冰蓄冷研究的现状与展望

冰蓄冷研究的现状与展望
冰蓄冷研究的现状与展望

冰蓄冷研究的现状与展望

清华大学张寅平* 中国科学技术大学邱国佺**

Present state and perspectives of ice cool storage research

By Zhang Yinping and Qiu Guoquan

提要对冰蓄冷技术的研究和开发现状作了综述,讨论了其中尚未解决的一些问题及技术难点,展望了近期冰蓄冷研究和开发的走向。

关键词冰蓄冷空调换热

Abstract Reviews the current status of research and development of ice cool storage technology. Describes and discusses some technical problems and new key technologies, presents possible development of ice cool storage in the near future.

Keywords ice cool storage,air-conditioning,heat exchange

1 引言

世界上很多国家都在想方设法降低电网负荷的峰谷差,而空调电耗对电网负荷有很大的影响,因此,低能耗、可用电网低谷电的空调设备及相应的蓄冷技术和系统的研究开发就成了近年来空调、储能领域的国际性热门课题,其中,尤以冰蓄冷空调的研究和应用受到研究者重视。这方面,美国、日本等发达国家的研究和应用水平较高。本文基于对日本在该领域研究状况的分析,对冰蓄冷研究的现状和今后的研究方向作一简单的介绍,希望对我国正在崛起的蓄冷空调的研究和开发有所帮助。

2 蓄冷空调的研究和开发现状

2.1 制冰方法的分类和评述

与水蓄冷相比,冰蓄冷系统的优点是:蓄冷密度高,使蓄冷槽体积较小;温度稳定,便于控制;热设计的灵活性强。

冰蓄冷中的制冰方式主要有两种:①静态制冰方式,即在冷却管外或盛冰容器内结冰,冰本身始终处于相对静止状态;②动态制冰方式,该方式中有冰晶、冰浆(ice slurry)生成,且冰晶、冰浆处于运动状态。

静态制冰由于系统简单,现已成为应用中冰蓄冷系统的主流。然而,静态制冰法也有自身的缺点:冰层的增厚使热阻增大,导致冷冻机的性能系数(COP)降低;一些静态系统中冰块的相互粘连导致水路堵塞。

目前,冰蓄冷研究的主要目标为动态制冰技术。动态制冰方式约有40多种,其中冰水混合浆(即含有很多悬浮冰晶的不,英文名为ice slurry)技术最受研究者关注。冰水混合浆可采用管道输运,其换热需采用换热器。虽然这种动态制冰方式很有前途,但迄今尚未商业化。该系统的性能测试和优化、管理技术和经济性还需进一步完善。

2.2 制冰技术

2.2.1 制冰技术的现状

冰蓄冷技术中制冰是关键,各类制冰法如表1所示。图1~4为几种制冰方法的示意图。

图1 流动过冷却水制冰法

图2 冷媒(戊烷)蒸发制冰法

图3 低沸点冷媒蒸发制冰法

图4 低温液态冷媒显热换热制冰法2.2 制冰技术课题

关于制冰法中的技术问题,下面列举的研究开发课题是很有意义的:

(1)客观地评价各种制冰法,统一制冰效率的含义;

(2)确立各种制冰法充填率(IPF,即ice packing factor)的合适算法;

(3)研究静态制冷法高IPF情况下避免冰层相互粘连的办法;

(4)研究管内制冰法高IPF情况下防止冰堵塞的方法;

(5)图5所示的制冰方式中,如何使水滴下时形成厚度均匀的冰层;

(6)对密闭容器内的制冰方式,增加密闭容器材料的导热性能、防止相变材料的过冷和分层、防止冰生长时容器内空气压力增大导致容器破裂;

(7)对收获(harvest)型制冰,寻找新型冰层剥离法和减少剥离能耗以及延长机械冰剥离器寿命和降低剥离噪声;

(8)对图6所示的冰水悬浮液制冰法,如何有效增加IPF和防止管内壁冰层附着造成流道冰堵塞;

图5 下降液膜制冰法

图6 管内水溶液下降膜制冰法

(9)对图1所示的过冷水制冰系统,如何避免过冷水在换热器壁上冻结形成的阻塞;

(10)对片状冰晶制冰法,如何提高其IPF及如何提高低温冷媒和水的换热效率;

(11)高分子化合物(作为储冷相变材料)--水的流动性能及其改善的研究,它们的稳定性及其改善的研究;

(12)对采用笼形化合物(Clathrate)--水的储冷系统,研配不污染环境的笼形化合物;

(13)对喷射水雾型冰晶产生系统,如何防止冰片间的粘合及如何提高冷媒蒸气和水雾的高效接触和换热。

2.3 蓄冰和取冰技术

2.3.1 蓄冰槽

①蓄冰槽的容量

若蓄冰槽兼作冬天的热水蓄热槽,则蓄冰槽的体积需比仅考虑夏天蓄冷用的要大。一般,蓄冰槽体积按蓄冷量能满足冷气设备负荷的50%设计,这样,它在冬天作为热水蓄热槽的功能也可得以发挥。

②蓄冰槽的形状

蓄冰槽一般是立方体形或圆筒形。长宽比关系到充、释冷速率和蓄冰效率。要优化蓄冰槽内的换热,必须考虑蓄冰槽(或盛装相变材料的容器)的形状;蓄冰槽的设置位置和所用的冷媒决定了应采用开放型还是密闭型蓄冰槽。

③蓄冰槽的隔热

蓄冰槽隔热材料需作防水处理,特别是纤维系列的隔热材料,吸水后冻结,隔热性能大为下降。

2.3.2 蓄冰槽放冷技术

①动态制冰法中冰的分散和输送

动态制冰法中冰块在水溶液中处于分散状态,因此需在蓄冰槽内设置泵,强制冰--水循环形成。在蓄冰槽的冰水混合浆取出口,安有喷嘴。此外,为防止冰块进入输送管,在输送管口,需安置金属网。

②冰浆取出机

旋转翼型:旋转翼把蓄冰槽内的冰水混合浆送进输送管。

螺杆(screw)型:如图7所示,凭借蓄冰槽内的喷射泵喷射水的力量,使冰水混合将流入配管。

图7 螺杆(screw)型冰浆输送法

球阀型:如图8所示,凭借蓄冰槽下部的泵,使冰浆流入配管。

图8 球阀型冰浆输送法

③冰充填率(IPE)控制器

为调整冰水混合浆的冰充填率(IPF),图9所示的管壁上,有一些孔穴,可将部分水排到管外,达到调整IPF的目的。此外,在冰水混合将流动方向上,可设置分流管,将水排出,达到增加IPF的目的。

图9 冰充填率(IPF)控制器

2.3.3 蓄冰和取冰技术展望

为使蓄冰槽内的冰可长期储存,有必要研究防止冰块粘连的技术和取冰技术。若这些技术有所突破,则动态制冰技术将获得实质性发展。最近,下列技术得以实现或正在研究:利用冰的输送管实现小型蓄冰槽的二次利用,低温能量的分散储存,冰输送管兼作蓄冰槽。

2.4 冰输运技术

冰水混合浆的输送技术,关系到动态制冰技术的普及。采用此技术输送冷量,与用冷水管输送相比,可大幅度缩小输送管的直径,降低配管投资。例如,与给水温度为7℃、回水温度为12℃的冷水输送情况比,输送IPF为15%冰浆,其配管管径约可减小一半。

2.4.1 细微冰浆的管内液体输送的现状和课题

①冰浆在管内输送的流动状态和压力损失

对IPF对20%以下、粒径1mm以下的细微冰粒,大致的管内流动情况和压力损失关系见图10。其中各种冰浆流动情况说明如下:

图10 冰浆在管内输送的流动状态和压力损失示意图

(a)浮冰/冷水双层流管内流速﹤0.5m/s,部分冰粒子停留在管子上部,其下部有冷水流动,形成双层流。与纯水的情况相比,此类流动压力损失较大。

(b)冰粒子的飘浮流动管内流速>0.5m/s,滞留在管子上部的冰粒子群向下部的水流层扩散,其压力损失和流速的关系见图10。

(c)冰粒子的扩散剥离流动管内流速>1m/s,冰粒子分布范围扩大到管内整个横断面,但上总后冰粒子密度仍较大,流动压力损失曲线和水的相应曲线已较接近。

(d)冰粒子的均质流动管内流速>2m/s,冰粒子在管内形成均匀分散的均质流动。其流动压力损失曲线和水的相应曲线很接近。若增大IPF,冰粒子会向管中央集中,与管壁的水流形成二层流,降低了流动阻力。流动压力损失曲线和水的相应曲线较接近。这里,管内流动压力损失随IPF的增大而增大,对应于压力损失最小值的临界流速也增大。如何减小管内流动阻力是今后需研究的课题。

②冰块的管内阻塞现象

冰块的管内阻塞现象是冰浆在管内输送的最大问题,目前,采取的防止方法有:增大管径,增大弯管的曲率和使用可挠管:为防止流量变动而采用定流量的泵;为防止冰在管内滞留而采用高速管流,以确保冰浆在管内的均质流动等。此外,更积极的办法是,采用定形相变材料颗粒,这类相变材料颗粒外部覆有一层膜,防止相变材料颗粒间的粘连;可采用乙二醇溶液作为传热液体。

③采用大直径冰粒子和小直径冰粒子的混合以增大管道输送的载热能力

如图11所示,直径为几cm的大粒子群和直径为1mm以下的小粒子混合,流动阻力小的小冰粒子在管壁附近流动,大的冰粒子在管道中央流动,出现了"分球"现象。这样,在不增加流动阻力的情况下,增大了IPF,从而增大了载热能力。

图11 大、小直径冰粒子的混合对压力损失和IPF的影响示意图

④冰浆在弯曲管、旁路管和阀门周围的流动状态和压力损失这方面的研究很少,至今仍只有定性研究结果,如:

(a)垂直配管与水平配管相比,管内冰的浮力影响增大,管内流动压力损失较水小。

(b)对90°弯管而言,冰浆的压力损失和水的接近或稍大。

(c)分流管中冰浆的流动损失增大,且弯曲度增大,流动损失增大。

(d)阀门部分(特别是喉道部分)易形成冰块阻塞。

⑤输送配管可采用往返双管方式或循环单管方式。

2.4.2 冰粒子空气输送的现状和课题

冰粒子可用空气输送。对口径为100~200mm的配管,需要的风速为15~

30m/s。若用风速为5~10 m/s的空气输送冰粒子,多数冰粒子以活塞(piston)状态流动,对该状态,有冰堵塞管道的危险。若冰与空气的体积比<5%,用空气输送冰耗能较少。

作为短距离的冰输送技术,高速空气运送是有趣的课题。

2.5 融冰技术的现状和展望

2.5.1 利用蓄冰槽内的换热器进行换热,换热器一般采用管式。

2.5.2 冰和回流冷媒(水、盐水、空气)的直接接触换热

①由静态制冰法制成的冰和回流冷媒(水、盐水、空气)的直接接触换热

蓄冰槽内的冷却管外形成冰层,回流冷媒被用来的冰层外强迫循环,靠对流换热融解冰层。这种外融式方法中,冰层周围有均一流动的回流冷媒是很重要的,这要求安装好冷媒液的均流板和分流管。此外,为增加传热,在蓄冰槽内吹空气光,也是行之有效的办法。

②冰浆和回流液冷媒直接接触换热

由动态制冰法获得的蓄冰槽内的冰浆分布在回流液冷媒中,因此,冷媒的温度较低,据报道,这种方法随负荷变化有很好的调节性能。

2.5.3 利用冰浆和回流暖空气间接接触换热

同心套管式换热器,一侧流冰浆,另一侧流暖空气。换热过程中,冰粒子边

流动,边融解。冰粒子的融解速度是重要的释冷参数,这种方式与单管输送冰浆相比,IPF可有所增大(5%~10%),因为,这种情况下,冰层不易堵塞。但需注意回流空气冷却后的冷凝水处理问题。

2.5.4 利用冰浆和回流暖空气直接接触换热

如图12所示,可利用冰浆和回流暖空气直接接触换热。

图12 冰浆和回流暖空气直接接触换热示意图

2.5.5 取冷技术的未来

取冷技术的首要课题是研究无残存冰的融冰方法。目前,人们对冰浆技术较为关注。多数取冷法尚处于研究开发阶段,今后这方面的研究和开发将会很活跃。

2.6 蓄冰槽IPF的测定法

2.6.1 蓄冰槽IPF的测定法

①利用冰的体积膨胀造成的水位变化测定IPF:对静态制冰法,测量水位可测定蓄冰槽的IPF。

②利用检测冰厚来测定:利用冰厚测试针测定冰厚,然后算出IPF;或利用制冰配管水中的电极的电位差,测定冰厚。

③利用测定温差来测定IPF:测定蓄冰槽内水和水溶液与冷却管内的冷媒间的温差可推算出IPF。

④利用热流计测定IPF:利用热流计,测定输入、输出的热量差值,可推算出IPF。

2.6.2 输运管内流动冰浆的IPF的测定

①导电率测定法

冰浆中,导电率随冰/水比例的增大而减小,利用此现象,在电极间加高频交流电,让电流流过冰浆,测定其导电率,从而测定出IPF。

②利用设置在管内的旋转扭矩计测定IPF。

在管内安装环状旋转扭矩计,由其旋转扭矩和IPF的关系求得IPF。

③利用冰水的静电量来测定IPF:两相对电极的静电量与其间冰浆中的含冰量有一定关系,由此,可测定其IPF。

④测定垂直管内流动冰浆的压力损失,定出IPF:垂直管内的冰和水有密度差,影响管内流动压力差,由此,可测定流动冰浆的IPF。

⑤测定冰浆的温度来推算IPF。

⑥抽出冰浆,可用多种方法来测定IPF。

3 冰蓄冷研究展望

有人认为各种冰蓄冷系统的出现将会带来空调系统的革命,这是有一定理由的。蓄冷系统未来的研究课题有以下方面:

3.1 由于冰蓄冷系统种类繁多,有必要建立客观的综合评价体系。

3.2 冰的管道运输中最大的问题是如何防止冰的管道堵塞。利用化学方法如加入界面活性剂等防止冰结块是值得研究的方法。此外,IPF和流速与输送距离间的关系及其优化、所用的换热器的研制和开发也是重要的课题。

3.3 发展在线的、非接触式的IPF测定法,开发廉价但精度较高的探头。

3.4 从综合角度出发构筑有关的冰蓄冷系统化技术(包括冰蓄冷系统中,高COP热泵的研制和开发;考虑到环保问题的蒸气压缩式热源机器和废热利用吸收式或吸附式热源机器和复合型热泵的开发)等。

3.5 从综合提高热利用效率的观点看,既保持热泵制冰机能,又同时生产热水,是较好的方法。另外,从环保角度考虑,利用绝热膨胀等方法,用低压空气和水的新型制冰技术,也有待研究。还有,夏季气轮发电机因吸气冷却而要求提高发电效率的冰蓄冷技术的研究,冰点温度下生鲜食品的储存等。不仅如此,还有空调领域以外的蓄冷、蓄热技术的灵活应用。

以上技术的发展也需要传热学、空调制冷学和流体力学等领域的相应基础研究有所发展。例如,单成分水和多成分水的冰水混合浆的输运管的结构、流动性能,冰浆的融解性能和换热特性等都是值得研究的课题。

4 参考文献

1 Hideo Inaba, Kengo Takeya and Shigeru Nozu. Fundamental study on continuous ice making using flowing supercooled water. JSME International J Series B, Vol 37, No 2, 1994, pp 385-393.

2 Hideo Inaba, Ping Tu, Koichi Ozaki and Jun Mirua. Thermophysical properties of shape-stabilized paraffin as a latent heat storage material, Proc of the Fourth Asian Thermophysical Properties Conference, Tokyo, September 1995, pp 393-396.

3 稲枼英男,機能性熱流体の現来と将来性,日本機械学会誌,1995年12月,Vol 98, No 925, PP 51-52.

4 稲枼英男,機能性熱流体た関する研究の現状-先駆的蓄熱エネルギー輸送-,日本機械学会誌(即将发表)。

5 稲枼英男,ヒートポンづとすの応用,ヒートポンづ研究会,Vol 15, No 23, PP 383-394。

6 福迫尚一郎,稲枼英男,低温環境下の伝熱現象とすの応用,養賢堂,東京,1996,pp 383-394。

7 稲枼英男,氷蓄熱技術の現状と課题,日本機械学会第73期総会講演会料集, No 96-1 (1996), PP 65-68

作者简介:

*100084 北京市海淀区清华大学热能工程系列(010)62789376

** 230026 安徽合肥中国科技大学热科学和能源工程系(0551)3601653

水蓄冷方案(DOC)

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷自动控制系统设备及功能说明教学内容

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数 的显示; e、电动阀开关、调节显示;

f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分析,而且所有的监测数据可进行打印。 ⑸控制系统配置灵活的手动/自动转换功能。现场控制柜可手动控制所有设备的启停。 ⑹可根据负荷变化情况调整运行策略,进行系统的优化控制,最大限度发挥蓄冷系统转移高峰负荷的能力,以最大限度节省运行费用。 ⑺具备无人值守功能、节假日特别控制功能。 ⑻系统可通过电话线或局域网络,对本工程的蓄冷、蓄热与生活热水系统进行远程监控(可选的功能)。 二、蓄冷系统运转模式 蓄冷系统按空调供回水温度7℃/12℃设计,可以通过不同阀门的开、关或调节来实现以下4种不同的运行模式: A、常规主机供冷+双工况主机制冰模式 B、常规主机供冷+双工况主机+蓄冰装置联合供冷模式 C、常规主机供冷+蓄冰装置联合供冷模式 D、融冰单独供冷模式 其运行原理见冰蓄冷空调系统原理图。(见本报价书第七部分)

广州汉正能源科技有限公司动态冰蓄冷介绍

蓄冷技术介绍 广州汉正能源科技有限公司

目录 一、广州汉正能源科技有限公司简介 (2) 二、蓄冷技术简介 (3) 2.1 蓄冷原理 (3) 2.2 蓄冷优势 (3) 2.3 蓄冷应用范围 (4) 2.4 蓄冷分类 (4) 三、广州汉正蓄冷技术 (6) 3.1、动态冰蓄冷介绍 (6) 3.1.1冰蓄冷发展历程 (6) 3.1.2第三代蓄冰技术——动态冰蓄冷 (7) 3.1.3动态冰蓄冷技术优势 (9) 3.1.4动态冰蓄冷系统 (13) 3.2平行流水蓄冷技术介绍 (15) 3.2.1平行流水蓄冷技术优势 (15) 四、工程案例 (19) 1、东莞晶苑毛织制衣有限公司——华南地区最大水蓄冷工程 (19) 2、深圳富士康冰蓄冷项目 (21)

一、广州汉正能源科技有限公司简介 广州汉正能源科技有限公司成立于2012年10月,是一家专业从事能源领域的公司。在工业冷冻、暖通空调、蓄能、变频节能、低压成套电气和自动化系统集成等领域有丰富的设计、施工经验和工程案例。公司拥有雄厚的技术开发力量,汇集了一批具有硕士、博士学历的高素质专业科研人员,与中国科学院广州能源研究所、中山大学、广东工业大学等相关科研单位、高等院校密切合作,先后开发出动态冰蓄冷、平行流水蓄冷、精密基站空调、变频喷淋螺杆冷水机组、高压开启式螺杆机组等系列产品。 “用心做好每件事”是汉正人的经营理念。公司将以雄厚的技术力量为依托,不断地研发新产品;以一流的工程质量为保障,不断地开拓新市场。 公司本着“诚毅”的核心价值观为每一个客户提供完美的产品和“诚毅”的服务。 ·主营业务:动态冰蓄冷工程的设计和工程建设 水蓄冷工程的设计和工程建设 ·为用户提供全面的蓄能和节能技术解决方案

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

16华森李百公深圳财富港大厦动态冰蓄冷空调系统设计及应用

深圳财富港大厦动态冰蓄冷空调系统设计 及应用 深圳华森建筑与工程设计顾问有限公司李百公☆ 广州高菱能源技术有限公司漆科亮肖睿 摘要:动态冰蓄冷系统具有制冰效率高,放冷速度快的优点,但系统运行不够稳定,应用案例少;在深圳财富港大厦的过冷水式动态冰蓄冷空调系统的设计中采用了模块化设计、优化自控设计等方法,在运行调试中采取各种措施保证了过冷水换热器的稳定运行;通过实测运行工况,掌握了系统运行的实际运行工况,并对该系统的设计、运行维护提出了建议。 关键词:动态冰蓄冷过冷水换热器蓄冷放冷运行稳定 Shenzhen caifugang building dynamic ice storage air conditioning system design and application Baigong Li★ Abstract:Dynamic ice storage system has the advantages of high efficiency ice-making, fast speed cooling off, but the system is not stable, and less application case. In ShenZhen caifugang building dynamic supercooled water type adopted in the design of ice storage air conditioning system, and automatic optimization design method of modular design. In the running and debugging took various measures to ensure the stability of the supercooled water heat exchanger; Through actual operation condition, and master the practical operation of the system operation condition, and propose some advantages of the system design, the system running and maintenance Keywords:Dynamic ice storage Supercooled water heat exchanger Cold storage Release cold Running stability Shenzhen huasen architecture and engineering design consulting co. LTD, Shenzhen, Guangdong province, China 引言 由于深圳峰谷电价政策较为优越,近年来蓄冷空调系统的应用越来越多,因系统应用早,技术相对成熟,蓄冷装置占地面积小等原因,冰蓄冷系统特别是静态冰蓄冷成为蓄冷空调系统的主流。 静态冰蓄冷系统制冰时水静态地被冻结成冰并附着在传热壁面上[1],随着蓄冰量增加,冰层厚度逐渐加大,传热效率及制冷效率也大为降低。为克服上述缺点,动态冰蓄冷系统制冰时水与传热壁面发生热交换,但冰的形成并不在传热壁面,而是在远离传热壁面的空间解除过冷生成冰浆,即制冰过程是动态的,该系统消除了静态冰蓄冷技术的固态冰层导热热阻,同时液体和传热壁面间换热效率高。 ☆李百公,男,1971年3月生,大学,教授级高级工程师 518031深圳华森建筑与工程设计顾问有限公司(0755) 86126775 E-mail:libg@https://www.360docs.net/doc/9611866135.html,

冰蓄冷系统 施工方案

冰蓄冷系统施工方案: 1. 蓄冷槽体的制作 1.1 确认蓄冷槽体放置位置,混凝土基础已施工完毕,满足设备承重要求,表面平整,符合施工要求; 1.2 在混凝土基础上铺设塑料布防潮、隔气层; 1.3 沿设计槽钢位置在隔气层上面铺设木方,将槽钢放置在木方上面,焊接底面槽钢框架,焊接过程中注意防火,防止槽钢温度过高,引燃木方或者将塑料隔气层烫坏; 1.4 在底层槽钢框架的空隙内填充橡塑保温材料压实,然后将底层钢板与保温材料接触面刷环氧树脂漆,然后就位,使底层钢板与保温材料紧密接触,分块焊接底层钢板,焊接完毕后在钢板迎水面刷环氧树脂漆,防止钢板以后遇水腐蚀; 1.5 在底层槽钢钢板焊接制作完毕后,开始焊接竖直方向槽钢与三个方向的中间的两道槽钢腰梁以及蓄冷槽顶面槽钢; 1.6 分别焊接三个方向侧面钢板,在焊接过程中注意钢板以及槽钢因为受热而变形,在局部地区需做反方向的拉伸处理,保证焊接的竖直和水平; 1.7 在三面槽钢以及侧板焊接,经检查符合设计要求后,开始刷环氧树脂漆完毕后,蓄冰设备就位,具体就位方法参见后蓄冰盘管的安装与就位; 1.8 在确认蓄冷设备位置符合设计要求后,将第四面的横向两道腰梁焊接上去,焊接完后在制作侧板,同时制作蓄冷槽体的注水管,溢流管,排污管,观察孔,液位管; 1.9 以上工序完毕后,在确定无焊接瑕疵后,开始往蓄冷槽注水,注水到溢流管位置,静置24小时,确认无渗漏后放水; 1.10 在蓄冷槽的中间两道腰梁以及底面梁、顶面梁外安装木方,以用来固定外板;

1.11 确认蓄冷槽无渗漏后开始保温工作,采用现场聚氨酯发泡的方法保温,保证保温厚度至少为100mm,注意保温过程中会产生有毒物质,开启现场通风设施,以防中毒; 1.12 蓄冷槽顶板采用100mm厚聚氨酯净化彩钢板,注意彩板上方开孔位置与蓄冷槽出水,进水位置保持一致,彩板两头的长度以盖过保温层以及木方为宜; 1.13 在以上工序全部完成后,蓄冷槽体在保温层及木方外面敷设0.5mm厚镀锌钢板装饰面。 2. 蓄冰盘管的安装 2.1 出厂检验 蓄冷设备出厂前已整体装配好,以确保质量并使对现场安装要求减至最小。每台设备都被放置在木托架上运至现场,在卸货和签署提货单之前,需对其做彻底的检查。检查应注意外板、视管、控制部件和储冰量传感器。对所发现的任何损坏,都要记录在提货单上并通知装运机构; 2.2 临时性存放 如果蓄冷设备在运抵现场之前需要做临时性存放,需使之连同装运时用的木托架一并放在光滑、水平的地面上,地面上不得有任何突起或凹凸不平,否则会穿破或损坏能槽的底部; 2.3 进场、垂直吊装:室外自运输设备下放蓄冰盘管采用汽车起重机进行; 2.4 水平运输:蓄冰盘管自坡道沿运输通道,采用慢速卷扬机牵引至各蓄冰盘管下落点。蓄冰盘管在蓄冷位置区域内水平搬运采用两台液压手动拖车进行; 2.5 技术措施:为防止盘管扭曲变形,在现场制作多个吊装钢架,图示如下:

水蓄冷和冰蓄冷选型参考

水蓄冷和冰蓄冷选型参考 来源:本站原创时间:2010-6-12 点击数: 826 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2)Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水

冰蓄冷技术及其应用

研 究 生 课 程 论 文 (2008 -2009 学年第二学期) 课程论文题目:冰蓄冷技术及其应用 研究生:欧阳光 学 号 学 院 课程编号 课程名称 学位类别 硕士 任课教师 制冷空调过程的节能新技术 教师评语: 成绩评定: 分 任课教师签名: 年 月 日

冰蓄冷技术及其应用 摘要:本文在介绍了冰蓄冷技术的特点的基础上,论述了冰蓄冷技术对电力调峰、平衡电网及节能减排的意义;并结合工程实际,分析了与冰蓄冷空调相结合的低温送风系统的经济性;并简要介绍了冰蓄冷与热泵组合式空调系统的优势。展望了新型冰蓄冷系统的发展前景。 关键词:冰蓄冷削峰填谷节能低温送风系统 1 引言 改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。尽管全国发电装机容量不断增大,然而,电力供应仍很紧张,尤其是夏季有些地方不得不采用拉闸限电的办法解燃眉之急。因而,改善电力供应的紧张状况和电力负荷环境已成为一些大中城市的首要任务。长期以来空调系统是能耗大户,而空调系统用电负荷一般集中在电力峰段,因此对城市电网具有很大的“削峰填谷”潜力。基于这种“削峰填谷”的想法,空调系统中出现了冰蓄冷机组,它利用午夜以后的低谷电制冰,储存到白天用电高峰时供冷。而冰蓄冷技术和低温送风空调系统相结合则更能增强它的竞争力,对于电力生产部门和用户都会产生良好的经济效益和社会效益,并可以实现整个能源系统的节能和环保。因而随着国内冰蓄冷技术的成熟,它在我国将有更广阔的发展前景。 2 冰蓄冷空调系统简介 冰蓄冷空调就是利用水或一些有机盐溶液作为蓄冷介质,在夜间电力供应的低谷期(同时也是空调负荷很低的时间)开机制冷,将它们制成冰或冰晶,到白天电力供应的高峰期(同时也是空调负荷高峰时间),利用冰或冰晶融解过程的潜热吸热作用,再将

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

水蓄冷与冰蓄冷的比较

水蓄冷与冰蓄冷比较

将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。因此,冰、水蓄冷系统在下列方面发生了变化。 (1)蓄冷系统制冷机的容量 从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C为0.6 0.65 (制冰温度为-6C时),其制冷能力比制冷机组在空调工况低了0.4?0.35, 也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。而水蓄冷就不存在这一问题。 (2)蓄冷装置的蓄冷密度 从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40?50kW/m3),蓄 冷水池的蓄冷密度为(7?11.6kW /m3)。冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷 密度的5倍左右。 这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。其实这是一种错觉。产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄 冷槽需要安装在室内,并要求有一定的安装距离。我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。 (3)蓄冷装置的兼容性 水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。而冰蓄冷系统蓄冰槽则没有此功能。 (4)蓄冷系统的建设投资 冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统, 而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。 冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省 制冷用电10%左右。水蓄冷储槽可实施夏季蓄冷,冬季蓄热,做到蓄冷、蓄热

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

相关文档
最新文档