一种神奇的解法与高考试卷解析几何中的求过定点问题

一种神奇的解法与高考试卷解析几何中的求过定点问题
一种神奇的解法与高考试卷解析几何中的求过定点问题

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

一道高考数学几何题的多种解法探究

一道高考数学几何题的多种解法探究 本文通过一个高考填空题的四种解法着重阐明解析 几何的思想和方法。解法一打破题目所给的坐标系的禁锢,重新建立坐标系另辟蹊径。解法二根据直线AC⊥BD以此建立新的坐标系,这是本题的又一个另辟蹊径。有了参数α,写出新坐标系下的圆的方程,再数形结合用根与系数的关系求弦长。解法三采用直线参数方程,再一次另辟蹊径为解决本题寻求新的方法,其根本目的是便于计算弦长。解法四是几何法,用添加两条垂线的巧妙运用,结合几个重要定理求出弦长,用重要不等式求四边形的最大值。有了这些好方法,使本来很难做的问题得以迎刃而解。 命题:如图⑴已知AC、BD为⊙O:x?+y?=4的两条互相垂直的弦, 垂足为M(1,),则四边形ABCD的面积的最大值是__. 解法一: 由于|OM|= ,考虑到原来的坐标系中两条弦长的计算比较繁琐,因此可改变方法,以 直线OM为x轴,建立新的直角坐标系,此时M的坐标是(,0)。 1.直线AC与BD有一条斜率不存在时,另一条的斜率

为0.不妨设BD的斜率 不存在,则BD⊥x轴,另一条|AC|为直径4,弦|BD|= 此时四边形ABCD 的面积S=1/2|AC|?|BD|=4 2.当直线AC与BD的斜率都存在时,不妨设AC的斜率为k,(k≠0)则BD的斜率为-1/k.所以AC的直线方 k?x-y-k=0,BD的直线方程为x+k?y-=0 。 设O到AC、BD的距离分别是d1,d2,则d1=,d2= 由垂径定理和相交弦定理得|AC|?=4(|AC|/2)?=4(2+d1)(2-d1)=4(4-d1?)类似地可得到|BD|? S?=(1/2|AC|?|BD|)? ∴S ≤ 5. 当k?=1/k?时k=±1时等式成立,此时四边形ABCD的面积S取得最大值5。 坐标系的恰当建立是解析法解题的重要基础和关键,否则会使计算繁琐。本题解法打破题目所给的直角坐标系的禁锢,重新建立坐标系,这就是另辟蹊径的重要途径。然后再综合运用圆的垂经定理和相交弦定理,点到直线的距离公式和重要不等式定理就可解决问题。 解法二:由于AC⊥BD,分别以AC、BD所在直线为x′、y′轴,建立如图新的直角坐标系设∠xMx′=α,则M的坐标为(0,0),O的坐标是(-cosα,sinα),圆的方程是(x′+cosα)?+(y′-sinα)?=4

解析几何中的定值定点问题

解析几何中的定值定点问题 一、定点问题 【例1】.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线0x y -+=相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴由题意知c e a ==2222 2234c a b e a a -=== ,即224a b = ,又因为1b ==,所以22 4,1a b ==,故椭圆C 的方程为C :2214 x y +=. ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22 (4)14 y k x x y =-???+=??消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ?=-+->得21210k -<, 又0k =不合题意, 所以直线PN 的斜率的取值范围是0k << 或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为21 2221 ()y y y y x x x x +-=--, 令0y =,得221221 () y x x x x y y -=- +,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ② 由得①2212122232644 ,4141k k x x x x k k -+== ++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). 【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到(),0 ,) ,0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x 轴上焦中为的椭圆,其方程为2 214 x y +=.

一道高考数学试题的多种解法

一道高考试题的多种解法 2007年普通高等学校招生全国统一考试卷Ⅰ理科数学19题: S?ABCDABCD为平行四边形底面,四棱锥中, CBBCS?A面侧.已知底面2BC?23?SA?SB2?AB45??ABC. ,,,BC?SA; 证明(Ⅰ)SABSD. 与平面所成的角的大小(Ⅱ)求直线下面只列,第一问证法较多,第二问相对作法较少: 举几种第一问的证法AOO?BCSSO. )垂足为证法一:过(如图作,连接1,?SOCDBC?ABS面底得由侧面底面 ABCDSASBCDAOBOAB内的射,、分别是、在底面影. ?OBOASA?SB? ,又45??ABC?ABO?, 形直,角三角又是等腰?OB?OA. BC?SA. 由三垂线定理得SOOAO?BCA1). 连接如图,垂足为(:证法二过,作?SBCSBCSASOSBC?ABCDAO?且由侧面,在侧面底面内的射 影得是,侧面BO,AO?AO?SO. 45?ABO??SBO????SA?ABO?SBSAOOBOA?. .,在又,中90SOA???SOB??SOOB?. 即BCSA?. 由三垂线定理得 OBCAC连接,记证法三:连接的中点为,ABCAOSO?中2).、在(如图 2BC?245??ABC?2AB?ABC?,,,?BCAO?) .(是等腰直角三角形, 下同证法二OACBC连接的中点为,记,证法四:连接 2BC?245ABO???2AB?ABC?SOAO?ABC是等腰直角,中,,2).、(如图在?BC?AO. 三角形, ??SBCSOSASBCSBCABCDAO?. 在侧面,是又侧面底面,内的射影侧面3?cosSBA?SAB?. 在中易得3. 6???SBCcosCBAcos??cos?SBCcos?SBA. 又3?3SC?SO??BCSBC. 中由余弦定理得,在SA?BC. 由三垂线定理得AAO?BCOSO(如图,连接,垂足为过证法五:1). 作?SOSA?SBCSBCSBC?ABCDAO内的射影侧面由侧面,,底面在侧面得且是AO?SO,AO?BO. OA?OB?245??ABC?2AB?ABO?Rt. ,在中,AOS?SORt??12SA?3,AO?. ,在中BOSSO?1?OB?SO?2BO?SB?3,. 中在,,SA?BC. 由三垂线定理得?SBABCDABCDBCSBC?. ,证法六: 侧面在底面内的射影为底面 3??SBAcosSAB?. 中易得在36?cos?SBC?CBA??SBA?cos?SBCcoscos又. 3 SC?3SBC?. 在中由余弦定理得?AO?ABCDBC?SOBCOAOSOSO?是记则的中点为,连接底面、,(如图1),SAABCD内的射影.

解析几何中的定点、定值问题

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线 AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出.

令440 x y -=?? =? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的 任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 22 0001222 000y y y y y y k k x x x x x x -+-?=?= -+-, 又由A 、P 均在椭圆上,故有:22 002221 21x y x y ?+=??+=?? , 两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122202y y k k x x -?==-- 3、 过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-,

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

高中数学解析几何之定点问题

高中数学解析几何定点问题之直线 在平面直角坐标系xOy 中,已知椭圆22221x y a b += (a >b >0),其焦点在圆x 2+y 2=1上. (1)求椭圆的方程; (2)设A ,B ,M 是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使cos sin OM OA OB q q =+ . (i)求证:直线OA 与OB 的斜率之积为定值; (ii) 求证:OA 2+OB 2为定值。

已知椭圆22221(0)x y a b a b +=>>且过点1)2P , 记椭圆的左顶点为A . (1)求椭圆的方程; (2)设垂直于y 轴的直线l 交椭圆于,B C 两点, 试求ABC D 面积的最大值; (3)过点A 作两条斜率分别为12,k k 的直线交椭圆于,D E 两点, 且122k k =, 求证: 直线DE 恒过一个定点. 在平面直角坐标系xoy 中,如图,已知椭圆22 195 x y +=的左、右顶点为A 、B ,右焦点为F 。设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中120,0,0m y y (1)设动点P 满足2 2 4PF PB -=,求点P 的轨迹; (2)设121 2,3 x x == ,求点T 的坐标; (3)设9t =,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。

如图,在平面直角坐标系xoy 中, 椭圆C :22221(0)x y a b a b +=>>的离心率为23 ,以原点为圆心,椭圆 C 的短半轴长为半径的圆与直线x-y+2=0相切. (1)求椭圆C 的方程; (2)已知点P(0,1),Q(0,2),设M,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T 。求证:点T 在椭圆C 上。 4、 在平面直角坐标系中,已知椭圆2 2:13 x C y +=.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线3x =-于点() 3,D m -. (Ⅰ)求22m k +的最小值;(Ⅱ)若2 OG OD OE = ,求证:直线过定点; xOy (0)k k >l C A B AB E OE C G l

解析几何中的定值和定点问题

解析几何中的定值定点问题(一)一、定点问题 【例1】.已知椭圆 C : 2 2 x y 2 2 1(a b 0) a b 的离心率为 3 2 ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线x y 2 0 相切. ⑴求椭圆 C 的方程; ⑵设P(4, 0) ,M 、N 是椭圆 C 上关于x轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点 E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴由题意知 e c a 3 2 ,所以 2 e 2 2 2 c a b 2 2 a a 3 4 ,即 2 4 2 a b ,又因为 2 b 1,所以 1 1 2 2 a 4, b 1,故椭圆 C 的方程为 C : 2 x 4 2 1 y . ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为y k(x 4) ① y k( x 4) 联立 2 x 4 2 y 1 消去y 得: 2 2 2 2 (4k 1)x 32k x 4(16k 1) 0 , 由 2 2 2 2 (32k ) 4(4 k 1)(64 k 4) 0 得 2 12k 1 0, 又k 0 不合题意, 所以直线PN 的斜率的取值范围是 3 6 k 0 或0 3 k . 6 ⑶设点N (x1 , y1), E (x2 , y2 ) ,则M (x1 , y1) ,直线ME 的方程为 y y 2 1 y y ( x x ) 2 2 x x 2 1 , y (x x ) 令y 0 ,得 2 2 1 x x 2 y y 2 1 ,将y1 k( x1 4), y2 k(x2 4) 代入整理,得x 2x x 4(x x ) 1 2 1 2 x x 1 2 8 .② 由得① 2 2 32k 64k 4 x x , x x 1 2 2 1 2 2 4k 1 4k 1 代入②整理,得x 1 , 所以直线ME 与x 轴相交于定点(1, 0) . 【针对性练习1】在直角坐标系xOy 中,点M 到点F1 3 , 0 ,F2 3 , 0 的距离之和是 4 ,点M 的轨迹是C 与x轴的负半轴交于点A,不过点A的直线l : y kx b 与轨迹C 交于不同的两点P 和Q . ⑴求轨迹 C 的方程; ⑵当AP AQ 0 时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到 3 , 0 , 3 , 0 的距离之和是4,∴M 的轨迹 C 是长轴为4,焦点在x 轴上焦中为 2 3 的椭圆,其方程为 2 x 4 2 1 y .

一道高考填空题解法探究

一道高考填空题解法探究 江苏省通州市石港中学(226351) 高志军 设函数3()31f x ax x =-+()x R ∈,若对于任意[]1,1x ∈-,都有()f x ≥0 成立,则实数a 的值为▲ .(2008年普通高等学校招生统一考试(江苏卷)14题). 解法一 (对x 进行分类讨论) (1)若x =0时,则不论a 取何值,()f x ≥0显然成立. (2)当0x >时, 即(]0,1x ∈时,()331f x ax x =-+≥0可化为,2331a x x ≥- 设()2331g x x x = -,则()()' 4312x g x x -=, 所以()g x 在区间10,2?? ??? 上单调递增, 在区间1,12?????? 上单调递减,因此()max 142g x g ?? == ???,从而4a ≥. (3)若0x <时, 即[)1,0x ∈-时,()331f x ax x =-+≥0可化为,2331 a x x ≤ - ()() '4 3120x g x x -= <, 所以()g x 在区间[)1,0x ∈-上单调递增,所以min ()(1)4,g x g =-=从而4a ≤. 综上所述,4a =. 解法二(对a 进行分类讨论) 2()33f x ax '=-. (1)0a ≤时, ()0f x '≤恒成立,∴()f x 在区间[]1,1-上为减函数, min ()(1)2,f x f a ==-()f x ≥0 恒成立,∴20,2,a a -≥∴≥与0a ≤矛盾. ∴0a ≤不可能. (2) 0a >时, 2()33f x ax '=-=3(a x x +. ①01a <≤时, []1,1x ∈- ∴()f x '=3(a x x +≤0恒成立, ∴()f x 在区间[]1,1-上为减函数, min ()(1)2,f x f a ==-∴20,2,a a -≥∴≥与 01a <≤矛盾. ∴01a <≤不可能. ②1a >时, ()f x '的正负、()f x 的单调性及函数值如下表

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》 题型特点: 定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。这类试题考查的是在运动变化过程中寻找不变量的方法。 典例 1 如图,已知双曲线)0(1:222 >=-a y a x C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。 (1)求双曲线C 的方程; (2)过C 上一点),(00y x P 的直线1: 020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF 恒为定值,并求此定值。 典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。 (1)求动圆圆心的轨迹C 的方程; (2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:2 2=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。 (1)求椭圆E 的方程; (2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。 典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(- 。 (1)求椭圆方程; (2)过点)0,5 6(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

一道高考选择题的多种解法

一道高考选择题的多种解法 题目:两个可视为质点的小球a 和b ,用质量可忽略的刚性细杆相连,放置在一个光滑的半球面内,如图所示。已知小球a 和b 的质量之比为3,细杆长度是球面半径的2倍。两球处于平衡状态时,细杆与水平面的夹角θ是( ) A. 45 B. 30 C. 5.22 D. 15 解法一:力矩平衡 辅助线如图所示,其中ON 垂直ab ,OM 垂直水平虚线,则θ=∠MON 。又由于R ab 2=,所以三解形aOb 为等腰直角三角形。以O 点为转轴,用力矩平衡原理有(图中未做出转轴到力的作用线的距离): ?? ? ??+=??? ??-θπθπ4sin 4sin gR m gR m b a 整理得 ?? ? ??+=??? ??-θπθπ4sin 4sin 3…………………………(1) 将四个选项代入可知,选项D 正确。 附:若将上面的(1)式展开来看,可以直接求出关于关于θ的三角函数值,但从下面的计算可以看出,这样做来选择正确选项,并不是容易的。 θθθθcos 2 2sin 22sin 223cos 223+=?-? 整理可得: 32tan -=θ 图2 图1

可以很容易的知道A 和B 是不正确的,但由于我们没有记住C 和D 的角度的正切值,所以说不易找到结果。这说明了解选择题和解答题的解法是不同的。 解法二:共点力平衡——正弦定理 受力分析如图3所示,由于两物体处于平衡状态,所以所受到的三个力将分别构成封闭的三角形。 由两直线平行,同位角相等,可知a 、b 两物体所受支持与直方向的夹角分别为θπ -4和 θπ +4。在两个三角形中分别用正弦定理,有 4sin 4sin 1π θπg m F =??? ??- (2) 4sin 4sin 2π θπg m F =??? ??+ (3) (2)式除以(3)式,整理可得 34sin 4sin 12==?? ? ??-??? ??+m m θπθπ 将四个选项分别代入上式可以找到正确答案。 解法三:共点力平衡——正交分解法 如图对a 进行受力分析并建立直角坐标系。由共点力平衡条件可知 图4 图3

一道高考填空题的解法探究

一道高考填空题的解法探究-中学数学论文 一道高考填空题的解法探究 贾周德 (赣榆中等专业学校,江苏连云港222100) 摘要:本文探究了一道高考填空题的多种解法,开扩了学生的解题思路,培养了学生的创新思维.教学实践证明,在数学教学中开展一题多解训练,有利于学生掌握数学基础知识和基本方法,提高解题能力。 关键词:基本不等式;判别式;三角换元;几何;导数 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-11-0020-01 在数学教学中,笔者引导学生对下面一道高考填空题的解法作了一番探究,得到了多种不同的解法,现总结如下,供解题参考。 题目:设x,y,z为正实数,满足x-2y+3z=0,则y2xz的最小值是。 (2008年江苏高考数学卷第11题) 一、基本不等式法 解法1:由x-2y+3z=0,得y=x+3z2.将此式代入y2xz中,整理得y2xz=x4z+9z4x+32.由题设知,x4z,9z4x均为正实数,由基本不等式,得x4z+9z4x+32≥2x4z.9z4x+32=3,即y2xz≥3(当x=y=3z时,取“=”),所以y2xz的最小值是3. 点评:上述解法1是用基本不等式ab≤a+b2(a≥0, b≥0)求解的。本题也可以这样解,将已知等式化为y=x+3z2,由基本不等式,得y≥3xz0,即y2xz≥3,从而得解。利用基本不等式求最值时,要注意满足“一正数、二定值、三相等”的条件。

二、判别式法 解法2:设y2xz=t (t0),则y2=txz.由已知等式,得y=x+3z2.将此式代入y2=txz 中,整理得(xz)2+(6-4t)xz+9=0.因为这个关于xz的二次方程有正实数根,所以判别式Δ=(6-4t)2-36≥0,解得t≥3或t≤0(舍去),即y2xz≥3(当x=y=3z 时,取“=”).所以y2xz的最小值是3. 点评:上述解法2是将y2xz用新变量t表示,结合已知等式,用代入法消去y,整理得关于xz的二次方程,从而利用“判别式法”得解.利用判别式法求函数的最值时,要注意检验其结论的正确性,防止出现“误判”或“漏判”的情形. 三、三角换元法 解法3:将x-2y+3z=0化为x2y+3z2y=1.令x2y=cos2θ,3z2y=sin2θ,θ∈(0,π2).两式相乘并整理,得y2xz=3sin22θ.因为2θ∈(0,π),所以1sin22θ≥1,于是y2xz≥3.当θ=π4时, 1sin22θ取最小值1,从而y2xz取最小值3,此时x=y=3z.所以y2xz的最小值是3. 点评:上述解法3是将已知等式化为x2y+3z2y=1,利用三角换元法把问题转化为求三角函数的最值问题而得解的。这里得出x2y+3z2y=1后,也可以利用基本不等式求解。 四、几何法 解法4:作线段AP=x,延长AP至点B,使PB=3z,则AB=x+3z=2y(x,y,z为正实数). 以线段AB为直径作圆O (如图),作半径OC,使OC⊥AB,则OC=y.过点P作PE⊥AB,交圆O于点E,则3xz=PE2≤OC2,即3xz≤y2,所以y2xz≥3.显然,当点P 与圆心O重合时,此不等式取“=”,此时x=y=3z.所以y2xz的最小值是3.

高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)

一.方法综述 解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下; (1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性; 一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果; 另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。 (2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 二.解题策略 类型一定值问题 【例1】(2020?青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为() A.B.C.2p D. 【答案】D 【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果. 解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),

解析几何中的定值和定点问题

解析几何中的定值定点问题(一) 一、定点问题 【例1】.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线0x y -+=相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴ 由题意知c e a ==2222 2234c a b e a a -=== ,即224a b = ,又因为1b ==,所以22 4,1a b ==,故椭圆C 的方程为C :2214 x y +=. ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22 (4)14 y k x x y =-???+=??消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ?=-+->得21210k -<, 又0k =不合题意, 所以直线PN 的斜率的取值围是0k << 或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为21 2221 ()y y y y x x x x +-=--, 令0y =,得221221 () y x x x x y y -=- +,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ② 由得①2212122232644 ,4141k k x x x x k k -+== ++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). 【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到(),0 ,) ,0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x 轴上焦中为的椭圆,其方程为2 214 x y +=.

一道高考题的五种解法

一道高考题的五种解法-中学数学论文 一道高考题的五种解法 高成龙 (首都师范大学数学科学学院,北京100048) 摘要:数学被称为思维的体操,一题多解可以透过多个角度来审视一道题目,对学生的解题能力有很大提高。本文通过对一道高考题进行深入分析,得出五种解法,拓展了解题思路,培养学生探究式学习的兴趣。 关键词:三角函数;一题多解;高考 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-11-0025-01 题目:(2012年全国大纲卷·理7)已知α为第二象限角,且si nα+cosα=33,则cos2α=() A.-53 B.-59 C.53 D.59 分析一:利用三角函数基本公式sin2α+cos2α=1,联立方程组来求解得sinα,cosα的值,进而求得cos2α的值. 解法一:sin2α+cos2α=1(1),sinα+cosα=33(2),联立(1)式与(2)式消去cosα得:2sin2α-233sinα-23=0, 求得sinα=3+156或sinα=3-156. 又由题设α为第二象限角,所以sinα0,即sinα=3+156 ,代入(2)式得cosα=3-156,由cos2α=cos2α-sin2α得cos2α=-53,选A. 分析二:在解法一中求得sinα的值之后,无需在求cosα,直接利用cos2α=1-2sin2α来求cos2α的值. 解法二:由解法一求得sinα=3+156,由cos2α=1-2sin2α得cos2α=1-

2sin2α=1-23+1562=-53,选A. 分析三:根据sinα+cosα=33先求得sin2α的值,进而求得cos2α的值. 解法三:因为sinα+cosα=33,将其两边完全平方得: sinα+cosα2=1+sin2α=13,解得:sin2α=-23,利用sin22α+cos22α=1得cos2α=±53,由题设α∈π2,π,则2α∈π,2π,即2α位于第三或第四象限,这样cos2α的符号不唯一,因此这种方法不能确定cos2α的符号. 下面从另一个角度来确定cos2α的符号:根据二倍角公式cos2α=cos2α-sin2α=cosα+sinα·cosα-sinα,因为α为第二象限角,所以cosα0,sinα0,从而cosα-sinα0,另外sinα+cosα=330,因此cos2α0,从而cos2α=-53,选A. 分析四:解法思路同解法三相同,区别在于判断cos2α的符号取决于cosα与sinα的大小. 解法四:同解法三实质一样,求得cos2α=±53,下面来判断cos2α的符号,因为α为第二象限角,所以cosα0,sinα0,且sinα+cosα=330,从而sinαcosα,因此cos2α=cosα2-sinα20,从而cos2α=-53,选A. 分析五:由已知sinα+cosα的值,利用恒等式去求解cosα-sinα的值,进而求得cos2α的值. 解法五:由于题目已知sinα+cosα=33,为避免求sin2α的值,直接利用恒等式cosα+sinα2+cosα-sinα2=2得cosα-sinα2=53,又由解法三cosα-sinα0,因此cosα-sinα=-153,从而cos2α=cosα+sinα·cosα-sinα=33×-153=-53,选A. 作者简介:高成龙,首都师范大学数学科学学院,2012级研究生,研究方向:

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

解析几何中的定点、定值与最值问题解法揭秘

龙源期刊网 https://www.360docs.net/doc/9913814015.html, 解析几何中的定点、定值与最值问题解法揭秘 作者:黄伟军 来源:《广东教育·高中》2012年第01期 在平面解析几何这个知识版块里,定点、定值与最值问题历来都是中学数学中的重点问题,同时又是高考的热点问题,常考常新.据统计2011年高考各省市(区)解析几何大题中涉及考查定点、定值与最值问题的就有10个省份左右.为帮助2012届的高三考生在复习中能更 好地把握这三个问题,探索这三种类型问题的解题规律,本文特地详细介绍了这三种类型问题的基本概念、分类,并结合典型的高考试题、各地最新模拟试题给予剖析、小结归纳,并且给出相应的变式题目,让同学们小试牛刀,相信对同学们的复习有一定的帮助. 一、解析几何中的定点、定值问题 解析几何中的定点、定值问题一般是指在一定的情境下,不随其它因素的改变而改变的量.从近几年的新课标高考题来看,定点、点值问题多数以选择、填空题的形式出现,考查特殊与一般的转化思想,也有以证明等解答题面目出现,着重考查逻辑推理能力.处理定点、点值的基本方法是:先将变动元素用参数表示,然后计算出所需结果与该参数无关;也可将变动元素置于特殊状态下,探求出定点、定值,然后给以证明.值得注意的是,解析几何中的定点、定值问题与一般几何证明不同,它的结论中没有确定的定点、定值对象,所以探求定点、定值成为首要任务.其一,要有一定量的基本图形、基本结论作基础,先设一般问题成为一个 特殊问题,动中取静,使图形极端化(考虑图形的特殊位置和临界位置等),从而求得定点、定值,然后,从图形或数据的直观观察中,获得合乎情理的猜想,再进行逻辑证明;其二,要注意前面解答结论中的暗示功能和桥梁作用. 由于解析几何中的定点、定值问题在解题之前不知道定点、定值的结果,因而更增添了题目的神秘色彩,因而是颇有难度的问题,解决这类问题时,要运用辩证的观点去思考分析,在“变”中寻求“不变”,用特殊探索法(即用特殊值、特殊位置、特殊图形等)先确定出定点、定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.另外,有许多定点、定值问题,通过特殊探索法不但能够确定出定点、 定值,还可以为我们提供解题的线索. 例1.已知抛物线y2=2px(p>0),问:在轴的正半轴上是否存在一点M,使得过M点的抛物线的任意一条弦P1P2都有∠P1OP2=■(O为坐标原点)?请说明理由. 分析:这是一道与探索性相结合的定点问题,通过阅读题意我们发现几个关键词:“正半轴”,“任意一条弦”,抛物线y2=2px(p>0)的开口向右,先假设满足题设条件的点M存

一道高考数学试题的多种解法

一道高考试题的多种解法 2007年普通高等学校招生全国统一考试卷Ⅰ理科数学19题: 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面S B C ⊥底面A B C .已知 45ABC ∠=,2AB =,BC =SA SB ==(Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成的角的大小. 第一问证法较多,第二问相对作法较少,下面只列 举几种第一问的证法: 证法一:过S 作SO BC ⊥,垂足为O ,连接AO (如图1). 由侧面S B C ⊥底面A B C D 得SO ⊥底面 A B C D ,AO 、BO 分别是SA 、SB 在底面ABCD 内的射 影. 又SA SB =,∴OA OB = 又45ABC ∠=,∴ABO ?是等腰直角三角形, ∴OA OB ⊥. 由三垂线定理得SA BC ⊥. 证法二:过A 作AO BC ⊥,垂足为O ,连接SO (如图1). 由侧面SBC ⊥底面ABCD 得AO ⊥侧面SBC ,∴SO 是SA 在侧面SBC 内的射影,且,AO SO AO BO ⊥⊥. 在ABO ?中45ABO ∠=,∴OA OB =.又SA SB =,SAO SBO ∴???. 90SOB SOA ∴∠=∠=即OB SO ⊥. 由三垂线定理得SA BC ⊥. 证法三:连接AC ,记BC 的中点为O ,连接 AO 、SO (如图2).在ABC ?中 45ABC ∠=,2AB =,BC =∴ABC ? 是等腰直角三角形, ∴AO BC ⊥.(下同证法二) 证法四:连接AC ,记BC 的中点为O ,连接 AO 、SO (如图2).在ABC ?中45ABO ∠=,2AB =,BC =∴ABC ?是等腰直角三角形, ∴AO BC ⊥. 又侧面SBC ⊥底面ABCD ,∴AO ⊥侧面SBC ,SO 是SA 在侧面SBC 内的射影. 在SAB ?中易得cos SBA ∠=

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点定值问题 2 例1已知椭圆 —=1(2)的上顶点为M( 0, 1),过M a 的两条动弦MA MB 满足MAL MB 对于给定的实数a(a 1), 证明:直线AB 过定点。 解:由MA MB =0知MA_MB ,从而直线MA 与坐标轴不垂直, 故可 设直线MA 的方程为y 二kx 1,直线MB 的方程为 1 y x 1 k 将y 二kx1代入椭圆C 的方程,整理得 (1 a 2 k 2 )x 2 2a 2 k=x 0 例3已知椭圆的中心为坐标原点 O ,焦点在x 轴上, 斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点, OA OB 与 a =(3,-1) 共线. (1) 求椭圆的离心率; 解得x=0或 -2a 2 k 1 a 2k 2 故点A 的坐标为 -2a 2 k 1 a 2k 2 2 2 1-a k ) 1 a k 同理,点B 的坐标为 2 2 2 (2a k k -a ) k a k a 知直线l 的斜率为 k 2 - a 2 1 -a 2k 2 k 2 a 2 1 a 2k 2 = k _1 2a k _ -2a k (a 2 1)k ~T2 2 ^~2 k a 1 a k 直线l 的方程为 k 2 -1 2 (a 2 - (x- 2a 2k k 2 a 2 k 2 a 2 k 2 -1 a 2 -1 2 (a 2 - a 2 1 -直线l 过定点0, a 2 -1 a 2 1

化简得(a 2 b 2 )x 2 —2a 2 cx a 2c 2 -a 2b 2 令 A(x i ,y i ), B(X 2 , y 2), 2 贝 y X i X 2 |a -c ^,x i x 2 a +b 2 2 a c 2 2 a b a 2 b 2 由OA OB =(为 X 2 ,% y 2 ), a =(3,- 1),OA OB 与a 共线,得 3(% y 2)(x i X 2) =0. y i =Xi -cy 7 -c, 3( x 2 -2c)区 x 2) = 0, 3c 2 . 二至,所以a 2 =3b 2. X-| x 2 2a 2c a 2 b 2 2 2 16a c = a 「b , 3 I 故离心率e = c —. (II )证明:由(I )知a 2 =3b 2 ,所以椭圆 2 2 0 y__ a 2 b 2 x 2 3y 2 =3b 2 . 设OM =(x,y),由已知得(x,y) = (Xi,y );; ■丄化 小), x =檢1 + %, 「? J y =环卡%. (2)设M 为椭圆上任意一点,且OM 「OA .OB(.i R), 证明,」为定值. 2 2 笃与=1(a b ■ 0), F(c,0), a b 2 2 则直线AB 的方程为y=x —c,代入笃吕 a b (I )解:设椭圆方程为

相关文档
最新文档