运用一元二次方程解决较复杂的实际问题

运用一元二次方程解决较复杂的实际问题
运用一元二次方程解决较复杂的实际问题

《一元二次方程的应用——利润问题》导学案

学习目标与重难点:

1、会根据题意找出销售利润问题中蕴含的基本等量关系。

2、找出题目中的已知、未知量,并把它们之间的数量关系用代数式表示出来。

3、正确解方程并会结合实际问题检验方程的解是否符合题意。

重点:列一元二次方程解决实际问题。难点:找等量关系列方程。

学习过程:

一、自主学习、探索规律(列出算式不计算)

1、某商品每件进价30元,售价40元,可得利润元。

(1)若涨价2元,则售价元,利润元。

(2)若涨价3元,则售价元,利润元。

(3)若涨价x元,则售价元,利润元。

(4)若降价x元,则售价元,利润元。

小组交流总结:一件商品的利润=

若该商品发生涨价或降价的变化,那么每件商品的利润=

2、某商品原来每天可销售80件,后来进行价格调整。

(1) 市场调查发现,该商品每涨价1元,商场平均每天可少销售2件。

①如果涨价2元,则少卖件,每天销售量为件。

②如果涨价3元,则少卖件,每天销售量为件。

③如果涨价x元,则少卖件,每天销售量为件。

(2)市场调查发现,该商品每降价3元,商场平均每天可多销售2件。

①如果降价6元,则多卖件,每天销售量为件。

②如果降价9元,则多卖件,每天销售量为件。

③如果降价x元,则多卖件,每天销售量为件。

小组交流总结:

价格调整后商品的销售量=

二、自学检测

1、某品牌服装每件进价a元,售价b元,降价x元后则每件利润为元。

2、商场销售某品牌服装,每天售出a件。调查发现,该服装每涨价2元,商场平均每天可少销售m 件,如果涨价x元则商场平均每天可销售件。

三、例题展示

某商场销售一批名牌衬衫,每件进价为80元,当售价为120元时,平均每天可售出20件。为了扩大销售,减少库存,商场决定采取适当的降价措施。经调查发现,在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件。如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应降多少元?

(2)根据上表的分析,列方程解答:

四、巩固练习

某商品每件的进价为40元,以60元出售,平均每天可售出300件。为了让顾客得到实惠,商场决定采取适当的降价措施。调查发现,如果这种商品的售价每降价1元,那么平均每天可多售出20件。商场要想平均每天盈利6080元,每件商品应定价多少元?

五、拓展提升

某经销单位将进货单价为40元的商品按50元售出时,一个月能卖出500个。已知这种商品每涨价1元,其销量就减少10个。为了赚得8000元的利润,销量又不超过300个,售价应定为多少?这时应进货多少个?

六、畅谈收获:

1、你学会了哪些知识?

2、本节课你对自己表现的评价:

七、作业:

练习册本节所学内容。

一元二次方程练习题(难度较高)

元二次方程练习题 1、已知关于X 的方程X 2 —2(k —1)x + k 2 =0有两个实数根 ⑴、求k 的取值范围; ⑵、若x 1 + X 2 = X i " X 2 —1,求 k 的值。 2.、已知关于X 的一元二次方程 亠 2(擀+5 +存+5=0 有两个实数根X 1与X 2 (1)求实数m 的取值范围; ⑵若(X i -1)(x 2 -1)=7,求 m 的值。 2 3.已知A(X 1 , yj , B(X 2 , y 2)是反比例函数y =-一图象上的两点,且x^ x^ -2 X (1)求5 72的值及点A 的坐标; (2)若一4V y < —1,直接写出X 的取值范围. k 2 4.(本小题 8分)已知关于X 的方程x 2-(k+1)x + +1=0的两根是一个矩形的两邻边的长。 4 (2)当矩形的对角线长为亦时,求k 的值。 (1) k 为何值时,方程有两个实数根; x 1、x 2

5已知关于x 的一兀二次方程F-(2上+1)才+4^■- 3- 0 . (1) 求证:方程总有两个不相等的实数根; (2) 当Rt △ ABC 的斜边长□二后,且两直角边i 和C 是方程的两根时,求△ ABC 的周长和面 积. 那么称这个方程有邻近根” (1)判断方程X 2 -(J 3+i)x + 73 =0是否有 邻近根”并说明理由; (2)已知关于x 的一元二次方程mx 2-(m-1)x-1 = 0有 邻近根”求m 的取值范围. 7设关于x 的一元二次方程X 2+2px+1=0有两个实数根,一根大于1,另一根小于1,试求实数P 的范围. 8已知方程X 2 -mx +m + 5=0有两实数根P ,方程x 2-(8 m + 1)x + 15m + 7 = 0有两实数根 Y ,求a 2 PY 的值。6如果一元二次方程ax 2+bx+c=0的两根X 1、x ?均为正数,且满足1< x X 2 <2 (其中 X 1 > X 2),

一元二次方程解法专项训练以及题型分类

一元二次方程题型分类讲解 一元二次方程解法《基础训练篇》 (1)直接开平方 1.方程 (3x -1)2=-5的解是 。 2.用直接开平方解下列方程: (1)4x 2-1=0 ; (2)(x+4)2 = 9; (3)81(x-2)2=16 ; (4)4(2x+1)2-36=0 ; (5)2 2 )32()2(+=-x x (4)因式分解法 1、填写解方程2-2-3=0x x 的过程 解: x -3 x 1 -3x+x=-2x 所以2-2-3=x x (x- )(x+ ) 即(x- )(x+ )=0 即x- =0或x+ =0 ∴x 1=__________,x 2=__________ 2、用十字相乘法解方程6x 2-x -1=0 解: 2x 1 2x- x=-x 所以6x 2-x -1=(2x )( ) 即(2x )( )=0 即2x =0或 =0 ∴x 1=__________,x 2=__________ 例题1、26=x x 2、4(3+)7(3+)x x x = 3、 244-y+=0 39y 4、2 2-1=9x x (2) 5、20322--x x =0; 练习:解方程 1、22-3=0x x 2、(3)3(3)x x x -=- 3、24-12x-9=0x 4、22 -3=25+4x x ()()

5、2 2-3=-9x x () 6.3x 2 +7x -6=0 ; 7.2216-3(4)x x =+ 8.22 (-3)+436x x = 9.(-3)2(2)x x =+(x+2) 10.2 (4-3)+44-3+4=0x x () 11. 2x 2 +5x +2=0; 12.27196=0x x -- (2)配方法 1、填空: (1)x 2+6x+ =(x+ )2;(2)x 2-2x+ =(x- )2; (3)x 2-5x+ =(x- )2;(4)x 2+x+ =(x+ )2;(5)x 2+px+ =(x+ )2; 2、用配方法解下列方程: (1)x 2-6x-16=0; (2)x 2+3x-2=0; (3)x 2+23x-4=0; (4)x 2-32x-3 2 =0. (3)公式法 1.用公式法解下列方程: (1) 3 y 2-y-2 = 0 (2) 2 x 2+1 =3x (3)4x 2-3x-1=x-2 (4)3x(x-3)=2(x-1)(x+1) 一元二次方程考点以及典型例题《提高篇》

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程题型分类总结

一元二次方程题型分类总结 一、知识结构:一元二次方程考点类型一概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式: ⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例 1、下列方程中是关于x的一元二次方程的是()A B C D 变式:当k 时,关于x的方程是一元二次方程。例 2、方程是关于x的一元二次方程,则m的值为。针对练习:★ 1、方程的一次项系数是,常数项是。★ 2、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★ 3、若方程是关于x的一元二次方程,则m的取值范围是。★★★ 4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是() A、m=n=2

B、m=3,n=1 C、n=2,m=1 D、m=n=1考点类型二方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例 1、已知的值为2,则的值为。例 2、关于x的一元二次方程的一个根为0,则a的值为。例 3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例 4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习:★ 1、已知方程的一根是2,则k为,另一根是。★ 2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。★ 3、已知m是方程的一个根,则代数式。★★ 4、已知是的根,则。★★ 5、方程的一个根为()A B1 C D ★★★ 6、若。考点类型三解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型 一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例 1、解方程:

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

一元二次方程较难题型

九年级数学《一元二次方程》(C )课标版 课前巩固提高 1当x 取何值时, 9X ?1 ? 3的值最小?最小值是多少? 、4a 2 -12a +9- + 4a 2 -20a +25(3 < a < 5) 3化简 2 2 考点 --- 元二次方程定义的考查 2若关于x 的一元二次方程(m -1)x 2 ? 5x ? m 2 - 3m ? 2 = 0的常数项为0,则m 的值等于() A 、1 B 、2 C 、1 或 2 D 、0 3试说明关于x 的方程(a 2 -8a ■ 20)x 2 2ax 1=0无论a 取何值,该方程都是一元二次方程; 4(2011年重庆江津区七校联考) 若关于x 的一元二次方程(m 「1)x 2 ? 5x ? m 2 -3m - 2=0的常数项为0, 则m 的值等于() A 、1 B 、2 C 、1 或 2 D 、0 考点二利用一元二次方程三种变形巧解等式求值问题 5已知/ +兀+ 1二0 ,则F + X + 2忑+ ?的值是 ________________ 。 6已知II ,则J -.」?「!」的值是() A. 1989 B. 1990 C. 1994 D. 1995 - + 3 + ——- 7 设 x a -5x + l = 0 ,则 x 十 1 _______ 。 2已知 y 二 x 2 - 4 4 -x 2 x 2 x 8 求x y y x -2 14的值

2 8 (重庆一中初2011级10—11学年度下期3月月考)已知x 是一元二次方程 x ,3x-1=0的实数根, 5 I x - 2的值. 9 (2012黑龙江省绥化市,21, 5分)先化简,再求值: :_3 (m 2 ),其中 m 是方程 3m -6m m — 2 x 2 ? 3x -1 = 0 的根. 考点三一元二次方程的解法技巧 12 ( 2011四川南充3分)方程(x+1) (x - 2) =x+1的解是 5, 3分)方程x (x-2)+x-2=0 的解是( D .2, — 1 求代数式: x -3 3x 2 -6x 10 (2011山东淄博4 分) 已知a 是方程x 2 x -1=0的一个根,则 2 a 2 -1 J —的值为 a 「a B. ------- 2 C.— 1 D. 11用因式分解法解方程 B 3 C 、- 1, 2 D - 1, 3 13(2012四川省南充市, A.2

实际问题与一元二次方程(单、双循环)

实际问题与一元二次方程—比赛问题 教学目标 知识技能:能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型.能根据具体问题的实际意义检验结果是否合理. 数学思考:经历将实际问题抽象成为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述. 解决问题:通过解决实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性发展实践应用意识. 情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 教学重点: 体育比赛场次中的数量关系。 教学难点:发现问题中的等量关系. 教学过程设计 回顾引入:解下列方程 x (x -1)=90 x(10-x)=24 x (x+2)=168 452)1(=-n n 202 )3(=-n n 新课讲授 要组织一次篮球联赛,赛制为单循环形式,计划安排15场比赛,问应邀请多少个球队参加比赛? 分析思考:1、什么是单循环? 2、什么是双循环? 解:设邀请x 个球队参加比赛。

拓展变形: 举办一次足球联赛,赛制为双循环形式,一共要比赛90场,共有多少个队参加比赛? 归纳总结 当个体为x 个,总数为n 时 单循环公式:n x x =-2 )1( 双循环公式:x (x -1)=n 做题时先判断是单循环还是双循环,再套公式 变式练习,巩固强化 1、在一个QQ 群里有n 个网友在线,每个网友都向其他网友发出一条信息,共有20条信息,则n 为 ( ) (思考:这题是 循环) A 、10 B 、6 C 、5 D 、4 2、一个小组有若干人,新年互送贺卡,若全组共送了 72 张,则这个 小组共有多少人? (思考:这题是 循环) 3、一次开会时,同事们见面后,倍感亲切,相互握手恭贺,这次共握手 28 次,一共有多少人参加开会?(思考:这题是 循环) 小结:1、怎样判断单、双循环。 2、套用公式 作业:各教师自定

一元二次方程难题、易错题

一元二次方程 已知:关于x 的方程23(1)230mx m x m --+-=.()032132 =-+--m x m mx 求证:m 取任何实数时,方程总有实数根;

2.(2009年广东中山)已知:关于x 的方程2210x kx +-= (1)求证:方程有两个不相等的实数根; (2)若方程的一个根是1-,求另一个根及k 值. 3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状. 例1.当a 为何值时,关于x 的一元二次方程01)12(2 2=+-+x a x a 有两个实数根. 例 3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k 的取值范围. 例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( ) (A)49-≤k (B)04 9≠-≥k k 且

(C)49- ≥k (D)049≠->k k 且 例:222()5()60x x x x ---+=,求x 的值 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 ★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) .m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 例1、已知322-+y y 的值为2,则1242 ++y y 的值为 。 例2、关于x 的一元二次方程()0422 2=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002 ≠=++a c bx ax 的系数满足b c a =+,则此方程 有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, m 的值为 。 ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

一元二次方程应用题典型题型归纳

一元二次方程应用题典型题型归纳 (一)传播与握手问题 1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一 个人传染了个人。 2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支, 主干、支干和小分支的总数是91,每个支干长出小分支。 3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有 个队参加比赛。 4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有 个队参加比赛。 5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组 共互赠了182件,这个小组共有多少名同学? 6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有 多少人? 7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? (二)平均增长率问题 变化前数量×(1 x)n=变化后数量 1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450 公斤,水稻每公顷产量的年平均增长率为。 2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均 每次降价率是。 3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始 涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。 4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同, 求每次降价的百分率?

5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. (三)商品销售问题 售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额 1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件) 与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? 2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产 品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。 (1)当日产量为多少时每日获得的利润为1750元? (2)若可获得的最大利润为1950元,问日产量应为多少? 3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500 千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。 为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?

一元二次方程的实际问题

一元二次方程的实际问题 一、传播问题 例:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 归纳总结:按这样的感染速度,n轮后有多少台电脑被感染? 第1轮:(1+x) 第2轮: 1.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为() A.5 B.6 C.7 D.8 二、变化率问题 例:2010年某市出口贸易总值为22.52亿美元,至2012年出口贸易总值达到50.67亿美元,反映了两年来该市出口贸易的高速增长. (1)求这两年这个市出口贸易的年平均增长率; (2)按这样的速度增长,请你预测2013年这个市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563) 2、某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为. 三、数字问题

1、有一个两位数,它的个位数字与十位数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,则原来的两位数为. 2、已知有一个两位数,它的十位数字比个位数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,求这个两位数. 3、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数. 四、销售利润问题 1、百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元? 2、某水果经销商上月份销售一种新上市的水果,平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间满足一次函数关系y=kx+b.且当x=7时,y=2000;x=5时,y=4000. (1)求y与x之间的函数关系式; (2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实

一元二次方程难题、易错题

一元二次方程 已知:关于x 的方程23(1)230mx m x m --+-=.()032132 =-+--m x m mx 求证:m 取任何实数时,方程总有实数根; (2010年广东省广州市)已知关于x 的一元二次方程)0(012 ≠=++a bx ax 有两个相等的实数根,求4 )2(222 -+-b a ab 的值。 2.(2009年广东中山)已知:关于x 的方程2210x kx +-= (1)求证:方程有两个不相等的实数根; (2)若方程的一个根是1-,求另一个根及k 值.

3.(2009年重庆江津区)已知a、b、c分别是△ABC 的三边,其中a=1,c=4,且关于x 的方程042=+-b x x 有两个相等的实数根,试判断△ABC 的形状. 例1.当a 为何值时,关于x 的一元二次方程01)12(2 2=+-+x a x a 有两个实数根. 例3.已知关于x 的一元二次方程0112)21(2=-+--x k x k 有两个不相等的实数根, 求k 的取值范围. 例4.关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( ) (A)49- ≤k (B)04 9≠-≥k k 且 (C)49-≥k (D)049≠->k k 且 例:222 ()5()60x x x x ---+=,求x 的值 例1、下列方程中是关于x 的一元二次方程的是( )

A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 ★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 例1、已知322-+y y 的值为2,则1242 ++y y 的值为 。 例2、关于x 的一元二次方程()0422 2=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002 ≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582 =+-m y y 的两个根, 则m 的值为 。 ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程应用题经典题型汇总

一元二次方程应用题经典题型汇总 认真阅读题目,分析题意,学会分解题目,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的几大典型题目,举例说明. 一、面积问题: 例1:如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直 的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设 道路的宽为x米,则可列方程为() A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644 C.(100-x)(80-x)=7644 D.100x+80x=356 二、增长率问题:(变化前的基数a,增长率x,变化的次数n,变化后的基数b,关系:a(1+x)n=b)例2:恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 三、商品价格问题 例3:某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件。若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? 四、储蓄问题 例4:王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 五、情景对话类 例5:春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?

一元二次方程实际问题

22.3实际问题与一元二次方程(第1课时) 启东市合作初级中学:董燕飞

当 堂 反 馈(10分钟) 一、选择题 1.2005年一月份越南发生禽流感的养鸡场100家,后来二、?三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ). A .100(1+x )2=250 B .100(1+x )+100(1+x )2=250 C .100(1-x )2=250 D .100(1+x )2 2.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,?所以就按销售价的70%出售,那么每台售价为( ). A .(1+25%)(1+70%)a 元 B .70%(1+25%)a 元 C .(1+25%)(1-70%)a 元 D .(1+25%+70%)a 元 3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,?售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ). A .100p p + B .p C .1001000p p - D .100100p p + 二、填空题 1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,?第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______. 2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,?那么预计2004年的产量将是________. 3.?我国政府为了解决老百姓看病难的问题,?决定下调药品价格,?某种药品在1999年涨价30%?后,?2001?年降价70%?至a?元,?则这种药品在1999?年涨价前价格是__________. 三、综合提高题 1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,?从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,?求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量. 3.某商场于第一年初投入50万元进行商品经营,?以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营. (1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(?用代数式来表示)(注:年获利率=年利润年初投入资金 ×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m. 则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答渠道的上口宽2.5m,渠深1m. 说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

实际问题与一元二次方程的几种常见模型

实际问题与一元二次方程的几种常见模型 繁殖问题 1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 解:1设每轮感染中平均一台电脑会感染x台电脑,依题意得 1+x+(1+x)x=81 整理得: X2 +2x-80=0 解得 X1=8 x2=-10(舍去) 三轮后被感染的电脑总数为: 1+ x+ x(x +1)+x(x +1)2=739(台) 答:每轮感染中平均一台电脑会感染8台电脑,3轮感染后,被感染的电脑为739台,超过700台 2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支? 解:设每个支干长出x小分支,依题意得 1+x(x +1)=91 解得:X1=9 x2=-10(舍去) 答:每个支干长出9小分支

单(双)循环问题 1.参加一次足球赛的每两队之间都进行两次比赛,共赛90场,共有多少队参加? 解:设共有x队参加依题意列方程得 x(x -1)=90 解得:X1=10 x2=-9(舍去) 答:共有10队参加 2.参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会? 解:设共有x人参加聚会,依题意列方程得 2)1 (- x x=66 解得:X1=12 x2=-11(舍去) 答:共有12人参加聚会 3.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛? 解:设应邀x个球队参加,依题意列方程得 2)1 (- x x=28 解得:X1=8 x2=-7(舍去) 答:应邀8个球队参加 4.初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人? 解:有x人,依题意列方程得

一元二次方程练习题(难度较高)

一元二次方程练习题 1、已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x 、2x ⑴、求k 的取值范围; ⑵、若12121-?=+x x x x ,求k 的值。 2.、已知关于x 的一元二次方程 有两个实数根1x 与2x (1)求实数m 的取值范围; (2)若7)1)(1(21=--x x ,求m 的值。 3.已知)(11y x A , ,)(22y x B , 是反比例函数x y 2 - = 图象上的两点,且212-=-x x ,321=?x x . (1)求21y y - 的值及点A 的坐标; (2)若-4<y ≤ -1,直接写出x 的取值范围. 4.(本小题8分)已知关于x 的方程014 )1(22 =+++-k x k x 的两根是一个矩形的两邻边的长。 (1)k 为何值时,方程有两个实数根; (2)当矩形的对角线长为 时,求k 的值。

5已知关于x 的一元二次方程 . (1)求证:方程总有两个不相等的实数根; (2)当Rt △ABC 的斜边长 ,且两直角边和是方程的两根时,求△ABC 的周长和面 积. 6如果一元二次方程02 =++c bx ax 的两根1x 、2x 均为正数,且满足1< 2 1 x x <2(其中1x >2x ),那么称这个方程有“邻近根”. (1)判断方程03)13(2=++-x x 是否有“邻近根”,并说明理由; (2)已知关于x 的一元二次方程01)1(2=---x m mx 有“邻近根”,求m 的取值范围. 7设关于x 的一元二次方程0122=++px x 有两个实数根,一根大于1,另一根小于1,试求实数p 的范围. 8已知方程052=++-m mx x 有两实数根α、β,方程0715)18(2=+++-m x m x 有两实数根α、 γ,求βγα2的值。

相关文档
最新文档