、类别的型材及硬质合金等产品的代号。数字表示主要部位的公称尺寸 10 规格规格是指同一品种或同一型号金属材料的不同尺寸。一般尺寸不同,其允许偏差也不同。在产品标准中,品种的规格通常按从小到大,有顺序地排列 11 表面状态主要分为光亮和不光亮两种。在钢丝和钢带标准中常见,主要区别在于采取光亮退火还是一般退火。也有把抛光、磨光、酸洗、镀层等作为表面状态看待 12 边缘状态边缘状态是指带钢是否切边而言。切边者为切边带钢,不切边者为不切边带钢 13 交货状态交货状态是指产品交货的最终塑性变形加工或最终热处理状态。不经过热处理交货的有热轧(锻)及冷轧状态。经正火、退火、高温回火、调质及固溶等处理的统称为热处理状态交货,或根据热处理类别分别称正火、退火、高温回火、调质等状态交货 14 材料软硬程度是指采用不同热处理或加工硬化程度,所得钢材的软硬程度不同。在有的

相关文档
最新文档