反应萃取技术的研究进展与应用

反应萃取技术的研究进展与应用
反应萃取技术的研究进展与应用

反应萃取技术的研究进展与应用

摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。

关键词:反应萃取;进展;应用;超临界

Research Progress and Application of Reactive

Extraction Technology

ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development.

KEY WORDS:Reaction extraction; Development; Application; Super critical

目录

前言 (1)

1 反应萃取的分类 (1)

1.1 水解反应萃取 (1)

1.2 醣化反应萃取 (2)

1.3 酶反应萃取 (2)

2 反应萃取的研究进展与应用 (3)

2.1 酶促合成油酸香茅醇酯的超临界连续反应-分离过程 (3)

2.2 反应萃取法提纯赖氨酸的萃取平衡研究 (3)

2.3 反应萃取集成在过氧化氢合成中的应用研究 (4)

2.4 大型脉冲填料塔应用于反应萃取耦合技术 (4)

2.5 反应萃取技术促进酯交换法合成碳酸二甲酯的反应研究 .. 5

2.6 超临界CO2萃取反应合成碳酸二甲酯的研究 (5)

2.7反应萃取耦合技术合成硫酸烃胺的研究 (6)

2.8 生物油超临界CO2酯化反应研究 (9)

2.9 反应萃取精馏技术生产二氧五环的工艺研究 (10)

2.10反应萃取生产三聚甲醛的新工艺 (10)

2.11 富钙溶液中萃取与反应耦合强化CO2矿化过程 (11)

2.12 离子液体反应萃取精馏合成乙酸乙酯 (12)

2.13 反应-萃取-结晶过程制备碳酸钙 (12)

3 结束语 (13)

参考文献 (14)

前言

反应萃取是利用萃取剂与提取物之间的化学反应来达到分离目的一种技术。即提取物与萃取剂之间通过化学反应形成的萃合物与分离物系中未发生反应的物质之间物理性质(主要是溶解性质)发生了改变,从而实现分离。反应萃取也可指化学反应一萃取分离的耦合过程,即将产物不断萃入萃取相,只要能维持反应相中产物的浓度小于平衡浓度,反应就有向右进行的推动力,可以不断正向进行。

当今社会解决化学工业“高物耗、高污染和高能耗”的有效手段就是化工过程强化技术,这一技术被认为是彻底解决化学工业中三高问题的革命性手段。而化工过程强化包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。与传统方法相比,反应萃取技术作为一种新兴耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。反应萃取的突出特点是可控的工艺变量多,通过改变条件可以控制相转移,而且分配比一般也较大,选择性也较强,还能分离反应精馏所不能分离的物质,例如分离沸点相近的混合物,如异构体;分离热敏性原料,如抗生素;水相中除去有机物,如废水中脱酚。

1 反应萃取的分类

在萃取操作中,萃取剂与溶质之间不发生化学反应的萃取称为物理萃取;萃取剂和溶质之间发生化学反应的萃取成为化学萃取(即反应萃取)。根据溶质与萃取剂之间发生的化学反应机理,反应萃取还可大致分为五类:络合反应、阳离子交换反应、离子缔合反应、加和反应、和带同萃取反应等。在化工生产中,反应萃取主要应用于水解反应萃取,酯化反应萃取,酶化反应萃取以及硝化、肟化、醛化等过程[1]。

1.1 水解反应萃取

反应萃取可应用于液-液条件下并且有酸性或碱性催化剂存在下的水解的反应。可应用反应萃取的水解过程有:

(1)在二氧化碳保护下,环氧丙烷与水和甲基三丁基碘铵共热,制备12-丙二醇。采用反应萃取后,该过程可以得到很高的选择性,几乎没有聚乙二醇副产物产生;

(2)磺酰氯在有季铵盐的液-液体系中的水解;

(3)腈在吡啶/水/氢氧化钾体系中以NBu4Br作催化剂,或在二氯甲烷/水/氢氧化钠/30%H2O2体系中以NBu4HSO4为催化剂水解制酰胺的过程。

1.2 醣化反应萃取

酯化反应萃取是反应萃取集成的重要应用之一,其中蔗糖和苯甲酰氯界面酯化与萃取集成生产甲酰基蔗糖已经实现了工业化。此外,对醋酸和丁醇在液-液两相中反应萃取制醋酸丁酯的研究是目前反应萃取研究的热点之一。

1.3 酶反应萃取

酶反应萃取能大大提高反应和分离效率,利用酶反应萃取和乳化液膜酶反应过程,已成功地实现了一些消旋物(L-苯丙氨酸)的拆分,酶反应萃取还主要应用于乳酸的生产中。

反应萃取的应用围十分广泛,在化工,制药,石油等领域都扮演着重要的角色。此外,反应萃取还和其他单元操作耦合,比如反应萃取精馏技术,反应萃取结晶技术以及超临界CO2连续反应萃取技术等,都很好地实现了过程强化,为我们的工业生产做出了巨大贡献。

2反应萃取的研究进展与应用

2.1 酶促合成油酸香茅醇酯的超临界连续反应-分离过程

许多研究业已表明在超临界条件下进行的化学反应,其收率、选择性,催化剂寿命及平衡态位置等多方面都可能与常规反应有较大的区别。有鉴予此,近年来有关超临界相中化学反应的理论和应用研究都倍受重视。超临界二氧化碳(以下简称SC-CO2)既是一种临界温度低的超临界流体又是一种对入体无害、化学惰性的非极性溶剂,因此它特别适合用作酶催化反成的非水介质。事实上,已有许多研究表明多种生物酶在SC-CO2中能很好地保持其原有的活性和稳定性,这为在SC-CO2中进行生物合成提供了广阔而有人的应用前景。

曾健青、耀谋[2]等人将固定床动态酶促反应过程和超临界二氧化碳萃取分离过程相耦合,设计并建立了一套超临界相反应分离一体化的实验装置。在该装置上初步考察了反应压力和温度对脂肪酶催化油酸甲酯和外消旋香茅醇酯交换的影响,结果表明,其建立的反应装置能有效地实现反应分离一体化,当体系压力接近二氧化碳的临界压力时反应速率最高,9MPa压力下反应温度为328K时反应转化率最高,而在14MPa压力下反应转化率在308K-328K之间随着温度的升高而增大。

2.2 反应萃取法提纯赖氨酸的萃取平衡研究

赖氨酸是一种碱性氨基酸,由于食物中赖氨酸含量较低,加工过程中易被破坏,引起赖氨酸缺乏,故常称为第一限制性赖氨酸。它广泛应用于食品、饲料和医药工业,在平衡氨基酸组成方面,起着十分重要的作用。目前,工业上采用发酵法生产赖氨酸的工艺比较成熟,但分离和提纯赖氨酸的下游技术还比较薄弱最近,采用溶剂萃取法分离和提纯赖氨酸的技术,引起了普遍的关注,形成了一个研究热点。

结晶分离技术在制药工业中的应用

《结晶分离技术在制药工业中的应用》 学院:化学化工学院 专业:制药工程 班级:121班 姓名:陈子阳 学号:20120934105 日期:2014年12月10日

摘要:结晶分离技术在制药工业中的应用非常广泛,为数众多的原料药及医药中间体的最终分离或提纯都是应用结晶方法进行,并且形成晶态物质的最终产品,所以,结晶过程又是直接影响产品质量的重要环节之一。目前制药工业由于其产量小、间歇操作等特点,其实用的结晶器多数属于比较落后的老设备。 关键词:结晶结晶过程结晶分离结晶器 一、结晶的基本原理 结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过程。结晶是对固体物料进行分 离、纯化的单元操作过程,显然固体物质(溶质) 在溶剂中的溶解度直接影响到结晶过程。而溶液 的过饱和度则是工业结晶工程进行的主要推动力。

能够与固相处于平衡的溶液就称为该固体的饱和溶液,而此时的溶解度则是该溶质的饱和溶解度。我们通过溶解度平衡曲线来表现不同温度下溶质在同一溶剂的溶解度是不同的。若将过饱和溶液继续冷却,那么澄清的溶液中就会开始析出晶核,这种不稳定的状态区称为不稳区。标志溶液过饱和而欲自发地产生晶核的极限浓度曲线称为超溶解度曲线,它与溶解度平衡曲线之间的区域称为结晶的介稳区。 在工业结晶过程中只有尽量控制在介稳区才能避免自发成核以得到平均粒度较大的晶体。溶液的过饱和是发生晶析过程的必要条件。 二、结晶的过程 在结晶的实践中可以观察到推动力越大,结晶

速率愈大的现象,而且在这种情况下往往获得的结晶颗粒数且颗粒细微;相反则会获得较少的颗粒数和较大的晶粒。将析出结晶的细微颗粒连同母液一起放置,结果是颗粒数减少而颗粒增大。因此在结晶析出的过程中存在着晶核的生成和晶体的成长两个并存的过程。 在工业结晶过程中首先要力图避免发生初级成核,以防止由于晶核的过多而造成晶体无法继续成长。结晶时间的延长有利于晶体的成长。同时为了达到较高的纯度,往往需要对晶体进行重结晶操作。 三、结晶分离技术的发展与研究 结晶分离技术近年来发展很快,除了传统的冷却结晶、蒸发结晶、真空结晶等进一步得到发 展与完善外,新型结晶技术如等电点结晶,加压结 晶、萃取结晶等也都在工业上得已应用或正在推

萃取精馏及共沸精馏在化工中的应用

萃取精馏及共沸精馏在化工中的应用 摘要:选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径;开发易分离回收、汽化潜热低、用量少、无毒无腐蚀的共沸剂将是共沸精馏的研究方向。本文综述了萃取精馏及共沸精馏的基本原理,并介绍了萃取精馏及共沸精馏在化工中的最新应用。 关键词:共沸精馏共沸剂萃取精馏萃取剂 在化工产品生产过程中,不可避免地需要对各种各样的混合物进行分离。一般认为挥发度小于1.05的物系或沸点差小于3℃的物系,用普通的精馏方法进行分离在经济上是不适宜的。对于这类物系可以釆用萃取精馏或共沸精馏。萃取精馏即时向待分离物系中加入第三种组分(称为溶剂),增大组分间的挥发性差异,从而达到分离目的的特殊精馏方法。而共沸精馏则是向待分离物系中加入共沸剂,使新组分和被分离系统中的一个或几个组分形成最低共沸物并从塔顶蒸出的特殊精馏方法。 1 萃取精馏 萃取精馏的关键在于溶剂的选择,选择好的溶剂是提高萃取精馏生产能力和降低能耗的有效途径,近年来,许多研究者针对萃取精馏普遍存在的溶剂用量大、能耗大、板效率低等问题,从溶剂的选择入手,对其进行了改进和优化。目前新型溶剂主要包括离子液体、加盐溶剂及复合溶剂。 1.1 离子液体 离子液体是指在室温及相邻温度下完金由离子组成的有机液体物质,具有不挥发、不可燃以及呈液态的温度范围宽等特点。离子液体的溶解性可随阴阳离子类型及取代基的调变而变化,应用范围广泛,可用于分离含水共沸物等物系。 1.2 加盐溶剂 加盐溶剂萃取精馏的理论基础是盐效应。盐对物系相对挥发度的改变远远大于溶剂对其相对挥发度的改变,即盐效应大于溶剂效应,因此加盐萃取精馏的溶剂用量小。同时由于盐能循环利用,可改善塔内汽液平衡关系,减少理论塔板数,降低能耗。 1.3 复合溶剂 由于单一溶剂往往不能同时具有高选择性和溶解性,所以一般在选择性较高的溶剂里配比一定量溶解性较好的溶剂(称助溶剂),改善原溶剂的溶解性,使其更大限度地改变物系的相对挥发度。

反应萃取技术地研究进展与应用

反应萃取技术的研究进展与应用 摘要:化工过程强化技术是节能减排的重要途径,其包括设备强化和方法强化,反应萃取技术就是方法强化的技术之一。本文综述了反应萃取技术的基本原理及其分类。并介绍了其研究现状和在各个领域的应用,并对其今后的发展前景做出了预测。与传统的萃取技术相比较,反应萃取技术作为一种新型耦合技术能显著提高效率、减少废物排放,是一种高效、节能、清洁、安全、可持续发展的化工新技术。 关键词:反应萃取;进展;应用;超临界 Research Progress and Application of Reactive Extraction Technology ABSTRACT:Chemical process intensification technology is an important way of energy saving and emission reduction. It includes equipment strengthening and methods strengthening, and reaction extraction technology is one of the methods strengthening. The basic principle and classification of reaction extraction technique are reviewed in this paper.Its research status and application in various fields are introduced, and the prospect of its future development is forecasted. Compared with the traditional extraction technology, the reaction extraction technology can improve efficiency and reduce waste emissions, which is a new technology for chemical engineering, energy saving, clean, safe and sustainable development. KEY WORDS:Reaction extraction; Development; Application; Super critical

萃取精馏

实验十四萃取精馏实验 一、实验目的 二、基本原理 三、设备参数 四、实验步骤 五、注意事项 六、实验报告要求 七、思考题

实验目的 1、熟悉萃取精馏的原理和萃取精馏装置; 2、掌握萃取精馏塔的操作方法和乙醇水混合物的 气相色谱分析法; 3、利用乙二醇为分离剂进行萃取精馏制取无水乙 醇; 4、了解计算机数据采集系统和用计算机控制精馏 操作参数的方法。

基本原理 萃取精馏是在被分离的混合物中加入某种添加剂,以增加原混合物中两组分间的相对挥发度(添加剂不与混合物中任一组分形成恒沸物),从而使混合物的分离变得很容易。所加入的添加剂为挥发度很小的溶剂(萃取剂),其沸点高于原溶液中各组分的沸点。 由于萃取精馏操作条件范围比较宽,溶剂的浓度为热量衡算和物料衡算所控制,而不是为恒沸点所控制,溶剂在塔内也不需要挥发,故热量消耗较恒沸精馏小,在工业上应用也更为广泛。 乙醇一水能形成恒沸物(常压下,恒沸物乙醇质量分数95.57%,恒沸点78.15℃),用普通精馏的方法难以完全分离。本实验利用乙二醇为分离剂进行萃取精馏的方法分

设备参数 实验试剂 乙醇:化学纯(纯度95%); 乙二醇:化学纯(水含量<0.3%) 蒸馏水

向塔釜内加入少许碎瓷环(以防止釜液暴沸),39%(水),61%(乙醇)或者95.5%(乙醇) (wt%)为原料,以乙二醇为萃 取剂,采用连续操作法进行萃取精惰。在计量管内注入乙 二醇,另一计量管内注入水一乙醉混合物液体。乙二醇加料,口在上部:水一乙醇混合物进料,口在下部。向釜内 注入含少量水的乙二醇(大约60ml),此后可进行升温操作。同时开启预热器升温,当釜开始沸腾时,开保温电源,并 开始加料。控制乙二醉的加料速度为80ml/hr,水一乙醉液 与乙二醉之体积比)1:2.5~3,调节转子流量计的转子,使其稳定在所要求的范围。注意!用秒表定时记下计量管液面下 降值以供调节流量用。

催化精馏技术研究进展(DOC)

催化精馏技术应用研究进展 摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。 1、引言 反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research & Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。

2、催化精馏塔及其填料方式 2.1催化精馏塔 催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。

萃取精馏综述

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

精馏技术研究进展与工业应用分析 颜志明

精馏技术研究进展与工业应用分析颜志明 发表时间:2019-05-08T16:35:06.583Z 来源:《防护工程》2019年第1期作者:颜志明 [导读] 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。 浙江新化化工股份有限公司浙江杭州 311607 摘要:化学工业是当今国民经济发展的支柱型产业,分离技术是化工生产过程中保证对原料进行净化、对相关产品进行提纯、对产生的废物进行处理的支撑。伴随着科学技术的发展,化学工程中的分离技术呈现出多元化的发展趋势,精馏就是其中应用最广泛、技术最成熟的分离方式之一,在化工工业生产中扮演着重要角色。国家的精馏技术在研究和应用的过程中取得了极大进步,精馏塔在此技术发展的进程中,也体现出举足轻重的作用。 关键词:精馏技术;研究进展;工业应用 1、概述 化学工业是国民经济的支柱产业,分离技术则为化工生产过程中的原料净化、产品提纯和废物处理等提供了技术保证。随着化学工程技术的发展,分离技术逐渐向着多元化发展。常规的化工分离技术包括精馏、吸收、萃取、结晶、吸附、膜分离等。精馏仍是应用最广泛、技术最成熟的分离方法之一,在工业生产中占有相当的比重。 精馏塔伴随着板式塔和填料塔交替式发展,两者各有其优缺点,现呈现出并行发展的趋势。板式塔具有结构简单、适应性强、造价较低、易于放大等特点;填料塔具有高效率、高通量、低压降、低持液等优势。尽管随着精馏塔的广泛应用,人们对精馏塔的认识越来越深刻,但由于塔内部流体流动及传质过程的复杂性,致使精馏塔的设计仍依靠大量的经验和半经验的数据。塔内流体力学、传质动力学、过程动态学的计算等基础传递问题的研究仍需重视,尽可能地摆脱经验的束缚。同时,随着化学工业的发展,生产大型化、优化节能、高效填料与新型塔板的开发与应用等问题仍需探索。因此,对精馏塔的研究非但不能削弱,而是需要进一步加强,以迎接新的挑战。 近年来,我国精馏塔技术在基础研究与应用方面取得了巨大进步,对精馏塔的结构、性能等进行了较为系统的实验研究,并且获得了丰富的实验数据和研究成果,为推动我国化学工业的发展与进步,做出了显著贡献。本文对精馏塔类型、流体力学性能、传质性能、塔器大型化、过程节能与强化等方面的研究进展进行综述。 2、精馏塔的种类 精馏分离技术是通过精馏塔来完成的,精馏塔有板式塔和填料塔两种,在精馏技术的发展过程中,精馏塔和板式塔也都在不断发展之中,两种精馏塔都是十分重要的应用,各自也具有比较明显的优缺点。其中,板式塔的优点在于其结构简单、适应性强,而且造价比较便宜等;填料塔则具有较高的分离效率,并且还具有高通量、低压降和低持液等方面的优点。下面对这两种精馏塔进行介绍: 2.1板式塔 板式塔最早出现于1813年,当时泡罩塔板是最主要的板式塔的塔板形式,这种板式塔的优点包括具有较大的适用范围、不易堵塞以及操作简单等方面。而后随着板式塔的不断发展,筛孔塔板、浮阀塔板固阀塔板、雾化概念塔板等诸多不同类型的塔板相继出现,这些类型的塔板各具优势,有效的促进了板式塔分离效果的提升。 2.2填料塔 按照填料形式的不同,可以将填料塔分为规整调料以及散堆填料等两种类型。其中,散堆填料是一种具有一定外形结构的颗粒体,包括环形填料、球形填料、鞍形填料等不同的形式。不同的填料形式在特点上有所区别,如鞍形填料明显的特点是压降小,而球形调料由于堆积比较均匀,利于流体的分布,因此在气体吸收以及除尘等方面具有优势。规整调料是指具有规则的几何图形,并且堆砌整齐的填料。应用规整填料的填料塔具有分离效率高、处理量低、压降低以及适应性强等优点,在化学分离装置中有着非常重要的应用,在规整填料中,以Sulzer公司开发的金属丝网波纹规整填料和金属板波纹规整填料最具代表性。 3、精馏技术的发展 3.1塔器大型化 随着化工行业的发展,千万吨炼油、甲醇制烯烃等大型工程开始建设并且投入应用,这些工程的开展促进了精馏塔大型化的发展,这是现代工业体系下精馏塔发展的必然方向。精馏塔的大型化有助于提高设备的分离效率,同时对于减少废物排放也有重要的作用。但是一当前情况来看,精馏过程的大型化还面临着很多科学上以及工程上的问题。首先,分离方面,由于塔器的大型化,导致塔内气液两相的接触状态发生了一定的变化,从而对塔的热量、质量传递造成影响,并且导致了精馏塔分离效率的降低。而且,随着塔板的大型化,其对精馏塔的内件结构造成了一定的影响,要求其在水平度、强度以及流体分布等方面的性能都有所提升。当前针对塔器大型化带来的分离以及内件结构方面的问题,研究人员正进行深入的研究。 3.2数据化设计技术的发展 随着计算机技术和计算机流体力学理论不断的发展完善,数字化设计技术在精馏塔的设计之中起到越来越重要的作用,其已经逐渐的成为了大型塔内件设计、问题诊断和优化的重要手段,在不久的将来计算机集成化系统将会在精馏中有非常重要的应用。当前数字化设计技术在精馏工程中已经有了广泛的应用,包括化工过程模拟技术、三维可视化技术等。其中,化工过程模拟技术是基于气液分离过程的MESH方程组,通过结合相关基础科学,包括综合化工热力学、化学反应以及化学操作单元等,通过这些技术建立化工过程仿真数学模型,并且利用其进行计算,从而得到工艺设计过程中所需要的基础数据。这一技术在精馏过程设计中具有重要的作用,包括塔器设备尺寸估算、工艺操作参数优化等方面,而且还能够为塔器设备的定型、选材以及载荷估算等提供有效的技术支持,从而保证各项参数的正确性。可视化技术在精馏设计中的应用包括液体可视化技术、力学性能可视化技术以及结构可视化技术等方面。 4、精馏技术的工业应用 4.1精馏过程节能技术 精馏过程中的节能技术是在精馏技术不断引用在各个领域中被提出的,精馏技术在各领域有着举足轻重的重要地位,同时精馏技术的应用也为企业的发展和技术的进步提供了巨大的支持,增加了企业的经济效益,经过不断的努力研究分析,人们对精馏技术的认识越来越

萃取精馏综述

萃取精馏综述 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

萃取精馏分离醋酸_水溶液溶剂研究进展及机理分析

修改稿日期:2005203224;作者简介:李新利(1978 -),女,硕研,助教,电邮nanjingli @1631com 。 萃取精馏分离醋酸/水溶液溶剂研究进展及机理分析3 李新利,唐聪明 (西华师范大学化学化工学院,南充 637002) 摘要:介绍了萃取精馏法分离醋酸水溶液萃取剂的研究进展,在此基础上初步分析了萃取剂与原溶剂组分间的相互作用,醋酸提供质子给萃取剂,与萃取剂分子之间产生松弛的化学作用,从而改变了醋酸在液相中的活度系数,即改变了水对醋酸的相对挥发度。针对几种分离效果较优的萃取剂,探讨了该萃取剂与醋酸发生质子化的可能位置。本文分析结果表明,对于醋酸水溶液的分离,酰胺和砜类是可能合适的萃取精馏溶剂。 关键词:醋酸;水;萃取精馏;质子化 中图分类号:TQ 42 文献标识码:A 文章编号:100129219(2005)06263204 0 前言 萃取精馏是一种特殊精馏方法。它是向共沸物 或不易分离的混合物中加入一种萃取溶剂,使难分离组分间的相对挥发度增大,从而达到设计的分离要求。醋酸水溶液是高度非理想物系,传统的普通精馏法不仅塔板数多,能耗大,而且难以分离彻底。以萃取精馏法分离醋酸水溶液的研究已有不少的文献报道[1212],但是前人的工作主要集中于萃取剂的选择和萃取精馏塔条件实验等方面。本文在对萃取剂进行综述的基础上,分析讨论了萃取剂与醋酸分子间质子化作用位置与形成的络合物结构。 1 萃取精馏法分离醋酸水溶液萃取剂 的研究进展 111 单一萃取剂的研究进展 人们很早就知道叔胺类物质对酸与非酸溶液具有很好的分离效果。因此,Von G arwin [2] 提出用二 甲基苯胺来分离醋酸水溶液。但是二甲基苯胺与水形成最低共沸物。 Wolgang Muller [3]提出以1,22吗啉乙烷(熔点72℃,沸点20418℃[01013MPa ])为萃取剂,对醋酸含量50%(质量分数,下同)的酸水溶液进行减压萃取精馏,塔顶水含酸仅0101%;虽然1,22吗啉乙烷分离效果很好,但存在因熔沸点过高引起的需保温 管路输 送、溶剂回收塔减压操作等问题。此外,吗啉乙烷不是很常见的溶剂也限制了它的应用。 Rudolf Sartorius [4]选用N 2甲基乙酰胺做萃取 剂,在处理含酸4515%的酸水溶液时,萃取精馏塔维持常压,塔顶水含酸0101%。溶剂回收塔减压操作,顶塔顶酸含量9918%。他还发现,在萃取剂循环使用过程中,加入5%的水对分离效果没有影响, 可以降低其熔点(降至15℃ ),便以输送。在德国专利[5]中,曾用N 2甲酰吗啉做萃取剂分离甲酸或乙酸水溶液。N 2甲酰吗啉熔点较低,但是同样也存在减压操作的问题。 N 2甲基吡硌烷酮常温下以液态形式存在,与 水、醋酸混溶,同时不形成共沸物、热稳定(分解温度 在425℃ )。Cohen [6]研究了这种环状酰胺对醋酸水溶液分离效果的改善。在萃取精馏塔顶含酸量低于011%。他认为N 2甲基吡咯烷酮与醋酸形成了一种 络合物,在精馏塔底部出来的是醋酸和这种络合物的混合物。适当调节溶剂回收塔温度和压力,这种络合物就会重新分解出醋酸和N 2甲基吡硌烷酮。 Lloyd Berg [729]研究了很多物质对水2醋酸相对 挥发度的改变,代表物质为N ,N 2二甲基甲酰胺和己二腈、二甲亚砜、环丁砜、庚酸、壬酸、新葵酸、异佛乐酮、苯乙酮等。 胡兴兰[10211]等综合研究了含氮类络合剂对水/醋酸体系气液平衡的影响,所选单一溶剂包括脂肪 族胺类,像N ,N 2二甲基甲酰胺(DMF )、N 2甲基乙酰胺(NMA )、N 2甲基吡硌烷酮(NMP )、己内酰胺,和

萃取精馏实验装置操作说明-

萃取精馏实验装置操作说明- 萃取精馏实验装置操作说明 一、前言 精馏是化工工艺过程中重要的单元操作,是化工生产中不可缺少的手段, 而萃取精馏是精馏操作的特殊形式,只有在普通精馏不能获得分离时才使用。其基本原理与精馏相同,也是利用组分的汽液平衡关系与混合物之间相对挥发度的差异,只不过要加入第三组分形成难挥的混合物,将沸点相近或有共沸组成的物质在塔内上部接触,使易挥发组分(轻组分)逐级向上提高浓度;而不易挥发组分(萃取剂与重组分)则逐级向下从塔底流出。若采用填料塔形式,对二元组分来说,则可在塔顶得到含量较高的轻组分产物,塔底得到萃取剂含量较高的重组分产物,当然,也与萃取剂的选择有关。 本装置是根据用户提出的技术指标而制作的、采用了双塔连续操作的流程,萃取剂能连续回收使用,加料采用了蠕动泵和双缸柱塞泵,同时,对萃取剂分离采用真空操作,能够取得较好的放大数据,可供有机化工、石油化工、精细化工、生物制药化工等专业部门的科研、教学、产品开发方面使用。用于有机物质的精制分离时,具有操作稳定、塔效率高、数据重现性好等优点。此外,它还可装填不同规格、尺寸的填料测定塔效率,也能用于小批量生产或中间模拟试验。当填装小尺寸的三角型填料或θ网环填料时,可进行精密精馏。装置结构紧凑,外形美观,控制仪表采用先进的智能化形式。 对一般教学用的常减压精馏、反应精馏、共沸精馏、萃取精馏玻璃塔来说只有一节塔体,它们在塔壁不同位置开有侧口,可供改变加料位置或作取样口用。塔体全部由玻璃制成,塔外壁采用新保温技术制成透明导电膜,使用中通电加热保温以抵消热损失。在塔的外部还罩有玻璃套管,既能绝热又能观察到塔内气液流动情

氟化铵结晶过程的研究

贵州大学 2010届硕士研究生学位论文 氟化铵结晶过程的研究 学科专业:化学工艺研究方向:精细磷化工导 师: 李天祥研究生: 雷 丹 中国﹒贵州﹒贵阳2010年5月

目录 摘要................................................................................................................................I ABSTRACT..............................................................................................................................II 第一章文献综述 (1) 1.1氟化铵的性质、用途和前景 (1) 1.1.1氟化铵的性质 (1) 1.1.2氟化铵的用途 (1) 1.1.3氟化铵的前景 (1) 1.2氟化铵生产方法简介 (1) 1.3用磷肥副产物生产氟化铵的现状,与使用其他原料相比优势 (2) 1.4氟化铵净化方法研究进展 (4) 1.4.1化学沉淀法 (4) 1.4.2结晶法 (5) 1.4.3离子交换法 (5) 1.4.4溶剂萃取法 (5) 1.5结晶法简介、结晶法净化氟化铵研究进展 (6) 1.6本文研究的内容及意义 (6) 1.6.1本文研究的内容 (6) 1.6.2本文研究的意义及目的 (8) 第二章氟化铵溶解度和过饱和度的测定 (10) 2.1溶解度实验部分 (10) 2.1.1实验原理 (10) 2.1.2实验仪器和药品 (10) 2.1.3实验步骤 (10) 2.1.4实验结果与讨论 (11) 2.2过饱和度实验部分 (14) 2.2.1实验原理 (14)

维生素C生产中提取工艺研究进展

维生素C生产中提取工艺研究进展 发表时间:2018-01-20T19:06:29.420Z 来源:《基层建设》2017年第32期作者:朱玲王蕾 [导读] 摘要:综述了维生素C生产中提取的传统工艺和改进工艺,,重点介绍了目前生产常用的超滤法、纳滤法、离子交换法和减压浓缩法等提取技术的分离机理以及各自的优缺点,并指明了提取技术今后的发展方向。 沈阳东北制药设计有限公司辽宁省沈阳市 110027 摘要:综述了维生素C生产中提取的传统工艺和改进工艺,,重点介绍了目前生产常用的超滤法、纳滤法、离子交换法和减压浓缩法等提取技术的分离机理以及各自的优缺点,并指明了提取技术今后的发展方向。研发先进的提取技术,应用于生产,提高古龙酸的质量和收率,也是降低成本、提高VC质量和收率的重要手段。 关键词:维生素C 2-酮基-L-古龙酸超滤膜纳滤减压浓缩 维生素C(化学名L-抗坏血酸,简称VC),是一种人体不能合成的维生素,是世界卫生组织和联合国工业发展组织共同确定的二十六种基本药物之一。主要应用于医药、食品、饲料、化妆品和生化试剂等领域,具有相当广阔的市场前景。 我国目前采用二步发酵法生产VC,其生产过程包括发酵,提取,转化三大步骤,是世界上公认的较先进的生产方法[1]。其中提取工艺中古龙酸的质量和收率对于提高VC的质量和产率有着至关重要的影响。古龙酸,全称2-酮基-L-古龙酸,是维生素C的重要前体。二步发酵法两次发酵以后,发酵液中仅含8%左右的古龙酸,而残留菌丝体、蛋白质、多糖或悬浮微粒等杂质的含量却很高。这使古龙酸的分离提纯比较困难,处理费用较高。因此采用先进的提取技术,提高古龙酸的收率和质量,也是整个VC生产中降低成本、提高收率和增加经济效益的重要手段。 1 传统工艺 1.1 加热沉淀法 加热沉淀法是提取古龙酸的传统工艺。该法采用氢型离子交换树脂柱树脂,调pH至蛋白质的等电点后加热除蛋白。此工艺会能耗大,树脂污染严重,古龙酸因受热遭到破坏,收率低。因此该法已经逐渐被其他分离手段取代。 1.2 化学凝聚法 化学凝聚法是通过加入化学絮凝剂来除去蛋白质、菌体、色素等杂质,避免了加热沉淀时的能耗和有效成分的损失。但仍存在蛋白分离不彻底、染菌处理效果不好、引入新的化学物质增加环境污染以及产品的质量和收率较低的缺点。 2 改进工艺 2.1 超滤法 超滤法[2]是一种现阶段较成熟的膜处理技术。其基本分离原理是根据膜孔大小的不同选择性筛分不同分子量的物质。超滤膜使得发酵液中蛋白质,菌丝体等杂质截留下来,达到分离的目的。该法的优点是污染少、能耗低、古龙酸成分得到了极好的保留、收率高、操作简单、容易实现自动化连续化生产。我国的东北制药厂1995年从丹麦引进目前全国最大膜面积的平板超滤装置后,古龙酸的分离提纯成本得到极大的降低,其收率和生产的自动化、连续化程度也明显提高。其缺点是设备一次性投资较大,膜容易堵塞,装置的通量、抗污染能力尚待提高等。 随着新型膜材料技术的开发,如陶瓷膜、不锈钢膜等的应用,超滤法的应用效果将会进一步的提高,产品的收率和质量也会进一步提高。 2.2 纳滤法 纳滤膜分离[3]是一种相对较新的分离技术。纳滤是一种压力驱动膜分离过程,介于反渗透与超滤之间。古龙酸料液通过膜的截留作用,使料液中约1/2体积的水透过膜被除去,古龙酸被截留,从而提高料液浓度,达到浓缩效果。纳滤膜分离和超滤膜分离一样,过程无相变、能耗低、操作简单,特别适用于热敏性物质的分离和浓缩。同样,纳滤膜也存在容易被污染和堵塞,使操作压力增加、膜通量降低、物料浓缩倍数降低和浓缩周期延长的缺点。 2.3 离子交换法 离子交换法可采用弱碱性离子交换树脂从发酵液中直接提取古龙酸,用甲醇-硫酸溶液洗脱,将洗脱液直接用于甲酯转化,省去浓缩结晶步骤。此法浓缩倍数可达4左右。此外也可将超滤液(古龙酸钠溶液)通过强酸性阳离子树脂离子交换,使古龙酸钠转变成古龙酸。同时蛋白体、色素和部分杂质会被吸附在树脂上,使古龙酸的质量得到大大提高。 目前,有VC厂家引进连续离子交换工艺[4]来替代原“固定床”树脂柱交换工艺。连交工艺具有占地面积小,连续性和自动化程度高,可电脑控制的优点,提高了树脂利用率,减少再生剂、洗脱剂和水的消耗,显著提高了经济效益。连交工艺是目前国际离子交换行业最先进的连续化生产工艺。 2.4 减压浓缩法 古龙酸减压浓缩,用真空泵对浓缩罐抽真空,在保持真空度不低于0.096MPa的状态下,控制蒸发温度低于45℃,使物料中溶剂沸点降低被除去,达到提高物料浓度的过程。此法可降低热敏性物质古龙酸在浓缩时被破坏的程度 早在二十世纪八十年代初,设计人员就将三效蒸发器作为一级浓缩的蒸发设备,不但节约大量能源,而且可由计算机控制,提高了自动化程度并降低了劳动强度。此外随着科学技术的发展,MVR蒸发器作为一种更高效节能的蒸发设备被引入国内,逐渐替代传统蒸发器进入VC生产行业。 3 其他方法 除了上述生产过程中常用的提取方法外,有许多研究机构正致力于溶媒萃取法以及超临界萃取法的研究,希望通过找到合适的萃取剂或利用超临界的气体溶液作为萃取剂,避开一系列繁多的分离操作,将古龙酸直接从发酵液中萃取出来,从而对古龙酸的提取工艺进行根本上的革新[4]。 4 结论 近年由于科学技术的发展带来的技术革新,使古龙酸的提取技术得到较大的提高与发展,但其工艺步骤较多,能耗仍较多,且浓缩过程中古龙酸的热损失仍然存在。所以从根本上解决VC提取工艺操作繁琐、能耗较高、污染环境和收率较低的问题将是今后研究的重要方

共沸精馏技术研究及应用进展

共沸精馏技术研究及应用进展 共沸现象是指一定压力下某一溶液沸腾时,溶液温度、液相组成和汽相组成始终保持不变的现象。在混合时,混合物的共沸点高于或低于混合物中任一种组分沸点,分别称为最高共沸物或最低共沸物。当出现共沸现象时,采用普通精馏方法无法达到分离的目的,此时我们可采用共沸精馏、萃取精馏或变压精馏等特殊精馏方法。其中共沸精馏就是向待分离体系中加入新组分(共沸剂),共沸剂能与原有体系中的一个或多个组分形成新的共沸物,且这种新共沸物的挥发度显著地高于或低于原有各组分的挥发度,并且新共沸物中各组分的含量与原料液组成不同,可采用普通精馏方法予以分离。 1、共沸精馏的特点 (1)共沸精馏用的共沸剂必须与待分离组分的一个或多个形成共沸物,共沸剂的选择范围相对较小; (2)共沸精馏的共沸剂大多数都从塔顶蒸出,消耗热能较大,通常只有当与共沸剂形成共沸物的组分在原料中含量较少时,共沸精馏的操作才比较经济; (3)共沸精馏可用于连续操作也可用于间歇操作; (4)在相同压力下操作,共沸精馏的操作温度较低,比其它精馏方式更适于分离热敏性物料。 2、共沸精馏的分类 根据共沸剂与原组分形成的新共沸物是否能分离为不互溶的两个液相,可将共沸精馏分为非均相共沸精馏和均相共沸精馏。与均相共沸精馏相比,非均相间歇共沸精馏可以更加方便的控制回流比,具有设备简单,通用性强的特点。 3、共沸剂的选择 共沸剂的选择对共沸精馏分离过程的效果影响非常大。国外对共沸剂的选择有许多报道,都提出如何选择共沸剂。根据溶液形成氢键的强弱将溶液分成5类,以各类液体混合后对拉乌尔定律的偏差作为选择共沸剂的初步依据。

提出了完整的关于最低及最高共沸物和近沸点精馏中共沸剂的选择方法。因此,共沸剂的选择主要有以下几个原则: (1)至少与料液中一个或两个(关键)组分形成两元或三元最低共沸物,而且希望此共沸物比料液中各纯组分的沸点或原来的共沸点低10℃以上;一般来说,从塔顶馏出的二元或三元共沸物经过冷凝冷却后,如果能形成非均相液体,则分离效率高,溶剂回收简单; (2)共沸物中共沸剂的相对含量少,即每份共沸剂能带走较多的原组分,这样共沸剂用量少,操作也较为经济; (3)共沸剂应易于回收和分离,不仅希望能够形成非均相共沸物,减少分离共沸物的操作等;而且要便于回收重复利用; (4)如果从回收塔顶部回收共沸剂,则共沸剂应具有较小的汽化潜热,以节省能耗; (5)共沸剂不能与原料的任一组分发生反应,具有热稳定性好,廉价,毒性小,来源广,腐蚀性小等特点。 4、共沸精馏技术的应用研究 用间歇共沸精馏分离乙酸乙酯和正己烷的混合物,实验采用丙酮作为共沸剂,实验结果表明:出现乙酸乙酯和正己烷最高收率是在丙酮和正己烷质量比为1.15时,乙酸乙酯收率为73.89%,正己烷收率为75.15%。 用间歇共沸精馏法,采用乙酸异丙酯作为体系的共沸剂来分离乙二醇单甲醚一水混合物,实验研究表明:调节共沸剂与水的质量比在2~2.5这一区间内,就能够一次性回收90%以上乙二醇单甲醚的量。 使用Aspen Plus软件对三氟化氮一四氟化碳共沸体系进行模拟,选用氯化氢作为共沸剂,简单快捷的找到精馏操作的最优参数,为实际生产提供参考。 采用醋酸乙烯酯为共沸剂,使用Aspen Plus软件对共沸精馏分离丙炔醇一丁炔二醇一水进行了模拟

萃取精馏

萃取精馏及其应用 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系。本文对萃取精馏的优缺点进行阐述以及提出对缺点的改进并对萃取精馏的前景进行展望。 Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extract :extractive distillation extraction agent advantages and disadvantages application prospect Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Abstracr :Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Key words : extractive distillation extraction agent advantages and disadvantages application prospect 一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 萃取精馏的原理:若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。 萃取精馏的流程:由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。

萃取精馏的分析与探究论文

萃取精馏的分析与探究

萃取精馏的分析与探究 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系. 关键词:萃取分离溶剂

一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 二、萃取精馏的原理: 若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分。三、萃取精馏的流程: 由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出

后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。 四、萃取精馏流程安排 萃取精馏过程一般采用双塔流程, 由萃取精馏塔和溶剂回收塔组成。萃取精馏的流程设计非常重要。一个好的萃取精馏工艺流程, 不仅能耗可以降低, 而且能够充分地发挥设备的潜力, 提高生产能力。在有些情况下, 萃取精馏过程的双塔流程模式并不是一成不变的。如溶剂沸点太高时, 可以对溶剂回收塔进行改进, 如加入一定量水以降低沸点, 在下一个塔中再回收溶剂, 这时就是双塔流程, 就需要再增加塔设备。 近年来在开发新的分离技术过程中, 各种分离方法之间的结合日益受到重视, 对萃取精馏亦如此。例如分离醇水溶液如果采用萃取精馏与恒沸精馏结合, 就可以较好地发挥出萃取精馏能耗低、产品纯度高的优点。首先利用萃取精馏得到纯度较高的醇溶液, 然后经过恒沸精馏制得高纯度的醇产品, 这种方法比单独的萃取精馏或恒沸精馏流程从能耗和操作控制难易综合方面都要好。 五、萃取精馏的分类 萃取精馏按照其操作方式可以分为两类,即连续萃取精馏和

相关文档
最新文档