A32A36、D32D36级高强度船体用结构钢

A32A36、D32D36级高强度船体用结构钢
A32A36、D32D36级高强度船体用结构钢

A32/A36、D32/D36级高强度船体用结构钢

1主要用途

A32/A36、D32/D36级高强度船体用结构钢系列产品具有良好的综合机械性能、焊接性能、工艺性能。适用于制造远洋、沿海和内河航区船舶船体结构、船坞、采油平台、海洋中输送管道、沿海发电厂、码头设施等结构件。

2牌号和标准

牌号A32、A36、D32、D36;执行标准:国标G B712-2000《船体用结构钢》、九国船规。3供货技术条件

3.1产品规格

6~50×1400~3250×4000~12000m m

3.2化学成分

表1熔炼成分,%

牌号

化学成分,%

C S i M n S P A l s N b V T i C r N i

A32/A36 D32/D36

0.18

0.50

0.90~

1.60

0.035

0.035

0.015

0.02~

0.05

0.05~

0.10

0.02

0.20

0.40

3.3力学性能

表2力学性能

牌号屈服强度

M p a,≥

抗拉强度

M P a

延伸

率%,

V型冲击功,J冷弯

温度℃纵向横向b=5a

1200

不小于

A32315440~5702203122d=3a D32-20

A36355490~6202103424

D36-20

交货状态:控轧或正火

4钢板实物质量

表3实物质量

牌号屈服强度

M P a

抗拉强度

M P a

延伸

%

V型冲击功

温度纵向

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

船体用结构钢的力学性能

船体用结构钢的力学性能 ( 摘自 GB / T712 — 1988 ) 钢材等级 厚度 / mm 屈服 点 σ 5 / MPa 抗拉 强度 σ b / MPa 伸长 率 δ 5 ( % ) V 型冲击试验 温 度 / ℃ 平均冲击吸收功 A kv / J 纵向横向 A ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ——— B ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ≥ 27 ≥ 20 D ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 10 ≥ 27 ≥ 20 E ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 40 ≥ 27 ≥ 20 AH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 ≥ 31 ≥ 22 DH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 20 ≥ 31 ≥ 22 EH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 40 ≥ 31 ≥ 22 AH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 ≥ 34 ≥ 24 DH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 20 ≥ 34 ≥ 24 EH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 40 ≥ 34 ≥ 24 船体结构用钢板简称船用板。由于船舶工作环境恶劣,船体壳要受海水的化学腐蚀、电化学腐蚀和海生物、微生物的腐蚀;船体承受较大的风浪冲击和交变负荷;船舶形状使其加工方法复杂等因素、所以对船体结构用钢要求严格。首先良好的韧性是最关键的要求,此外,要求有较高的强度,良好的耐腐蚀性能、焊接性能,加工成型性能以及表面质量。为保质量和保证有足够的韧性,要求化学成分的Mn/C在2.5以上,对碳当量也有严格要求,并由船检部门认可的钢厂生产。船体用结构钢分一般厚度和高强度钢两种,一般强度钢按质量分A、B、C和D四个等级;高强度钢又分两个强度级别和三个质量等级;AH32、DH32、EH32、AH36、DH36、EH36。 船体结构用钢板主要用于制造远洋、沿海和内河航运船舶的船体、甲板等的钢板。 产品规格:厚度4.5-50mm、宽度1.0-2.2mm、长度4.0-12.0m。

船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载 荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。 2、船体强度计算包括: (1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷 (2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。响应 (3)确定合适的强度标准,并检验强度条件。衡准(结构的安全性衡准都普遍采用确定性的许用应力法) 3、通常将船体强度分为总强度和局部强度来研究。 4、结构的安全性是属于概率性的。 5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏 的能力,通常成为总强度。总强度就是研究船体梁纵弯曲问题。从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。 6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。 按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。 7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。 局部性载荷是指引起局部结构、构件变形或破坏的载荷。 冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。 8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接 方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。 9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。 10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。 11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。但是,减小结构 尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。因此,应该研究怎样才能达到降低结构重量和降低初始成本这两个目标的最佳配合。 1、船体重量按分部情况来分可以分为:总体性重量、局部性重量。 按变动情况分可以分为:不变质量和变动质量。 2、对于船体总纵强度的计算状态,选取满载:出港、到港;压载:出港、到港;以及装载 手册中所规定的各种工况作为计算状态。 3、计算波浪弯矩的船体标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4、计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种, 直接法又称为麦卡尔法。 5、史密斯修正:计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对 浮力曲线所做作的修正,称为波浪浮力修正,或称史密斯修正。 6、船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。 7、船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体抵抗总纵弯 曲的能力,成为总纵强度(简称纵强度)。 8、波浪附加剪力、波浪附加弯矩完全是由波浪产生的附加浮力(相对于静水状态的浮力增 量)引起的,简称波浪剪力和波浪弯矩。

超高强度船体结构钢的开发现状与趋势

超高强度船体结构钢的开发现状与趋势 发表时间:2018-08-10T15:17:55.367Z 来源:《科技中国》2018年4期作者:汤卫兵黄振毅[导读] 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借 鉴。 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借鉴。 关键词:超高强度船体结构钢;焊接性能;析出粒子 引言:在建造船体结构钢的时候,一定要严格按照船级社的建造规范依次开展施工工艺,使得最终制造出来的船体结构钢质量能够满足船体结构的建造需要。通常来说,船体结构钢的强度有着严格的等级划分标准,其中超高强度结构钢属于强度要求最高的一种类型,要求在建造的时候严格按照强度等级超出420MPa的标准来开展生产工艺,使得最终建造出来的钢强度能够满足大型船舶的运航需求。 一、浅析超高强度船体结构钢的开发现状 (一)生产工艺的开发现状 传统的TMCP技术发展至今,已经逐渐演变成了超高强度船体结构钢的生产工艺。在建造超高强度船体结构钢的时候,技术人员通常会注意将TMCP技术的粗轧温度稳定在1000℃-1050℃之间,接着运用大道次压下量的方法,让形变的部位能够逐渐渗透到板坯心部,使得其中的奥氏体材质逐渐结晶。当前已经出现了新的生产工艺,能够结合大型船舶对超高强度船体结构钢质量的使用需求,大幅优化TMCP生产工艺的性能,使得结晶环节中的材料下压率能够超过40%,再逐渐回温到Ar3温度以上,最后可以通过冷却方法的利用,得到具有细小晶粒的室温组织,这种新型生产工艺的好处便是能够显著增强超高强度船体结构钢大强度[1]。 (二)HY系列的开发现状 超高强度船体结构钢HY系列,主要包括美国研制出来的HY80、HY100以及HY130等系列,还有能够替换HY80的HSLA80系列,以及能够替换HY100的HSLA100系列。HY系列的超高强度船体结构钢具有非常高的强度等级,甚至能够达到550MPa-890MPa,主要是因为HY 系列的超高强度船体结构钢具有大量的Ni物质。当超高强度船体结构钢中的Mn含量能够达到1.6%的时候,Ni的含量能够达到1.02%,这时侯超高强度船体结构钢的强度性能最高,正是因为HY系列的超高强度船体结构钢采用了高Mn+低Ni的成分配置方法,所以该系列的钢结构的强度较高,但是焊接性能有所欠缺。 (三)HSLA系列的开发现状 相比之下,HSLA系列的超高强度船体结构钢在碳当量,以及裂纹敏感系数方面的生产工艺都与HY系列存在着较大的不同。首先,HSLA系列的超高强度船体结构钢显著降低了C、Cr、Ni的含量,同时又增加了Cu、Mo和Mn的含量,使得最终制造出来的HSLA系列超高强度船体结构钢,相较HY100钢要多出大量的Mn、Mo、Ni含量,但是Cr的含量却要少很多,只能在一定程度上改善HY系列超高强度船体结构钢的碳当量以及裂纹敏感系数,也就是说实现了焊接性能的有效改善,并且合金元素也有了极大的改善,整体来说HSLA100系列超高强度船体结构钢逐渐转变成了双向组织的超高强度船体结构。 二、浅析超高强度船体结构钢的发展趋势 (一)Cu析出粒子的优化 目前,国内外超高强度船体结构钢的研发,正在逐步向改善强韧化方法以及保持适当碳当量值的方向发展,以期大幅提高超高强度船体结构钢的强度性能。开发超高强度船体结构钢的时候,引出的析出强化粒子主要为Cu粒子,这种Cu粒子的优势在于能够与超高强度船体结构钢的组织类型、变形程度达到良好的契合,从而加强Cu粒子在界面的偏聚情况,使得析出的Cu粒子激活能开始有所降低。如此一来,通过Mn以及Ni的添加,能够显著降低Cu粒子的临界形核功,继而利用三种元素之前的相互契合与相互作用,有效提升奥氏体的稳定性,最终达到强化超高强度船体结构钢结构强度的效果[2]。 (二)化合物析出粒子 在回火温度升高的条件下,超高强度船体结构钢会析出大量富含Nb、Ti的碳氮化物。这些化合类物质的尺寸基本处于10-20nm之间,在Nb、Ti显著增高的前提下也不会导致超高强度船体结构钢中碳当量的增加,能够有效减缓C原子的扩散速度。在电子搅拌离心力的作用下,细小的钛氧化物粒子开始逐渐向周边扩散,等到冷却之后就能够产生纳米钛氧化粒子,可以有效抵抗奥氏体的生产,从而显著改善超高强度船体结构钢的力学性能,使得最终生产出来的超高强度船体结构钢在质量性能商更为优越,是为未来超高强度船体结构钢的主要发展方向。 (三)焊接性能的提升 焊接性能的提升能够改善超高强度船体结构钢的性能,增强其在结构方面的铸造质量。在目前的生产工艺中,超高强度船体结构钢一旦经受了高温热循环处理,便会导致结构的韧性开始下降,影响到钢结构最后的焊接效果。因此,未来提升超高强度船体结构钢的焊接性能将成为主要的发展方向,目的是为了提高焊接前预热、焊接后回火处理的效果,保证超高强度船体结构钢在生产工艺能够获得良好的焊接效果,继而逐步突破超高强度船体结构钢焊接工艺方面存在的难点,促进超高强度船体结构钢强度等级的提高。 结束语:综上所述,目前我国的超高强度船体结构钢开发正在逐步取得新的进展,面临的各项技术瓶颈也在不断的被突破,未来超高强度船体结构钢还将在我国走向纵深化的发展道路。但是与此同时,技术人员还要意识到超高强度船体结构钢开发过程中存在的技术难点,继而从韧性、强度以及焊接性能等方面出发,全面推动超高强度船体结构钢的研发技术走向质的飞跃,提升船体结构的稳定性。参考文献: [1]雷玄威, 黄继华, 陈树海,等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4):7-16. [2]陈佳, 孙明, 隋丹,等. 高强度船体结构钢的现状与发展[J]. 工程技术:全文版, 2016(2):00289-00289.

《船体结构与强度设计》习题题目练习

《船体结构与强度设计》复习题 一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。(×) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。(√) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。(×) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。(×) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。(×) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。(×) 19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。(×) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 22、最小变形能定理,又称最小功原理,是莫尔定理的特殊情况。(×) 23、广义位移应理解为杆件在变形中广义力作用点处沿力作用方向的位移,广义力与广义位移永远成线性关系。(×) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 25、若杆件横断面对于两个主对称轴的惯性矩不同,则杆在失稳时总是在刚度最大的平面中弯曲。(×) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以区别弹性范围内失稳的欧拉力。(√) 27、对于高强度钢与普通钢,虽然具有相同的弹性模量,但具有不同的屈服极限,因此用这两种材料做成的杆件,尽管其断面形式相同、跨度相同、固定情况相同,他们的欧拉力是不同的。(×) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨单独时的欧拉力。(√)

第五章 船体结构用钢材

第五章船体结构用钢材(4学时) 教学要求:理解CCS关于船体结构用钢的规定。 重点:强度船体结构用钢不同牌号的性能指标。 难点:强度船体结构用钢性能指标测定试验。 教学内容: 随着造船工业的不断发展,造船工业所用的材料,品种越来越多,数量越来越大。例如建造一艘16000吨级多用途集装箱货船,单船体用钢材就需要4600吨,2005年我国造船量为1200万载重吨,消耗钢材400多万吨,由此可见材料对发展造船工业的重要性。 造船材料分为金属材料和非金属材料两大类。 现代船舶的船体结构制造所用材料主要是一般强度船体结构用钢、高强度船体结构用钢、奥氏体不锈钢和双相不锈钢、复合钢板、Z向钢、铝合金、增强塑料等。根据CCS 1998年《材料与焊接》规范和2002、2004年规范修改通报要求,所有金属材料必须从力学性能(强度、塑性、硬度、蠕变)、工艺性能(弯曲、焊接性)、化学成分、脱氧方法、交货状态(热处理)等方面符合规范要求。 第一节船体结构对其金属材料的基本要求 由于船舶工作条件的特殊性和复杂性,因而对制造船体结构的金属材料提出了较高的要求,大致有以下几方面: 一、良好的力学性能 1.强度 强度—金属材料在外力作用下抵抗断裂和变形的能力。 2.塑性 塑性—金属材料在外力作用下产生塑性变形而不破坏的能力。 3.冲击韧性 冲击韧性—金属材料抵抗冲击载荷和脆性破坏的能力。 4.疲劳强度 疲劳强度—金属材料抵抗外力反复作用下的能力,即在交变载荷无限次作用下不致引起破坏的能力,以бN表示。 5.硬度 硬度—金属材料抵抗比它更硬物体压入表面内的能力。 二、优良的工艺性能 所谓工艺性能是指材料对各种加工方法的适应性。在现代造船中,采用最多的金属材料加工方法是焊接与弯曲。因此,作为船体结构材料必须具有良好的焊接性和优良的承受弯曲加工的性能。 三、良好的耐腐蚀性能 船体结构用金属材料在海水中具有较高的耐腐蚀性能,而目前的一般强度船体结构用钢和高强度船体结构用钢还不能完全满足要求,在海水中的腐蚀都比较严重,据统计碳素钢为0.1毫米/年,含镍合金钢为0.08毫米/年。因此,船舶设计时必须增放腐蚀余量,这就增加了船体自重和材料消耗。

船舶及海洋工程用结构钢

GB 712-200× 《船舶及海洋工程用结构钢》 国家标准编制说明 《船舶及海洋工程用结构钢》国家标准项目组 二〇〇八年七月

GB 712-200×《船舶及海洋工程用结构钢》 国家标准编制说明 1 工作概况 1.1 任务来源 我国船舶产业经历了从上世纪五、六十年代的发展(60年代初已自主研发成“东风”号万吨轮),九十年代以后快速发展,到目前向高技术含量、大吨位、专业化船舶发展,我国已能自主研发、生产远望号测量船、雪龙号科考船以及30万吨油轮、大型散装货轮、装载万箱的大型集装箱船及LNG船等各种技术先进的大型船舶,使我国已济身世界造船大国行列,正向世界造船强国迈进。 近年来,因中国等新兴发展中国家对矿石、石油等资源的大量需求,国际航运界得到加快发展,新船订单不断增加,我国2010年的新船订单达1.3亿载重吨,已排在世界第一。随着新船订单的持续增加,船舶及海洋工程用结构钢的需求数量和质量都快速增长。到2010年,我国建造的散货船、油船市场占有率将分别提升到世界第一位和世界第二位,集装箱船市场占有率将接近韩国,LNG船市场占有率达到20%以上,成为高新技术船舶重要生产国。届时,造船用钢预计达到1000万吨以上;计划建造海洋平台近80座,需海洋平台用高等级系列钢材约160万吨左右,其中,自升式海洋平台的桩腿、悬臂梁、升降齿条机构等需要460MPa~690MPa钢级及690MPa 以上钢级的高强度或特厚(最大厚度达到259mm)等专用钢。 与此同时,随着近二十年国民经济的快速发展,我国冶金工业也得到了高速发展。特别是近年来,我国钢铁企业技术进步很快,装备和工艺也已经达到世界先进水平。国产船舶和海洋工程用钢的品种不断开发、实物质量大幅提升,不仅在产量上,而且在质量上已能够基本满足我国船舶工业发展的需要,为我国造船业提供了坚实的钢铁基础。全国已有50余条中厚板生产线,产能达5600万吨,在建、拟建10余套3500mm以上轧机,新增产能约1500万吨,许多条生产线工艺装备达到国际一流水平,至2010年中厚板产能将达到7000万吨。从以前大量使用的一般强度级A、B、D和高强度级AH32、AH36、DH32、DH36发展到E、EH32、EH36,直至高强度级的AH40、DH40、EH40、FH40和超高强度钢级的420、460、500、550钢级,甚至有更高强度要求和-196℃冲击试验的特殊船钢(LNG船)。以鞍钢为例:鞍钢的船板产量逐年大幅度提高,2003年销售32万吨,2004年销售70万吨,2005年销售87万吨,2006年销售约110万吨,2007年销售约170万吨,约占国内市场份额的20%左右。船钢等级也由1994年开始CCS认可时的A、B、D、AH32、AH36、DH32、DH36,发展到目前FH550钢级取得九国船级社认可,低温压力容器用9%Ni钢板也取得了CCS、LR、DNV船级社和容标委认可。 我国船钢出口也在逐年增加,主要出口对象是目前世界上最大的造船国--韩国的现代、三星、大宇以及STX等企业,部分出口日本、美国、欧洲等国家和地区。 GB/T 712-2000《船体用结构钢》国家标准实施的几年来,对当时的船钢发展和钢厂工艺技术进步起到了积极的促进和推动作用,但因船东委托船级社对船舶进行监造,船钢均需通过船级社认可,按船规交货及验收,所以,执行国家标准的船用钢材的量较小。按国家标准体系和标准要充分反映出钢厂在船钢方面的科研成果,并使之快速商品化,及提高产品实物质量,与国外先进标准接轨、促进技术进步,根据全国钢标准化技术委员会SAC/TC183钢标委[2008]01号《关于下达全国钢标委2008年第一批国家标准制修订计划项目的通知》安排(第70项计划编号20077223-Q-605),将推荐性国家标准--GB/T 712-2000《船体用结构钢》修订为强制性国家标准--GB 712-200×《船体及海洋工程用结构钢》。 从当今国际上高强度、超高强度船钢发展看,普遍采用低碳含量(低碳当量),微合金化,控轧控冷、热处理等工艺技术路线。微合金元素的加入不但能起到提高强度,补偿降低碳含量所带来的强度损失,同时他们对提高钢材的焊接性能、力学和工艺性能。从我国钢厂装备和技术水平来看,能够达到高强度、高韧性、高焊接性能,以及厚度方向性能等要求。因此,此次修订GB/T 712,等同采用国外先进标准(各国船级社规范)、引用国家基础标准,纳入高强度、超高强度的新钢级,技术水平比原标准有较大幅度的提高,使本标准能够满足新型现代化大型船舶的设计和建造要求,并能促进我国生产船钢实物质量稳定提高和达到国际先进水平,也能推动企业技术进步,为我国企业加入国际市场竞争创造更有利的条件,标准水平要达到国际先进水平。

船舶结构物强度

思考题 1.依据“建造规范”与依据“强度规范”设计船体结构的方法有什么不同?它们各有何优缺点 答:建造规范:根据规范确定最小尺寸,设计尺寸不应小于最小尺寸 优点:安全、简便。缺点:不易反应具体船舶的特点及新技术成果。 强度规范:又分直接设计和间接设计,前者是依据]/[max σM W =来确定构件尺寸,后者参考母型取定构件尺寸,再计算max σ与][σ相比较,修改尺寸。 优点:合理,反映具体的船舶特点。缺点:计算工作量大 2.为什么要将船体强度分为“总强度”和“局部强度”?其中“局部强度”与“局部弯曲”的含义有何不同? 答:总强度是把整个船体看做一个整体来研究其强度,局部强度是研究组成船体的某些部分结构、节点及其组成构件的强度问题,一般在总强度校核已进行的前提下,对局部强度进行分析,以确定结构布置原则和决定构件尺寸。局部弯曲是考虑将总纵弯曲应力计入的总应力,而局部强度还得将总应力与][σ相比较,进行强度校核。 3.如何获得实际船舶的重量分布曲线? 答:通常将船舶重量按20个理论站距分布(民船尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 4.说明计算船舶静水剪力、弯矩的原理及主要步骤。 答:原理:认为船是在重力、浮力作用下平衡于波浪上一根梁 步骤:(1)确定平衡水线位置(2)根据梯形法、围长法等得出船舶重量分布曲线w(x),根据邦戎曲线得出某一吃水下的浮力曲线b (x ),计算载荷曲线q(x)=w(x)-b(x),根据∫=x dx x q x N 0)()(计算船舶静水剪力,∫∫=x x dxdx x q x M 00)()(计算静水弯矩 5.“静置法”对计算波浪的波型、波长、波高以及与船舶的相对位置作了怎样的规定? 答:对于“静置法”,标准波浪的波形取为坦谷波,计算波长等于船长,波高则随波长变化。波船相对位置:中拱(波峰在船舯)和中垂(波谷在船舯)两种典型状态。 6.按照“静置法”所确定的载荷来校核船体总纵强度,是否反映船体的真实强度,为什么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L 较大时载荷被夸大,但具有相互比较的意义 7.依据q-N-M关系解释在中拱和中垂波浪状态下,通常船体波浪弯矩总是舯剖面附近最大,这一结论是否适用于静水弯矩? 答:适用于静水弯矩,将船近似为自由-自由梁,受垂向载荷作用,易知船体弯矩是舯剖面附近最大 8.在初步设计阶段,如何应用“弯矩系数法”来决定船体的最大波浪弯矩和剪力? 答:在初步设计阶段,通过参考母型船,估计一个主尺度D 、L ,在中拱、中垂两种情况下,由max )/(w M DL K =,得出K DL M w /)(max =其中中垂K ,中拱K 的值约15-35,而max )(w N 由max )(w N =L M w /)(5.3max 得出

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位置。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

EH50高强度船体结构钢的组织和性能研究

EH50高强度船体结构钢的组织和性能研究 摘要 高强度结构钢主要应用于造船业,本文分析了控制轧制和控制冷却的工艺,以及控轧控冷对EH50船体结构钢的组织和性能的影响,测定了500MPa级船板钢的再结晶曲线和CCT曲线,通过对工艺分析及金相实验结果分析,得出以下几个结论: (1)开轧温度设为900℃左右,终轧温度为870℃左右,未结晶区总的压下率控制70%左右,轧后控冷,开冷温度830℃左右,终冷温度770℃,冷速5℃/S,这样的工艺得到的钢的综合性能好。 (2)粗轧对奥氏体晶粒形态变化明显,主要是由于微合金元素的加入,使铁素体晶粒不均,带状组织严重。 (3)Nb在微合金钢中有不同的析出温度,同时析出的Nb(C,N)对再结晶产生强烈的抑制作用。 关键词:TMCP;船板钢;组织;微合金

目录

1引言 船体结构用钢简称船板钢,主要用于制造远洋、沿海和内河航运船舶的船体、甲板等。船舶工作环境恶劣,船体外壳要承受海水的化学腐蚀、电化学腐蚀和海生物、微生物的腐蚀;还要承受较大的风浪冲击和交变负荷作用;再加上船舶加工成型复杂等原因,所以对船体结构用钢要求严格。良好的韧性是最关键的要求,此外,要有较高的强度,良好的耐腐蚀性能、焊接性能,加工成型性能以及表面质量。其Mn/C比值应在2.5以上,对碳当量也有严格要求,并由船检部门认可的钢厂生产。 近几年船体结构钢的研究开发和生产技术有了很大发展,这主要是以新材料的开发和对材料的各项物理化学性能的深入研究、冶炼新工艺的出现和对热轧板带和中厚板生产工艺的不断开发以及国家海洋事业发展要求为前提的。但是同发达国家相比,中国中厚板生产和工艺水平还较落后,高技术含量、高附加值的高等级别船板需大量进口。国内的钢厂主要生产400MPa以下低合金高强度船体结构钢,但其产品大多需要辅以热处理才能合格。另一方面,造船技术的发展,船舶的大型化、高速化、海洋油气田的开发,为高强度船体结构钢的应用开创了美好前景。这就要求钢铁工业提供更多高强度、高精度、具有良好低温冲击韧性、焊接性能的船板。 造船工业的发展加速了对船板数量的需求。随着造船工业的发展,对船板性能的要求也越来越高。除了要求具有高的强度和优良的低温冲击韧性外,对材料的可焊性和表面质量等的要求也在不断提高。如目前我国大型集装箱船正在大量使用EH40、FH40等具有高强度、良好低温冲击韧性的船板。 1.1船板钢的技术要求 综观各国船级社的规范与要求。除了需常规的化学成分和力学性能外,还有以下要求: 船板钢的冶炼要求如下: (1)铁水进行预脱硫处理。 (2)转炉终点碳控制在0.06%~0.10%。 (3)挡渣出钢,钢包加合成渣。 (4)钢包脱氧合金化,进精炼站前钢中酸溶铝含量达到0.004%~0.005%。

船体结构强度

1.极限弯矩:是指在船体剖面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限(在受拉伸时)或构件的临界应力(在受压缩时)的总纵弯曲力矩。 2.总强度:从整体上研究船体梁变形规律和抵抗破坏的能力,通常称为总强度。 3.计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态。 4.剖面模数:W=I/Z,表征船体结构抵抗弯曲变形能力。 5.纵向强力构件:纵向连续并能够有效地传递总纵弯曲应力的构件习惯上被称为纵向强力构件。 6.安全系数:是考虑强度计算中的许多不确定性,为保证设计结构必要的安全度而引入的强度储备。 7.许用应力:是指在结构设计预计的各种工况下,船体结构构件所容许承受的最大应力值。 8.强度储备系数:Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M>n, n称为强度储备系数,Mj/M也表明船体结构所具有的承受过载的能力的大小。 9.局部强度:从局部上研究船体梁变形规律和抵抗破坏的能力,通常称为局部强度。 10.带板:为估算骨架的承载能力,把一定宽度的板计算在骨架剖面中,即作为它的组成部分来计算骨架梁的剖面积、惯性矩和剖面模数等几何要素,这部分板称为带板。 11.剖面利用系数:实际剖面模数与理想剖面模数的比值,表明了材料在剖面中分布的合理程度。 12.剖面模数比面积:产生单位剖面模数(W2/3)所需的剖面积。Cw=F/W2/3

13.计算剖面:可能出现最大弯曲应力的剖面。 14.甲板室:上层建筑中宽度与船宽相差较大的围蔽建筑物。 1.集装箱船为什么要进行扭转强度计算,产生扭矩的原因是什么? 集装箱船具有大开口的技术特征,舱口宽度一般达到甚至超过船宽的85%,舱口长度可以达到舱壁间距的约90%,使得扭转强度的重要性上升到与总纵强度同等的地位。船舶在斜浪中航行、船舶倾斜、船舶横摇 2.船体强度计算应包括下述内容: (1)确定作用在船体和各个结构上的载荷的大小及性质,即所谓外力问题。(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各个作用中的任何一种作用时的载荷,即结构的极限状态分析(亦称求载荷效应的极限值),即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 3.简述计算船体梁所受剪力弯矩的步骤。P10 (1)计算重量分布曲线; (2)计算静水浮力曲线; (3)计算静水载荷曲线; (4)计算静水剪力及弯矩; (5)计算静波浪剪力及弯矩; (6)将静水剪力及弯矩和静波浪剪力及弯矩叠加,即得总纵弯矩和剪力 4.简述坦谷波绘制步骤。P23 5.纵向强力构件分为四类: (1)只承受总纵弯曲的纵向强力构件,称为第一类构件,如不计甲板横荷重

船体强度与结构设计复习教案资料

船体强度与结构设计 复习

绪论 1.总纵强度:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简 称船体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2.船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯 曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,工艺 性,经济性。 4.按照静置法所确定的载荷来校核船体的总纵强度,是否反映船体的真实强度,为什 么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L较大时载荷被夸大,但具有相互比较的意义。 第一章引起船体梁总纵弯曲的外力计算 5.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。(中拱:船体梁中 部向上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。) 6.重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量 曲线的方法:静力等效原则。 7.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 8.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲 线。 9.静水剪力:船体梁在静水中所受到的剪力沿船长分布状况的曲线。 10.弯矩曲线:船体梁在静水中所受到的弯矩沿船长分布状况的曲线。 (重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。) 11.局部重量的分配原则(P12):重量的分布原则:静力等效原则。①保持重量的大小 不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围(分配到理论站的范围)与该项重量的实际分布范围相同或大体相同。 12.如何获得实际船舶重量分布曲线:答:通常将船舶重量按20个理论站距分布(民船 尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 13.静水力浮力曲线的绘制:浮力曲线的垂向坐标表示作用在船体梁上单位长度的浮力 值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心的纵向坐标即为浮心的纵向位置。浮力曲线通常根据邦戎曲线来求得。 14.用于总纵强度计算的剪力曲线和弯矩曲线的特点:①首尾端点处的剪力和弯矩为零, 亦即剪力和弯矩曲线在端点处封闭②零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应③剪力曲线大致是反对称的,零点在靠近船中的某处,在离首尾约船长的1/4处具有最大正值或负值④弯矩曲线在两端的斜率为零,最大弯矩一般在船中 0.4倍船长范围内。 15.波浪剪力:完全由波浪产生的附加浮力引起的附加剪力。

船体用结构钢测厚检测规程

船体用结构钢测厚检测规程 1范围 本规程适用于中厚板厂生产厚度大于40mm船体用结构钢的测厚检测工作。 2引用文件 Q/WKYG 001-2010《船体结构用钢》 GB/T709 热轧钢板和钢带的尺寸、外形、重量及允许偏差 GB/T14977 热轧钢板表面质量的一般要求 YB/T081 冶金技术标准的数值修约与检验数值的判定原则 中国船级社(CCS)钢质海船入级与建造规范 3检测要求尺寸、外形及允许偏差 3.1 尺寸、外形及允许偏差 钢板的尺寸、外形及允许偏差应符合GB/T709的规定,其中,钢板厚度的负偏差应不超过零,正偏差符合GB/T709 B类的规定。 3.2 钢板不平度≤7 mm/m 3.3 钢板表面质量 3.3.1 钢板表面不允许有气泡、结疤、裂纹、拉裂、折叠、夹杂和压入氧化铁皮。钢板不得有分层。 3.3.2 钢板表面允许有不妨碍检查表面缺陷的薄层氧化铁皮、铁锈,由于压入氧化铁皮和轧辊所造成的不明显的粗糙、网纹、划痕及其他局部缺陷,但其深度不得大于负偏差之半,且应保证钢板的最小厚度。 3.3.3 钢板表面缺陷允许修磨清理,但修磨后任何部位的厚度应不小于公称厚度的93%,且应保证钢板的最小厚度,清理时应平滑无棱角,缺陷部分的面积小于产品相应表面的2%。 4 具体检测规程 4.1厚度大于40mm的CCS船级社钢板全部要求进行超声波探伤检验。 4.2厚度大于40mm的CCS船级社钢板全部要求进行测厚检测。 4.3测厚要求使用外径千分尺,测量位置为钢板南、北两侧边10~100mm范围内,长度方向均分3点,共6点。 4.4在测厚过程发现6点测厚结果的平均值符合订单厚度时,该钢板正常判定、入库,新增记录台帐备查。记录厚度数据并开具《船体用结构钢测厚报告》。

相关文档
最新文档