信号发生器使用 (2)

信号发生器使用 (2)
信号发生器使用 (2)

信号发生器使用

一、信号发生器

信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。能够产生多种波形的信号发生器,如产生三角波、锯齿波、矩形波(含方波)、正弦波的信号发生器称为函数信号发生器

信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。信号发生信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。

二、信号发生器的分类

信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。由于信号源信号的特征参数均可人为设定,所以可以方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验特别有用。在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。例如,用信号发生器产生一个频率为1kHz 的正弦波信号,输入到一个被测的信号处理电路(功能为正弦波输入、方波输出),

在被测电路输出端可以用示波器检验是否有符合设计要求的方波输出。高精度的信号发生器在计量和校准领域也可以作为标准信号源(参考源),待校准仪器以参考源为标准进行调校。由此可看出,信号发生器可广泛应用在电子研发、维修、测量、校准等领域。

正弦信号发生器:正弦信号主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器(即信号源)、标准信号发生器(输出功率能准确地衰减到-100分贝毫瓦以下)和功率信号发生器(输出功率达数十毫瓦以上);按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。

用555制作的多波形信号发生器低频信号发生器:包括音频(200~20000赫)和视频(1赫~10兆赫)范围的正弦波发生器。主振级一般用RC式振荡器,也可用差频振荡器。为便于测试系统的频率特性,要求输出幅频特性平和波形失真小。

高频信号发生器:频率为100千赫~30兆赫的高频、30~300兆赫的甚高频信号发生器。一般采用LC调谐式振荡器,频率可由调谐电容器的度盘刻度读出。主要用途是测量各种接收机的技术指标。输出信号可用内部或外加的低频正弦信号调幅或调频,使输出载频电压能够衰减到1微伏以下。(图1)的输出信号电平能准确读数,所加的调幅度或频偏也能用电表读出。此外,仪器还有防止信号泄漏的良好屏蔽。

微波信号发生器:从分米波直到毫米波波段的信号发生器。信号通常由带分布参数谐振腔的超高频三极管和反射速调管产生,但有逐渐被微波晶体管、场效应管和耿氏二极管等固体器件取代的趋势。仪器一般靠机械调谐腔体来改变频率,每台可覆盖一个倍频程左右,由腔体耦合出的信号功率一般可达10毫瓦以上。简易信号源只要求能加1000赫方波调幅,而标准信号发生器则能将输出基准电平调节到1毫瓦,再从后随衰减器读出信号电平的分贝毫瓦值;还必须有内部或外加矩形脉冲调幅,以便测试雷达等接收机。

扫频和程控信号发生器:扫频信号发生器能够产生幅度恒定、频率在限定范围内作线性变化的信号。在高频和甚高频段用低频扫描电压或电流控制振荡回路元件(如变容管或磁芯线圈)来实现扫频振荡;在微波段早期采用电压调谐扫频,用改变返波管螺旋线电极的直流电压来改变振荡频率,后来广泛采用磁调谐扫频,以YIG铁氧体小球作微波固体振荡器的调谐回路,用扫描电流控制直流磁场改变小球的谐振频率。扫频信号发生器有自动扫频、手控、程控和远控等工作方式。

标准信号发生器频率合成式信号发生器:这种发生器的信号不是由振荡器直接产生,而是以高稳定度石英振荡器作为标准频率源,利用频率合成技术形成所需之任意频率的信号,具有与标准频率源相同的频率准确度和稳定度。输出信号频率通常可按十进位数字选择,最高能达11位数字的极高分辨力。频率除用手动选择外还可程控和远控,也可进行步级式扫频,适用于自动测试系统。直接式频率合成器由晶体振荡、加法、乘法、滤波和放大等电路组成,变换频率迅速但电路复杂,最高输出频率只能达1000兆赫左右。用得较多的间接式频率合成器是利用标准频率源通过锁相环控制电调谐振荡器(在环路中同时能实现倍频、分频和混频),使之产生并输出各种所需频率的信号。这种合成器的最高频率可达26.5吉赫。高稳定度和高分辨力的频率合成器,配上多种调制功能(调幅、调频和调相),加上放大、稳幅和衰减等电路,便构成一种新型的高性能、可程控的合成式信号发生器,还可作为锁相式扫频发生器。

函数发生器:又称波形发生器。它能产生某些特定的周期性时间函数波形(主要是正弦波、方波、三角波、锯齿波和脉冲波等)信号。频率范围可从几毫赫甚至几微赫的超低频直到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。图2为产生上述波形的方法之一,将积分电路与某种带有回滞特性的阈值开关电路(如施米特触发器)相连成环路,积分器能将方波积分成三角波。施米特电路又能使三角波上升到某一阈值或下降到另一阈值时发生跃变而形成方波,频率除能随积分器中的RC值的变化而改变外,还能用外加电压控制两个阈值而改变。将三角波另行加到由很多不同偏置二极管组成的整形网络,形成许多不同斜度的折线段,便可形成正弦波。另一种构成方式是用频率

合成器产生正弦波,再对它多次放大、削波而形成方波,再将方波积分成三角波和正、负斜率的锯齿波等。对这些函数发生器的频率都可电控、程控、锁定和扫频,仪器除工作于连续波状态外,还能按键控、门控或触发等方式工作。

脉冲信号发生器:产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。脉冲发生器主要由主控振荡器、延时级、脉冲形成级、输出级和衰减器等组成。主控振荡器通常为多谐振荡器之类的电路,除能自激振荡外,主要按触发方式工作。通常在外加触发信号之后首先输出一个前置触发脉冲,以便提前触发示波器等观测仪器,然后再经过一段可调节的延迟时间才输出主信号脉冲,其宽度可以调节。有的能输出成对的主脉冲,有的能分两路分别输出不同延迟的主脉冲。

随机信号发生器:随机信号发生器分为噪声信号发生器和伪随机信号发生器两类。

噪声信号发生器:完全随机性信号是在工作频带内具有均匀频谱的白噪声。常用的白噪声发生器主要有:工作于1000兆赫以下同轴线系统的饱和二极管式白噪声发生器;用于微波波导系统的气体放电管式白噪声发生器;利用晶体二极管反向电流中噪声的固态噪声源(可工作在18吉赫以下整个频段内)等。噪声发生器输出的强度必须已知,通常用其输出噪声功率超过电阻热噪声的分贝数(称为超噪比)或用其噪声温度来表示。噪声信号发生器主要用途是:①在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统的性能;②外加一个已知噪声信号与系统内部噪声相比较以测定噪声系数;③用随机信号代替正弦或脉冲信号,以测试系统的动态特性。例如,用白噪声作为输入信号而测出网络的输出信号与输入信号的互相关函数,便可得到这一网络的冲激响应函数。

伪随机信号发生器:用白噪声信号进行相关函数测量时,若平均测量时间不够长,则会出现统计性误差,这可用伪随机信号来解决。当二进制编码信号的脉冲宽度墹T足够小,且一个码周期所含墹T数N很大时,则在低于fb=1/墹T的频带内信号频谱的幅度均匀,称为伪随机信号。只要所取的测量时间等于这种编

码信号周期的整数倍,便不会引入统计性误差。二进码信号还能提供相关测量中所需的时间延迟。伪随机编码信号发生器由带有反馈环路的n级移位寄存器组成,所产生的码长为N=2-1。

三、信号发生器主要技术性能

频率范围:0.2Hz ~2MHz

粗调、微调旋钮

正弦波, 三角波, 方波, TTL 脉波

0.5" 大型 LED 显示器

可调 DC offset 电位

输出过载保护

信号发生器/信号源的技术指标:

波形正弦波, 三角波, 方波, Ramp 与脉波输出

振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载)

阻抗50Ω+10%

衰减器-20dB+1.0dB (at 1kHz)

DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载)

周期控制 1 : 1 to 10 : 1 continuously rating

显示幕4位LED显示幕

频率范围0.2Hz to2MHz(共 7 档)

频率控制Separate coarse and fine tuning

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz

频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz

线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz

上升/下降时间<120nS

位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调

上升/下降时间<120nS

位准>3Vpp

上升/下降时间<30nS

输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio

输入阻抗10kΩ (±10%)

交流 100V/120V/220V/230V ±10%, 50/60Hz

电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1

230(宽) × 95(高) × 280(长) mm,约 2.1 公斤

信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率

1.信号发生器面板:

(1)电源开关;

(2)信号输出端子;

(3)输出信号波形选择;

(4)输出信号幅度调节;

(5)矩形波、尖脉冲波幅度调节;

(6)矩形脉冲宽度调节;

(7)输出信号衰减选择;

(8)输出信号频段选择;

(9)输出信号频率粗调;

(10)输出信号频率细调;

(11)单次脉冲;

(12)信号输入端子;

(13)显示窗口;

(14)频率计内测、外测功能);

(15)测量频率;

(16)测量周期;

(17)计数;

(18)复位;

(19)频率或周期单位指示;

(20)测量功能指示。

2.信号源部分

(1)频率范围:1Hz —1MHz,由频段选择和频率粗调细调配合调节;

(2)频率漂移:1档≤0.4%; 2、3、4、5档≤0.1%;6档≤0.2%;

(3)正弦波:频率特性≤1dB (第6档≤1.5db),输出幅度≥5V,波形的非线性失真:20HZ—20KHZ≤0.1%;

(4)正、负矩形脉冲波:占空比调节范围30%—70%,脉冲前、后沿≤40ns;

波形失真:在额定输出幅度时,前、后过冲及顶部倾斜均小于5%;

输出幅度:高阻输出≥10VPP,50Ω输出≥5VPP;

(5)正、负尖脉冲:脉冲宽度0.1μs,输出幅度≥5VPP。

3.频率计部分:

(1)功能:频率、周期、计数;

(2)输入波形种类:正弦波、对称脉冲波、正脉冲;

(3)输入幅度:1V≤脉冲正峰值≤5V,1.2V≤正弦波≤5V;

(4)输入阻抗:≥1MΩ;

(5)测量范围:1HZ—20MHZ(精度:5×10-4±1个字);

(6)计数:计数速率:波形周期≥1uS, 计数范围:1—983040。

四、基本操作

(1)将电源线接入220V,50HZ交流电源上。应注意三芯电源插座的地线脚应与大地妥善接好,避免干扰。

(2)开机前应把面板上各输出旋扭旋至最小。

(3)为了得到足够的频率稳定度,需预热。

(4)频率调节:按下相应的按键,然后再调节至所需要的频率。

(5)波形转换:根据需要波形种类,按下相应的波形键位。波形选择键是:正弦波、矩形波、尖脉冲、TTL电平。

(6)幅度调节:正弦波与脉冲波幅度分别由正弦波幅度和脉冲波幅度调节。不要作人为的频繁短路实验。

(7)输出选择:根据需要选择,“ON/OFF”键,否则没有输出。

五、信号发生器应用

(1)用信号发生器信号

波形选择,选择“~”键,输出信号即为正弦波信号。

频率选择,选择“K Hz”键,输出信号频率以KHz为单位。

必须说明的是:信号发生器的测频电路的调节,按键和旋钮要求缓慢调节;信号发生器本身能显示输出信号的值,当输出电压不符合要求时,需要另配交流毫表测量输出电压,选择不同的衰减再配合调节输出正弦信号的幅度,直到输出电压达到要求。

若要观察输出信号波形,可把信号输入示波器。需要输出其它信号,可参考上述步骤操作。

(2)用信号发生器测量电子电路的灵敏度

信号发生器发出与电子电路相同模式的信号,然后逐渐减小输出信号的幅度(强度),同时通过监测输出的水平。当电子电路输出有效信号与噪声的比例劣化到一定程度时(一般灵敏度测试信噪比标准S/N=12dB),信号发生器输出的电平数值就等于所测电子电路的灵敏度。在此测试中,信号发生器模拟了信号,而且模拟的信号强度是可以人为控制调节的。

用信号发生器测量电子电路的灵敏度,其标准的连接方法是:信号发生器信号输出通过电缆接到对电子电路输入端,电子电路输出端连接示波器输入端。

(3)用信号发生器测量电子电路的通道故障

信号发生器可以用来查找通道故障。其基本原理是:由前级往后级,逐一测量接收通路中每一级放大和滤波器,找出哪一级放大电路没有达到设计应有的放大量或者哪一级滤波电路衰减过大。信号发生器在此扮演的是标准信号源的角色。信号源在输入端输入一个已知幅度的信号,然后通过超电压表或者频率足够高的示波器,从输入端口逐级测量增益情况,找出增益异常的单元,再进一步细查,最后确诊存在故障的零部件。

信号发生器可以用来调测滤波器,调测滤波器的理想仪器二字线——网络分析仪和扫频仪,其主要功能部件之一就是信号发生器。在没有这些高级仪器的情况下,信号发生器配合高频电压测量工具,如超高频毫伏表、频率足够高的示波器、测量接收机等,也能勉强调试滤波器,其基本原理是测量滤波器带通频段内外对信号的衰减情况。信号发生器在此扮演的是标准信号源的角色,信号发生器产生一个相对比较强的已知频率和幅度信号,从滤波器或者双工器的INPUT 端输入,测量输出端信号衰减情况。带通滤波器要求带内衰减尽量小,带外衰减尽量大,而陷波器正好相反,陷波频点衰减越大越好。因为普通的信号发生器都是固定单点频率发射的,所以调测滤波器需要采用多个测试点来“统调”。如果有扫频信号源和配套的频谱仪,就能图示化地看到滤波器的全面频率特性,调试起来极为方便。

(完整word版)信号发生器的发展过程及现状

信号发生器的发展过程及现状 1信号发生器的发展 信号发生器是一种常用的信号源,广泛应用于电子电路、自动控制和科学试验等领域。它是一种为电子测量和计量工作提供符合严格技术要求的电信号设备。因此,信号发生器和示波器、电压表、频率计等仪器一样是最普通、最基本的,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到信号发生器。 自六十年代以来,信号发生器有了迅速的发展,出现了函数发生器、扫频信 号发生器、合成信号发生器、程控信号发生器等新种类。各类信号发生器的主要 性能指标也都有了大幅度的提高,同时在简化机械结构、小型化、多功能等各方 面也有了显著的进展。 近年来随着GSM、GPRS、3G、B1ueTooth乃至己经被提出的标准的4G等移动通信以及LMDS、无线本地环路等无线接入的发展,同时加上合成孔径雷达、多普勒冲雷达等现代军事、国防、航空航天等在科技上的不断创新与进步,世界各国非常重视频率合成器的发展。所有的这些社会需求以及微电子技术、计算机技术、信号处理技术等本身的不断进步都极大刺激了频率合成器技术的发展。可以预料,随着低价格、高时钟频率、高性能的新一代DDS芯片的问世,DDS的应用前景将不可估量! 2 频率合成技术发展过程 频率合成技术起源于二十世纪30年代,至今己有六十多年的历史。所谓频率合成就是将具有低相位噪声、高精度和高稳定度等综合指标的参考频率源经过电路上的混频、倍频或分频等信号处理以便对其进行数学意义上的加、减、乘、除等四则运算,从而产生大量具有同样精确度的频率源。实现频率合成的电路叫频率合成器,频率合成器是现代电子系统的重要组成部分。在通信、雷达和导航等设备中,频率合成器既是发射机的激励信号源,又是接收机的本地振荡器;在电子对抗设备中,它可以作为干扰信号发生器;在测试设备中,可作为标准信号源,因此频率合成器被人们称为许多电子系统的“心脏”。 直接数字频率合成(DDS: Digital Direct Frequency Synthesis)E2]技术是一种新频率合成方法,是频率合成技术的一次革命,Joseph Tierney等3人于1971年提了直接数字频率合成的思想,但由于受当时微电子技术和数字信号处理技术的限制,DDS技术没有受到足够重视,随着电子工程领域的实际需要以及数字集成电路和微电子技术的发展,DDS技术日益显露出它的优越性。 3 直接频率合成技术的现状 直接数字频率合成技术发展到现在,合成信号频率的精确度和频谱的纯度仍然是其今后发展的主要方向。而这方而性能指标的提高,可以从两个方而进行,一是提出更加先进的设计思想和设计理论,发展更加先进的生产工艺,由芯片厂家开发、生产出性能更完善的DDS芯片;二是对于已有成品的DDS芯片,设计

基于AD9850的信号发生器的设计与实现

信号源是电子产品测量与调试、部队设备技术保障等领域的基本电子设备。随着科学技术的发展和测量技术的进步,普通的信号发生器已无法满足目前日益发展的电子技术领域的生产调试需要。而DDS技术是一种新兴的直接数字频率合成技术,具有频率分辨率高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化易于集成、体积小、重量轻等优点,因而在雷达及通信等领域具有广泛的应用前景。 1系统设计方案 本文提出的采用DDS作为信号发生核心器件的全数控函数信号发生器设计方案,根据输出信号波形类型可设置、输出信号幅度和频率可数控、输出频率宽等要求,选用了美国A/D公司的AD9850芯片,并通过单片机程序控制和处理AD9850的32位频率控制字,再经放大后加至以数字电位器为核心的数字衰减网络,从而实现了信号幅度、频率、类型以及输出等选项的全数字控制。该函数信号发生器的结构如图1所示。 本系统主要由单片机、DDS直接频率信号合成器、数字衰减电路、真有效值转换模块、A/D转换模块、数字积分选择电路等部分组成。 2 DDS的基本原理 直接数字频率合成器(Derect Digital Synthesizer)是从相位概念出发直接合成所需波形的一种频率合成技术。一个直接数字频率合成器通常由相位累加器、加法器、波形存储ROM、D/A转换器和低通滤波器(LPF)组成。DDS的组成结构如图2所示。其中,K为频率控制字(也叫相位增量),P为相位控制字,W为波形控制字,fc为参考时钟频率,N为相位累加器的字长,D为ROM数据位及D/A转换器的字长。相位累加

器在时钟fc的控制下以步长K累加,输出的N位二进制码与相位控制字P、波形控制字W相加后作为波形ROM的地址来对波形ROM进行寻址,波形ROM输出的D位幅度码S(n)经D/A转换变成阶梯波S(t)后,再经过低通滤波器平滑,就可以得到合成的信号波形。由于合成的信号波形取决于波形ROM中存放的幅度码,因此,用DDS可以合成任意波形。 3硬件电路设计 3.1 DDS信号产生电路 考虑到DDS具有频率分辨率较高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化、易于集成、体积小、重量轻等优点,该方案选用美国A/D公司的AD9850芯片,并采用单片机为核心控制器件来对DDS输送频率控制字,从而使DDS输出相应频率和类型的信号,其DDS信号产生电路如图3所示。

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

虚拟信号发生器的设计

虚拟信号发生器的设计 (巢湖学院物理与电子科学系王乐07037022) 摘要:虚拟仪器是由一些必要的硬件获取调理信号,并以通用计算机为平台,实现不同测量软件对采集获得信号进行分析处理及显示。它改变了传统电子测量仪器的概念和模式,用户完全可以自己定义仪器的功能和参数,即“软件既是仪器”。计算机技术与网络技术的飞速发展,使得虚拟仪器已经成为现代电子测量仪器发展的趋势。 本文介绍了一种以LabVIEW为开发平台,能够产生正弦波、三角波、方波、锯齿波和任意波测试信号发生器,其平率、幅值、相位、电压偏置等参数可以设置,不但输出波形参数可调、而且可同步显示。本系统通过采用TCP/IP技术来实现远程数据传输功能,当两台计算机设置好端口后,就可以进行数据传输。 与传统仪器相比,本系统具有高效、开放、使用灵活、功能强大、性价比高、可操作性好等明显优点,可用于医疗,工程等精密仪器的测试,具有较强的实用性和开发价值。 关键词:虚拟仪器,Labview,函数信号发生器,网络通信。 The design of virtual signal generator and remotereslization Abstract:The virtual instrument which conditioning signals isgained by some essential hardware.It takes the general-purposecomputer as a platform and the signal is realized through thedifferent measurement software,such as signal’s analyze,processand display etc.The concept and mode of traditional measuringinstruments are changed,the parameters and functions can betransformed by the user,namely,"software is the instrument".Withthe rapid development of computer and network technology,thevirtual instrument has become a developing trend of modernelectronic measuring instruments. In this paper development platform LabVIEW is introduced firstly,then the test signals of Sine,triangle,square sawtooth andarbitrary waveform is described in the virtual signal generator.The functions of signal generator are set,such as frequency,amplitude,phase,voltage bias etc.Not only output parameters canbe adjusted but also the corresponding wave is acquiredsimultaneously in this system. The function of remote datatransmission is performed by TCP/IP technology.Data is transportedwhen the port parameters between two computers areset. Compared with traditional machines,advantages of the virtualinstrument are showed in efficiency,opening,easy using,strongfunction,cost-effective and operation etc.It can be used fortesting of medical and engineering precision instruments. Key words:Virtual instrument,LabVIEW,Function generator,NetworkCommunication 第1章绪论 在有关电参量的测量中,我们需要用到信号源,而信号发生器则为我们提供

函数通用信号发生器历史发展

历史发展 信号发生器是一种最悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。软件控制波形的一个最大缺点就是输出波形的频率低,这主要是由CPU的工作速度决定的,如果想提高频率可以改进软件程序减少其执行周期时间或提高CPU的时钟周期,但这些办法是有限度的,根本的办法还是要改进硬件电路。 随着现代电子、计算机和信号处理等技术的发展,极大促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。 信号发生器的应用非常广泛,种类繁多。首先,信号发生器可以分通用和专用两大类,专用信号发生器主要为了某种特殊的测量目的而研制的,如电视信号发生器、脉冲编码信号发生器等。这种发生器的特性是受测量对象的要求所制约的。其次,信号发生器按输出波形又可分为正弦波信号发生器、脉冲波信号发生器、函数发生器和任意波发生器等。再次,按其产生频率的方法又可分为谐振法和合成法两种。一般传统的信号发生器都采用谐振法,即用具有频率选择性的回路来产生正弦振荡,获得所需频率。但也可以通过频率合成技术来获得所需9-率。利用频率合成技术制成的信号发生器,通常被称为合成信号发生器。 signal is a generator with the longest measuring instruments, as early as the 1920s when the emerging electronic equipment it has. As the communications and radar technology development, 40 in a major test for a variety of standard receiver signal generator so that the signal generator from the qualitative analysis of the test equipment developed into a quantitative analysis of the measuring instruments. At the same time there also can be used to measure pulse circuit or pulse modulator for the pulse generator. Since the early signal generator mechanical structure more complicated, more power, the circuit is relatively simple, relatively slow pace of development. Until 1964 there was the first all-transistor signal generator.

信号发生器的发展和主要表现

信号发生器的发展和主要表现 信号发生器又称波形发生器,是一种常用的信号源,被广泛地应用于无线电通信、自动测量和自动控制等系统中。传统的信号发生器绝大部分是由模拟电路构成,借助电阻电容,电感电容、谐振腔、同轴线作为振荡回路产生正弦或其它函数波形。频率的变动由机械驱动可变元件完成,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵。 在今天,随着大规模集成电路和信号发生器技术的发展,许多新型信号发生器应运而生。用信号发生器并配置适当接口芯片产生程控正弦信号,则可替代传统的正弦信号发生器,从而有利于测试系统的集成化、程控化和智能仪表的多功能化。而信号发生器的最大特点是面向控制,由于它集成度高、运算速度快、体积小、运行可靠、价格低,因此在数据采集、智能化仪器等技术中得到广泛的应用,从而使得信号发生器的应用成为工程技术多学科知识汇集的一个专门研究领域,其应用产生了极高的经济效益和社会效益。 信号发生器的发展 单片微型计算机简称信号发生器,是指集成在一块芯片上的计算机,信号发生器的产生与发展和微处理器的产生与发展大体同步,自1971年美国Intel公司首先推出4位微处理器以来,它的发展到目前为止大致可分为5个阶段: 第1阶段(1971~1976):信号发生器发展的初级阶段。发展了各种4位信号发生器, 第2阶段(1976~1980):初级8位机阶段。以1976年Intel公司推出的MCS—48系列为代表,采用将8位CPU、8位并行I/O接口、8位定时/计数器、RAM和ROM等集成于一块半导体芯片上的单片结构,功能上可满足一般工业控制和智能化仪器、仪表等的需要。 第3阶段(1980~1983):高性能信号发生器阶段。这一阶段推出的高性能8位信号发生器普遍带有串行口,有多级中断处理系统,多个16位定时器/计数器。片内RAM、ROM的容量加大,且寻址范围可达64KB。 第4阶段(1983~80年代末):16位信号发生器阶段。1983年Intel公司又推出了高性能的16位信号发生器MCS—96系列,网络通信能力有显著提高。 第5阶段(90年代):信号发生器在集成度、功能、速度、可靠性、应用领域等全方位向更高水平发展。 目前,信号发生器正朝着高性能和多品种方向发展,尤其是八位信号发生器已成为当前信号发生器中的主流。信号发生器的发展具体体现在如下四个方面: 1.CPU功能增强 CPU功能增强主要表现在运算速度和精度的提高方面。为了提高运算速度和精度,信号发生器通常采用布尔处理机和把CPU的字长增加到16位或32位。例如MCS—96/98和HPCI6040等信号发生器。

基于单片机信号发生器设计开题报告

毕业设计(论文) 开题报告 题目基于单片机信号发生器设计 学生姓名学号 专业班级 指导教师 评阅教师 完成日期年月日

基于单片机信号发生器设计 一、课题来源 本课题来源于理论研究。为了实现输出多种波形的功能,基于单片机的控制及各电子器件与单片机间的联合,编写相应的软件,设计一种信号发生器。 二、研究的目的和意义 本课题是基于单片机的信号发生器的设计。研究本课题可以熟悉Proteus、Keil C51及相关电子器件的功能和用法。通过对单片机硬件、软件的设计,及硬件与软件的联调后可以进一步熟悉相关的知识,提高利用所学知识解决实际问题的能力。 三、国内外的研究现状和发展趋势 单片微型计算机,简称单片机,是微型计算机的一个分支。采用超大规模技术把具有数据处理能力(如算术运算、逻辑运算、数据传送、中断处理)的微处理器,随机存取数据存储器,只读程序存储器,输入输出电路等电路集成到一块单块芯片上,构成一个体积小,然而功能较完善的计算机系统。 这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机诞生20世纪70年代。当时微电子技术正处于发展阶段,集成电路也属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单。1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。到了80年代初,单片机已发展到了高性能阶段,像INTEL公司的MCS-51系列。九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户。1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。 我国的单片机应用始于80年代,虽然发展迅速,但相对于世界市场我国

信号发生器发展浅析下.

信号发生器发展浅析(下) 射频/微波信号发生器 Anritsu、Agilent、 Advantest、R/S几家著名仪器公司都供应性能不同的各种频段信号发生器,特别是射频/微波合成信号发生器。例如Anritsu的MG8000A、Agilent的PSG系列,R/S的SML系列都属于新一代的产品。这里介绍的 MG8000A的频率范围是10MHz至40MHz,在10MHz至2.2GHz频段采用数字下变频(DDC)对YIG振荡源作连续分频产生输出频率,在2GHz至40GHz频段采用低噪声YIG振荡源和多个锁相环(PLL),保证在宽的频段内具有很低的杂波、谐波和相位噪声,并由一个48位的数字控制振荡器(NCO)产生0.01Hz的频率步进。基准频率由温度补偿的晶体振荡器提供,振荡频率10MHz,稳定度10-7/天,老化率10-8/年。MG8000A合成信号发生器的主要特性如表1所示。 MG8000A可覆盖40GHz的频率范围,PSG系列分为20GHz和40GHz两个频率范围,而SML系列分为1.1GHz、 2.2GHz和 3.3GHz三个频率范围。这几种信号发生器除频率范围有差别之外,在主要电学性能方面是很相近的。从MG8000A的结构可知,它综合运用多种频率合成技术,达到很高的电学指标。 Agilent公司的PSG系列合成信号发生器是该公司的最新产品,现有 250KHz~20GHz和250KHz~40GHz两种频段和四种型号,可提供AM、FM、调相和脉冲调制。Agilent的信号发生器一直是业界公认的高水平仪器,而且种类和型号最多。R/S公司的SML系列信号发生器现有三种型号,覆盖 9KHz~1.1GHz/2.2GHz/3.3GHz的频段,性能和功能与Agilent和Anritsu的相应产品接近。 矢量信号发生器 近年来移动通信成为信息产业的热点,所用频段和调制带宽不断增加,多载波和多标准共同使用。如果采用多台信号发生器通过功率合成器获得测量信号,显然既资源浪费,使用起来也不方便。针对移动通信手机和基站设备的测量,一种称为矢量信号发生器的新仪器应运而生,以满足从1G至3G移动通信设备的测量应用。这种矢量信号发生器采用模块结构,嵌入式微机控制,高速总线机箱,例如具有代表性的仪器是Cererity公司的CS2010。它采用直接信号合成产生IF,由RF上变频器产生完整和真实的测量信号,仪器的方框图如图3所示。 CS2010具有如下特点而比常规的信号发生器更适用于移动通信设备的测量:·同时输出多载波组合信号——它的A至F 共6组滤波器可产生标准或用户设定的多种载频信号。 ·超线性的信号合成——它的14位高取样率D/A转换器和直接上变换器使输出信号具有非常精确的移动通信标准信号。

北斗导航信号源发展现状分析

北斗导航信号源发展现状分析 谢金石 (北京环球信息应用开发中心) 摘要:北斗导航信号源是检测北斗用户机性能的重要测试设备,它通过仿真卫星星座、卫星星钟、电离层等环境效应、用户轨迹等来模拟再现北斗导航卫星信号。本文分析了国内外导航信号源的发展现状以及信号源的功能特点,指出未来导航信号源的发展趋势。 关键词:北斗,导航信号源,发展趋势 中图分类号: TN967.1 文献标识码: A 文章编号 The analysis of BD Navigation Simulators actual development Xie Jin Shi (Beijing Global Information Center of Application and Exploitation) Abstract: BD Navigation Simulator is the most important testing instrumnet to verify the performance of BD Receivers .The Simulator emulates and replays the BD navigation signal by emulating the user’s trajectory and the environmental effects of navigation constellation、satellite clock and Ionosphere. The thesis analyses the development actuality of national and international navigation simulators and the function features of the simulators, it also indicates the development trend of navigation simulator. Key Words:. BD Navigation Simulator, development trend 1引言 随着我国北斗卫星导航系统的正式运行,北斗导航产品在民用和军用市场扮演着越来越重要的角色。而北斗导航产品质量作为北斗导航产业发展的生命,不仅关系着国防安全和国民经济发展,并对国家主权、安全和民族尊严有着重要影响,同时也关系着人民群众的切身利益。 北斗导航产品质量检测、研发和生产测试均需要依靠导航信号源。虽然对天接收实际卫星信号测试也可以定性的说明问题,但是这种测试由于卫星轨道、钟差、电离层、多径、电磁干扰等误差因素不可控,因此测试不具备可重复性、可控制性,不利于导航产品的测试比对和研发改进。导航信号源由于各种误差因素均是仿真产生,完全可重复可控制,因此是测试导航产品的首选设备[1]。 导航终端的种类繁多,按照功能划分,导航终端可分为基本型、兼容型、双模型、授时型、高动态型、抗干扰型、天线阵接收机、测量型监测接收机等。按照应用划分,导航终端可分为手持型、车载型、测量型、机载型、舰载型、弹载型等。 不同类型的终端产品功能性能也不尽相同,比如除了实现基本的导航、定位、测速功能之外,双模型用户机要实现位置报告,抗干扰型用户机要进行抗干扰性能测试评估,高动态型用户机要能在高动态条件正常工作,测量型监测接收机要求具有很高的载波相位测距精度和多径抑制能力等。 导航信号源必须适应上述各种测试需求。作为用户而言,需要了解导航信号源应该具备

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

信号发生器的基本参数和使用方法

信号发生器本人介绍一下信号发生器的使用和操作步骤1、信号发生器参数性能频率范围:0.2Hz ~2MHz 粗调、微调旋钮正弦波, 三角波, 方波, TTL 脉波0.5" 大型LED 显示器可调DC offset 电位输出过载保护信号发生器/ 信号源的技术指标: 主要输出 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (opencircuit);>10Vp-p (加50Ω 负载) 阻抗 50Ω+10% 衰减器 -20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕 4 位LED 显示幕 频率范围 0.2Hz to2MHz(共7 档) 频率控制Separate coarse and fine tuning 正弦波

失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz;< 1dB 100kHz~ 2MHz 三角波 线性98% 0.2Hz ~100kHz;95%100kHz~ 2MHz 对称性<2% 0.2Hz ~100kHz 上升/ 下降时间<120nS CMOS输出 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/ 下降时间<120nS TTL 输出 位准>3Vpp 上升/ 下降时间<30nS VCF 输入电压约0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (± 10%) 使用电源 交流100V/120V/220V/230V ±10%, 50/60Hz 附件 电源线× 1, 操作手册× 1, 测试线GTL-101 × 1

基于LabVIEW的信号发生器的设计

吉林农业大学 学士学位论文 论文题目:基于LabVIEW的信号发生器的设计 学生姓名:李建伟 专业年级:自动化二班 2012级 指导教师:朱凤武职称:教授 2016年5月31日

目录 摘要:..................................................................... I ABSTRACT:................................................................. I 第一章绪论. (1) 1.1 论文背景 (2) 1.1.1信号发生器简介 (3) 1.1.2虚拟仪器及LabVIEW (4) 1.2研究的目的与意义 (4) 第二章虚拟仪器及其发展 (5) 2.1概述 (6) 2.2虚拟仪器概念 (6) 2.3虚拟仪器的构成 (7) 2.4虚拟仪器的特点及发展趋势 (7) 第三章图形化编程语言LabVIEW (8) 3.1LabVIEW概述 (9) 3.2LabVIEW模板分析 (10) 3.2.1工具模板(Tools Palette) (10) 3.2.2控制模板(Control Palette) (11) 3.2.3功能模板(Function Palette) (12) 3.3LabVIEW的函数模块分析 (12) 第四章虚拟信号发生器设计方案 (13) 4.1基本函数波形产生模块 (13) 4.2任意公式波产生模块 (14) 4.3多频信号产生模块 (15) 4.4高斯白噪发生器...................................................... `16 4.5虚拟函数信号发生器的设计 (17) 4.6LabVIEW程序设计需要注意的问题 (18) 第五章系统的运行结和误差的分析 (20) 5.1程序运行结果 (21) 5.2虚拟信号发生器的误差测量与分析 (22) 5.3减少虚拟信号发生器波形误差途径 (23) 5.4系统功能的不足 (23) 第六章总结与展望 (24) 6.1课题总结 (24) 6.2相关工作展望 (24) 参考文献 (26) 致谢 (27)

函数信号发生器F120使用说明

F05/F10/F20/F40/F80 /F120 数字合成函数/任意波信号发生器/计数器 使 用 说 明 书 南京盛普仪器科技有限公司NANJING SAMPLE INSTRUMENT TECHNOLOGY CO.,LTD.

目录 第一章概述 (1) 第二章主要特征 (1) 第三章技术参数 (2) 一、函数信号发生器 (2) 二、计数器 (4) 三、其它 (5) 第四章面板说明 (6) 一、显示说明 (6) 二、前面板说明 (7) 三、后面板说明 (11) 第五章使用说明 (12) 一、测量、试验的准备工作 (12) 二、函数信号输出使用说明 (12) 三、计数使用说明 (31) 第六章遥控操作使用说明 (32) 第七章注意事项与检修 (47) 第八章仪器整套设备及附件 (49)

本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。此外,本仪器还具有测频和计数的功能。本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。 1、采用直接数字合成技术(DDS )。 2、主波形输出频率为100μHz ~ 120MHz (F120)。 3、小信号输出幅度可达0.1mV 。 4、脉冲波占空比分辨率高达千分之一。 5、数字调频分辨率高、准确。 概述 1 2 主要 特征

6、猝发模式具有相位连续调节功能。 7、频率扫描输出可任意设置起点、终点频率。 8、相位调节分辨率达0.1度。 9、调幅调制度1% ~ 120% 可任意设置。 10、输出波形达30余种。 11、具有频率测量和计数的功能。 12、机箱造型美观大方,按键操作舒适灵活。 一、函数发生器 1、波形特性 主波形:正弦波,方波, TTL 波(频率大于40MHz 仅有正弦波) 波形幅度分辨率:12 bits 采样速率:200Msa/s (F120 为300 Msa/s) 正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率≤ 20MHz ) -35dBc (频率> 20MHz ) 正弦波失真度: ≤0.1%(f :20Hz ~ 100kHz ) 方波升降时间: ≤25ns (F05型、F10型) ≤15ns (F20型、F40型、F80型、F120型) 3 技术指标

介绍函数信号发生器.doc

介绍函数信号发生器 信号发生器历史&发展: 在测试、研究或调整电子电路及设备时,为测足电路的i些电参量,用来模拟在实际工作屮使用的待测设备的激励信号。 信号源按工作原理可以分为:LC源、锁相源、合成源等。 LC源--------- 直接产生正弦信号。 合成源------- DDS发展过程:立接频率合成,锁相式频率合成,立接数字频率合成。 信号发生器发展: 1、通常分类是按照产牛信号产牛的波形特征来划分: 音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器、标准高频信号源、射频信号源、电视信号发生器、噪声信号源、调制信号发生器、数字信号源等。这种分类基本覆盖了航空航天、电子、电力等领域的每一个角落。 2、止弦信号发牛器原理:RC, LC等回路产牛止弦波。 3、方波都是通过正弦波和电压比较器通过比较产牛的; 脉冲信号发生器:能产生宽度、幅度和巫复频率可调的矩形脉冲的发生器 可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能 函数/任意波形发牛器: 它综合了各种信号源的优点于一身 主要用于模拟输出自然界的一些不规则信号 生成标准波形如正弦波、方波、三角波、脉冲波 还可以生成〃实际环境〃信号,包括在被测设备离开实验空或车间时可能遇到的所有毛刺、漂移、噪声和其它异常事件 1、信号源按照应用领域分类:低频信号发生器(音频),高频信号发牛器(射频通信信号),电视信号发生器(电视信号),电视扫频信号发生器(电视信号)等。 2、纵观信号发生器的发展,玄接合成数字信号发生器是近儿年的发展趋势。Rigol的产品即使采用立接合成技术信号发生器。 3、函数(波形)信号发牛器 能产牛某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从儿个微赫到儿十兆赫。除供通信、仪表和自动控制系统 测试用外,还广泛用丁其他非电测量领域。 正弦波: 止弦波发牛电路能产牛止弦波输出,它是在放大电路的基础上加上止反馈而形成的 它是各类波形发牛器和信号源的核心电路 正弦波发生电路也称为正弦波振荡电路或正弦波振荡器 方波: 方波是通过电压比较器产生的:比较电压信号(被测试信号与标准信号)人小 三角波: 方波电压作为积分运并电路的输入,积分运算电路的输出得到三角波电压 任意波: 直接数字合成(DDS)技术信号源的任意波产生方法:直接从波表提取N个点,这N个点是用户自定义的点。 DDS:

简单介绍函数信号发生器原理

简单介绍函数信号发生器原理 来源:互联网 科技及工业应用要求提供的信号越来越精密,简介推动了函数信号发生器的发展和推广,成为工业生产、产品开发、科学研究等领域必备的工具,它作为一种精密的测试仪器,在电子行业得到了广泛的应用。根据函数信号发生器原理分析,我们知道最常用的就是我们经常会用到锯齿波信号产生器作为时基电路。 例如在我们需要测量某种信号的精确度/性能/频率等,需要找一个信号参照观测检测信号的运动规律,再利用一些显示仪器(如示波器/数显仪表等)利用荧光屏来显示实测图像和函数信号发生器的图像进行比对,简化函数发生器测量工作。下面我总结了一些关于函数信号发生器基础知识,包括函数信号发生器原理和性能分析,让大家更直观的去认识这种仪器。 函数信号发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。

b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: a) 控制函数发生器产生的频率; b) 控制输出信号的波形; c) 测量输出的频率或测量外部输入的频率并显示; d) 测量输出信号的幅度并显示; e) 控制输出单次脉冲。 下面我们来举一个例子,我们用电源自适应的方波发生器原理图来具体的进一步说明。下图是一种不用电源的方波发生器,可供电子爱好者和实验室作简易信号源用。 该电路是由六反相器CD4096组成的自适应方波发生器。该方波发生器电路简单,制作容易,因此可利用该方波发生器电路,作市电供电的50Hz方波发生器。制作时,市电220V 的正弦波,应经变压器隔离降压(1~0.75V)处理后,输入到电路的输入端,以保安全。 【电路分析如下】

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

相关文档
最新文档