回转夹紧气缸

回转夹紧气缸
回转夹紧气缸

神威气动https://www.360docs.net/doc/9114948128.html, 文档标题:回转夹紧气缸

一、回转夹紧气缸的介绍:

引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。

二、气缸种类:

①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。

②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。

③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。

④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)

运动的动能,借以做功。

⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。

做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。

三、气缸结构:

气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示:

2:端盖

端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。

3:活塞

活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。

神威气动https://www.360docs.net/doc/9114948128.html, 4:活塞杆

活塞杆是气缸中最重要的受力零件。通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。

5:密封圈

回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。

缸筒与端盖的连接方法主要有以下几种:

整体型、铆接型、螺纹联接型、法兰型、拉杆型。

6:气缸工作时要靠压缩空气中的油雾对活塞进行润滑。也有小部分免润滑气缸。

四、气缸工作原理:

1:根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。

2:下面是气缸理论出力的计算公式:

F:气缸理论输出力(kgf)

F′:效率为85%时的输出力(kgf)--(F′=F×85%)

D:气缸缸径(mm)

P:工作压力(kgf/C㎡)

例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?

将P、D连接,找出F、F′上的点,得:

F=2800kgf;F′=2300kgf

在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。

神威气动https://www.360docs.net/doc/9114948128.html, 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?

由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf)

由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为?63的气缸便可满足使用要求。

五:气缸图片展示:

抱紧气缸如下图:

带阀气缸:

神威气动https://www.360docs.net/doc/9114948128.html,

带锁气缸

迷你气缸

笔型气缸

神威气动https://www.360docs.net/doc/9114948128.html,

薄型气缸

手指气缸

亚德客90度旋转气缸

神威气动https://www.360docs.net/doc/9114948128.html, 文档标题:亚德客90度旋转气缸 一、亚德客90度旋转气缸的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

气缸选型步骤及技巧

气缸选型步骤 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、气缸型号分类 (1)从动作上分为单作用和双作用,结构示意图如图所示,前者又分弹簧压回和压出两种,一般用于行程短、对输出力和运动速度要求不高的场合(价格低、耗能少),双作用气缸则更广泛应用。(注:不要把单双作用气缸跟带还是不带磁环气缸等同了) (2)从功能上来分(比较贴合设计情况),类型较多,如标准气缸、复合型气缸、特殊气缸、摆动气缸、气爪等,其中比较常用的为自由安装型气缸、薄型气缸、笔形气缸、双杆气缸、滑台气缸、无杆气缸、旋转气缸、夹爪气缸等,如图所示,大家只要了解各种气缸大致特性和对应型号,要用时调(标准件图纸)出来即可! 基于对气缸在动力特性或空间布局方面的应用特长,我们在实际选用气缸时,首先是确定一个合适的类别从三面考虑:功能要求、空间要求,精度要求。 气缸型号、气缸种类、气缸规格、最全面的气缸大全选型介绍与分析 ●节省空间 指气缸的轴向或径向尺寸比标准气缸的较大或较小的气缸,具有结构紧凑、重量轻、占用空间小等优点,比如薄型气缸(如SDA系列,缸径=Φ12mm~Φ100mm,行程≤100mm)和自由安装型气缸(如CU系列,缸径=Φ6mm~Φ32mm,行程≤100mm),如图所示:

广泛应用的气缸具有节省空间特长的还有无杆气缸,形象地说,有杆气缸的安装空间约2.2倍行程的话,无杆气缸可以缩减到约1.2倍行程,一般需要和导引机构配套,定位精度也比较高。 磁偶式无杆气缸:活塞两侧受压面积相等,具有同样的推力,有利于提高定位精度,适合长行程,重量轻、结构简单、占用空间小,如图所示 机械式无杆气缸:“有较大的承载能力和抗力矩能力,适用缸径Φ10mm~Φ80mm,此外,同样希望节省空间兼顾导向精度要求时,往往会用到双杆气缸(相当于两个单杆气缸并联成一体)。 ●精度要求 一般采用滑台气缸(将滑台与气缸紧凑组合的一体化的气动组件),也有各种细分的类型,工件可安装在滑台上,通过气缸推动滑台运动,适用于精密组装、定位、传送工件等。 ●摆动/旋转运动 遇到需要摆动或转动的场合,一般采用旋转气缸,主要有以下几类: 叶片式旋转缸:用内部止动块或外部挡块来改变其摆动角度。止动块于缸体固定在一起,叶片于转轴连在一起。气压作用在叶片上,带动转轴回转,并输出力矩。叶片式摆缸由单片式和双片式。双片式的输出力矩比单片式大一倍,但转角小于180度。 齿轮式旋转缸:气压力推动活塞带动齿条作直线运动,齿条推动齿轮作回转运动,由齿轮轴输出力矩并带动外负载摆动。齿轮齿条式摆缸有CRJ、CRJU(缸大小代号0.5、1mm),CRA1(缸径30~100mm标准型)、CRQ2(缸径10~40mm薄型)、MSQ(缸径10~200mm 摆动平台)系列可供选择。 转角下压气缸:也称回转夹紧气缸,旋转到一定角度后下压夹紧 ●夹持/固定产品

旋转夹紧气缸

神威气动https://www.360docs.net/doc/9114948128.html, 文档标题:气缸分类 一、气缸分类的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。 4:活塞杆 活塞杆是气缸中最重要的受力零件。通常使用高碳钢、表面经镀硬铬处理、或使用不锈钢、以防腐蚀,并提高密封圈的耐磨性。 5:密封圈 回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。 缸筒与端盖的连接方法主要有以下几种: 整体型、铆接型、螺纹联接型、法兰型、拉杆型。

夹紧气缸

夹紧气缸

————————————————————————————————作者:————————————————————————————————日期:

文档标题:气缸品牌 一、气缸品牌的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。

旋转气缸工作原理及工作示意图

旋转缸是一种气动执行器,它使用压缩空气来驱动输出轴,以在一定角度范围内往复旋转运动。它用于转动和拉动物体,夹紧,打开和关闭阀门以及机器人的手臂运动。根据内部结构,旋转气缸可分为齿条和小齿轮型和叶片型。从外部运动可分为无冲程中心角旋转和具有向下压力上升冲程的旋转。 旋转气缸,即进排气管和空气导向头是固定的,而气缸体可以相对旋转并作用在机床的固定装置和压线装置上。它是一个圆柱形的金属零件,可引导活塞进行线性往复运动。 旋转缸主要由导气头,缸体,活塞和活塞杆组成。旋转气缸工作时,外力带动气缸体,气缸盖和导风头旋转,而活塞和活塞杆只能作往复直线运动,导风头与外部管路连接并固定 。 应用:旋转滚筒主要用于印刷(张力控制),半导体(点焊机,切屑研磨)。它的结构是将两个旋转缸的作用合二为一,并且叶片式摇动起子可以分两个或三个部分旋转。 步骤1,重设。同时连接进气口B的气压(0.1-0.8MPa)和进气口a的排气。活塞和活塞杆向后返回。当活塞接触气缸体的右端时,它将停止。活塞杆端位于a点,这是重置状态。 第二步,工作。空气压力(0.1-0.8MPa)从空气端口a连接,而大气从空气端口B排出,活塞杆和活塞向前延伸。当活塞接触前盖时,它停止移动。此时,活塞杆端位于B点,AB之间的距离为活塞行程s。该状态是旋转缸的工作状态。

重复上述步骤,使气缸体旋转,活塞杆前后移动。 平面旋转是在某个中心点的角旋转。常见的旋转缸是msqb,cr1a和crqb。旋转角度范围为1到180度,最大为190度。通过调节螺丝控制旋转角度,还可以安装缓冲器,操作更加稳定。 旋转(角)压紧缸可以完成角旋转动作并继续完成压紧和夹紧工作,并且可以重复操作。常用于高精度自动生产车间,适合在狭窄空间环境下安装使用。常见的有SRC拐角缸,MK拐角缸,ACK拐角气体等。压缩空气是由活塞杆上的旋转槽和缸筒上的凸形槽共同驱动的。当旋转角度时,行程随旋转角度的变化而变化,最后完成压制工作

旋转气缸选型方法

Series CRB1 Series CRB2 F: Pressing force (N) Static torque calculation Ts = F x Ex.) Clamp Shaft center

Graph (3) M o m e n t o f i n e r t i a x 10-3 b a s e d o n a 1 k g l o a d m a s s (k g ·m 2) a or r (mm)0.83 x 10 -3 How to read the graph: only when the dimension of the load is “a” and “r” [Example] When the load shape is w , a = 100 mm, and the load mass is 0.1 kg.In Graph (3), the point at which the vertical line of a = 100 mm and the line of the load shape w intersect indicates that the moment of inertia of the 1 kg mass is 0.83 x 10–3 kg·m 2. Because the mass of the load is 0.1 kg, the actual moment of inertia is 0.83 x 10–3 x 0.1= 0.083 x 10–3 kg·m 2. (Note: If “a” is divided into “a 1a 2”, the moment of inertia can be obtained by calculating them separately.) q w e r t y u i Graph for calculating the moment of inertia Step 1How to read the graph: when the dimension of the load contains both “a” and “b”. [Example] When the load shape is t , a = 100 mm, b = 100 mm, and the load mass is 0.5 kg.In Graph (3), obtain the point at which the vertical line of a = 100 mm and the line of the load shape t intersect. Move this intersection point to Graph (4), and the point at which it intersects with the curve of b = 100 mm indicates that the moment of inertia of the 1 kg mass is 1.7 x 10–3 kg·m 2. Since the load weight is 0.5 kg, the actual moment of inertia is 1.7 x 10–3 x 0.5 = 0.85 x 10–3 kg·m 2. Graph (4) Moment of inertia x 10-3 based on a 1 kg load mass (kg·m 2)

主动拨叉回转夹具毕业设计论文

主动拨叉回转夹具设计 摘要 本次设计题目是专用钻床夹具,此夹具能够满足机床精确地同时加工工件上的多个孔,以提高生产效率,降低生产成本。因此设计包括能使工件正确定位的定位夹紧机构和使钻床准确找准孔的钻模板。 设计时主要从以下几个方面考虑。首先,夹具要保证加工工件的尺寸,所以首先要对工件的要达到的加工要求有详细的了解,包括工件上孔尺寸精度,几何精度,表面粗糙度以及各孔钻削时孔距和孔的位置精度等。其次,选择定位方式和夹紧方式。这里就要考虑到过定位和欠定位的问题,以及夹紧机构的夹紧力大小的问题,要做到工件能够完全定位并夹紧。最后,要尽量使所做夹具人性化,这里包括制造和操作的人性化,尽量使用标准件,以减少制造成本,还要便于工人安装和操作,减少工人的劳动强度。 本夹具通过分析工件的加工要求采取了一面两销的定位方式,完全满足了定位要求。夹紧机构采取齿轮齿条偏心轮压紧机构也基本满足了压紧力的要求。这些都保证了加工的精度。所以做到了精确加工,提高生产率的目的。另外,手柄操作的插拔销机构可以做到快速方便的定位,使工人能够轻松快速的定位工件,加工工件,所以整个设计可以说是满足要求的。 关键词:钻床夹具,定位夹紧机构,钻模板

Special drilling jig ABSTRACT The design is a special drilling jig topic, this fixture to meet the precision machine tool on the workpiece at the same time a number of holes in order to increase productivity and reduce production costs. Design can therefore correct positioning of the positioning of the workpiece clamping and precise drilling machine so that the drill hole template accurately. Designed mainly to consider the following aspects. First of all, the fixture to ensure that the size of workpiece, so first of all to the workpiece processing to achieve a detailed understanding of the requirements, including the accuracy of the workpiece on the hole when the Distance location precision. Secondly, the choice of positioning means and clamping means. Here we must take into account the position and less than the problem of positioning and clamping force clamping bodies the size of the problem, to be able to locate and workpiece clamping. Finally, we should have done as far as possible, user-friendly fixture here, including the manufacture and operation of human nature, and to make full use of standard parts to reduce manufacturing costs, but also ease of installation and operation of workers and reduce labor intensity. Clamp the workpiece through the analysis of the processing to take the side of the positioning of the two marketing methods to satisfy the requirements of the position. Rack and pinion clamp bodies pressed bodies eccentric basically meet the requirements of the compacting force. These are to ensure the accuracy of processing. Therefore, to achieve a precise processing, the purpose of increasing productivity. In addition, the handle pin plug operations can be done quickly and easily body positioning, so that workers can easily and quickly positioning the workpiece, processing the workpiece, so the whole design can be said to meet the requirements. KEY WORDS: Machine tool fixtures, drilling fixtures

气动执行器结构及原理

气缸结构与原理学习 气动执行机构 气动执行机构俗称气动头又称气动执行器(英文:Pn eumatic actuator ) 执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。气动执行器是执行器中的一种类别。 气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源 来驱动执行,叫做DOUBLE ACTING (双作用)。SPRING RETURN (单作用)的开关动作只 有开动作是气源驱动,而关动作是弹簧复位。 气动执行机构简介 气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。拨叉式气动执行器具有扭矩大、空间小、扭矩曲线更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。 齿轮齿条式: 齿轮齿条: 活塞式:

编辑本段气动执行机构的缺点 控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。单作用的气 动执行器,断气源后可以依靠弹簧回到预设位置 编辑本段工作原理说明班 当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度,阀门即被打开。此时 气动执行阀两端的气体随B管咀排出。反之,当压缩空气从B官咀进入气动执行器的 两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方 向转动90度,阀门即被关闭。此时气动执行器中间的气体随A管咀排出。以上为标 准型的传动原理。根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。A管咀进气 为开启阀门,断气时靠弹簧力关闭阀门。 编辑本段特点 紧凑的双活塞齿轮,齿条式结构,啮合精确,效率高,输出扭矩恒定。 铝制缸体、活塞及端盖,与同规格结构的执行器相比重量最轻。 缸体为挤压铝合金,并经硬质阳极氧化处理,内表面质地坚硬,强度,硬度高。采用低摩擦材料制成的滑动轴承,避免了金属间的相互直接接触,摩擦系数低,转动灵活,使用寿命长。 气动执行器与阀门安装、连接尺寸根据国际标准ISO5211、DIN3337和VDI/VDE3845进行设计,可与普通气动执行器互换。 气源孔符合NAMUR标准。 气动执行器底部轴装配孔(符合ISO5211标准)成双四方形,便于带方杆的阀线性 或45。转角安装。 输出轴的顶部和顶部的孔符合NAMUR标准。 两端的调整螺钉可调整阀门的开启角度。 相同规格的有双作用式、单作用式(弹簧复位)。 可根据阀门需要选择方向,顺时针或逆时针旋转。 根据用户需要安装电磁阀、定位器(开度指示)、回信器、各种限位开关及手动操 作装置。 气动执行器分类 执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。气动执行器是执行器中的一种类别。气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLEACTING (双作用)。

相关文档
最新文档